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Abstract- The present investigation deals with the deformation 
in micropolar generalized thermoelastic medium with three 
phase lag subjected to thermomechanical loading due to thermal 
laser pulse. Normal mode analysis technique is used to solve the 
problem. Concentrated normal force and thermal source are 
taken to illustrate the utility of approach. The closed form 
expressions of normal stress, tangential stress, couple-stress, and 
temperature distribution are obtained.. Some particular cases of 
interest are deduced from the present investigation. 
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I. INTRODUCTION 
 
Modern engineering structures are often made up of 

materials possessing internal structure. Polycrystalline 
materials, materials with fibrous or coarse grain structure 
come in this category. Classical theory of elasticity is 
inadequate to represent the behavior of such materials. The 
analysis of such materials requires incorporating the theory of 
oriented media. The linear theory of micropolar elasticity was 
developed by Eringen [1]. A micropolar continuum is a 
collection of interconnected particles in the form of small 
rigid bodies undergoing both translational and rotational 
motions. Typical examples of such materials are granular 
media and multi-molecular bodies whose microstructures act 
as an evident part in their macroscopic responses. Rigid 
chopped fibers, elastic solids with rigid granular inclusions 
and other industrial materials such as liquid crystals are 
examples of such materials. 

The generalized theory of thermoelasticity is one of the 
modified versions of classical uncoupled and coupled theory 
of thermoelasticity and has been developed in order to 
remove the paradox of physical impossible phenomena of 
infinite velocity of thermal signals in the classical coupled 
thermoelasticity. Hetnarski and Ignaczak [4] examined five 
generalizations of the coupled theory of thermoelasticity. The 
first generalization is due to Lord and Shulman [2] who 
formulated the generalized thermoelasticity theory involving 
one thermal relaxation time. Green and Lindsay [3] 
developed a temperature rate-dependent thermoelasticity that 
includes two thermal relaxation times. One can refer to 
Hetnarski and Ignaczak [4] for a review and presentation of 
generalized theories of thermoelasticity.         

 The third generalization of the coupled theory of 
thermoelasticity is developed by Hetnarski and Ignaczak and 
is known as low temperature thermoelasticity. The fourth 
generalization to the coupled theory of thermoelasticity 

introduced by Green and Nagdhi [5] and this theory is 
concerned with the thermoelasticity theory without energy 
dissipation. The fifth generalization to the coupled theory of 
thermoelasticity is developed by Tzou [6] and 
Chanderashekhariah [7] and is referred to dual phase-lag 
thermoelasticity. He introduced two phase lags to both the 
heat flux vector and the temperature gradient and considered 
constitutive equations to describe the lagging behavior in the 
heat conduction in solids. Roychoudhuri [8] has recently 
introduced the three-phase-lag heat conduction equation in 
which the Fourier law of heat conduction is replaced by an 
approximation to a modification of the Fourier law with the 
introduction of three different phase-lags for the heat flux 
vector, the temperature gradient and the thermal displacement 
gradient. The stability of the three-phase-lag heat conduction 
equation is discussed by Quintanilla and Racke [9]. 
Quintanilla has studied the spatial behavior of solutions of the 
three-phase-lag heat conduction equation.  

Laser technology has a vital application in nondestructive 
materials testing and evaluation. When a solid is heated with 
a laser pulse, it absorbs some energy which results in an 
increase in localized temperature. This cause thermal 
expansion and generation of the ultrasonic waves in the 
material. The irradiation of the surface of a solid by pulsed 
laser light generates wave motion in the solid material. There 
are generally two mechanisms for such wave generation, 
depending on the energy density deposited by the laser pulse. 
At high energy density, a thin surface layer of the solid 
material melts, followed by an ablation process whereby 
particles fly off the surface, thus giving rise to forces that 
generates ultrasonic waves. At low energy density, the 
surface material does not melt, but it expands at a high rate 
and wave and wave motion is generated due to thermoelastic 
processes.  

Very rapid thermal processes (e.g., the thermal shock due 
to exposure to an ultra-short laser pulse) are interesting from 
the stand point of thermoelasticity, since they require a 
coupled analysis of the temperature and deformation fields. A 
thermal shock induces very rapid movement in the structural 
elements, giving the rise to very significant inertial forces, 
and thereby, an increase in vibration. Rapidly oscillating 
contraction and expansion generates temperature changes in 
materials susceptible to diffusion of heat by conduction [10]. 
This mechanism has attracted considerable attention due to 
the extensive use of pulsed laser technologies in material 
processing and non-destructive testing and characterization 
[11, 12]. The so-called ultra short lasers are those with pulse 
durations ranging from nanoseconds to femto seconds. In the 
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case of ultra short pulsed laser heating, the high intensity 
energy flux and ultra short duration lead to a very large 
thermal gradients or ultra-high heating may exist at the 
boundaries. In such cases, as pointed out by many 
investigators, the classical Fourier model, which leads to an 
infinite propagation speed of the thermal energy, is no longer 
valid [13]. Researchers have proposed several models to 
describe the mechanism of heat conduction during short-
pulse laser heating, such as the parabolic one-step model 
[14], the hyperbolic one-step model [15], and the parabolic 
two-step and hyperbolic two-step models [16, 17]. It has been 
found that usually the microscopic two-step models, i.e., 
parabolic and hyperbolic two-step models, are useful for thin 
films. Simulation on laser ultrasound wave form in non-
metallic materials was discussed by Wang et al [18]. 

Scruby et al. [19] considered the point source model to 
study the ultrasonic generation by lasers. He studied the 
heated surface by laser pulse irradiation in the thermoelastic 
system as a surface center of expansion (SCOE). He also 
discussed the applications of laser technology in flaw 
detection and acoustic microscopy. Rose [20] later presented 
a more exact mathematical basis. Point source model explain 
main features of laser-generated ultrasound waves but this 
model fails to explain precursor in epicenter waves. Later 
introducing the thermal diffusion McDonald [21] and Spicer 
[22] proposed a new model known as laser-generated 
ultrasound model. This model reported excellent agreement 
between theory and experiment for metal materials. But due 
to the optical penetration effect, this model cannot be applied 
to the study of laser-generated ultrasound in non-metallic 
material directly. The optical absorption occurs at the surface 
layer in metallic materials, and the heat penetration is resulted 
due to heat diffusion. In non-metallic materials, the laser 
beam can penetrate the specimen to some finite depth and 
induced a buried bulk- thermal source, so the features of the 
laser-generated ultrasound will be significantly different from 
that in metallic materials.  

Dubois [23] experimentally demonstrated that penetration 
depth play a very important role in the laser-ultrasound 
generation process. Ezzat et al. [24] discussed the thermo-
elastic behavior in metal films by fractional ultrafast laser. 
Al-Huniti and Al-Nimr [25] investigated the thermoelastic 
behavior of a composite slab under a rapid dual-phase lag 
heating. The comparison of one-dimensional and two-
dimensional axisymmetric approaches to the 
thermomechanical response caused by ultrashort laser heating 
was studied by Chen et al. [26]. Kim et al. [27] studied 
thermoelastic stresses in a bonded layer due to pulsed laser 
radiation. Thermoelastic material response due to laser pulse 
heating in context of four theorems of thermoelasticity was 
discussed by Youssef and Al-Bary [28]. Theoretical study of 
the effect of enamel parameters on laser induced surface 
acoustic waves in human incisor was studied by Yuan et al 
[29]. A two- dimensional generalized thermoelastic diffusion 
problem for a thick plate under the effect of laser pulse 
thermal heating was studied by Elhagary [30].  

In this research, taking into account the radiation of ultra 
short laser, we have established a model for micropolar 
thermoelastic medium with three phase lag model. The stress 
components and temperature distribution have been 

computed numerically. The resulting expressions are then 
applied to the problem of a micropolar thermoelastic three 
phase lag medium whose boundary is subjected to two types 
of loads i.e. mechanical load and thermal load. The resulting 
quantities are shown graphically to show the effect of laser 
irradiation 
 

II. BASIC EQUATION  
 
Following Roychoudhuri [8], the basic equations in a 
homogeneous, isotropic micropolar generalized thermoelastic 
medium with three phase lag model in the absence of body 
forces and body couples are given by: 

(� + �)∇(∇. �) + (� + �)∇�� + �∇ × � − ��∇� = ��̈ ,                
(1.1) 

(�∇� − 2�)� + (� + �)∇(∇.�) + �∇ × � = ���̈,  (1.2)              

��∗�1 + ��
�

��
�+ ��

�

��
�1 + ��

�

��
��∇�� = �1+ ��

�

��
+

��
�

�

��

���
������̈ + �����̈� − �� �̇,                            (1.3)                    

��� = ����
∗ + ���,����� + ����,� + ��,�� + ����,� −

������� − �� �1+ ��
�

��
����� ,                                      (1.4) 

��� = ���,���� + ���,� + ���,� + �������,�
∗  , 

                                              
(1.5) 

The plate surface is illuminated by laser pulse given by the 
heat input 
 
� = ���(�)�(��)ℎ(��)     (1.6) 
 
Where,  �� is the energy absorbed. The temporal profile �(�) 
is represented as, 

�(�) =
�

��
� �

��
�

��
�
                                     (1.7) 

Here �� is the pulse rise time. The pulse is also assumed to 
have a Gaussian spatial profile in ��                                                                                    

�(�) =
�

����
�
��

��
�

��
�
                                   (1.8) 

where � is the beam radius, and as a function of the depth �� 
the heat deposition due to the laser pulse is assumed to decay 

exponentially within the solid,       
                                                                          

ℎ(��) = �∗���∗��                                   (1.9) 
                                                                                                                  
Equation (1.7a) with the aid of (1.7b, 1.7c and 1.7d) takes the 
form 

� =
���

∗

������
� ��

��
�

��
�
�
��

��
�

��
�
���∗��   ,               (1.10)   

 
Here �,μ,�,�,�,�,	are material constants, � is 

mass density, � = (��,��,��)	is the displacement vector and  
� = (��,��,��)	is the microrotation vector, � is 
temperature and  �� is the reference temperature of the body 
chosen,		��� are components of stress,  ��� are components of 
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couple stress, 	��� are components of strain, ��� is the 

dilatation,		��� is Kroneker delta function, 	��,�� are the 

diffusion relaxation times and ��,	��are thermal relaxation 
times with �� ≥ 	�� ≥ 0. Here  	�� = �� = �� = 	�� = �� = 0 
for Coupled Thermoelastic theory (CT) model. 	�� = �� =
0,� = 1,�� = ��  For Lord-Shulman (LS) model and � = 0,
�� = 	�� where 	�� > 0  for Green-Lindsay (GL) model. 

 
In the above equations symbol (“,”) followed by a 

suffix denotes differentiation with respect to spatial 
coordinates and a superposed dot (“ 	̇ ”) denotes the derivative 
with respect to time respectively. 
 

III. FORMULATION OF THE PROBLEM 
 
We consider a micropolar generalized thermoelastic solid 
with rectangular Cartesian coordinate system ������� 
having origin on ��-axis with ��-axis pointing vertically 
downward the medium. A normal force/thermal source is 
assumed to acting on the origin of the rectangular Cartesian 
co-ordinate system.   
 
If we restrict our problem for plane strain parallel to ����-
plane with 
 
� = (��,0,��),	� = (0,��,0),    (2.1) 
 
Then the field equations in micropolar generalized 
thermoelastic solid in the absence of body forces and body 
couples the equations of motion can be written as: 
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For further consideration it is convenient to introduce in 
equations (1.1)-(1.5) the dimensionless quantities defined as: 
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Using (2.6), the equations (2.2)-(2.5) reduce to: 
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Using the potential functions � and � as: 
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The equations (2.7)-(2.10) reduce to:                                                                                       
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IV. SOLUTION OF THE PROBLEM 

The solution of the considered physical variables can be 
decomposed in terms of the normal modes as in the following 
form: 

{�,�,�,��,�}(��,��,�) = {��,��,��,��
����,�̅}(��)�

�(������)   
(3.1) 
 
Here � is the angular velocity and � is wave number.  After 
some simplifications the general solution of the above system 

satisfying the radiation conditions that ���,��,��
�,��� → 0 as 

�� → ∞ are given as following: 
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V. BOUNDARY CONDITIONS 

We consider concentrated normal force and concentrated 
thermal source at the boundary surface	�� = 0, 
mathematically, these can be written as: 

��� = −��,	��� = 0 , ��� = 0,	� = ��	,              
                                        (4.1)                           
where �� is the magnitude of the applied force and �� is the 
constant temperature applied on the boundary.                                                                                          

Case 1: for the normal force: �� = 0  

Case 2: for the thermal source: �� = 0   
      

Substituting the values of ��,�∗�,�,� ��,��
�  from the 

equations (3.9)-(3.12) in the boundary condition (4.1) and 
using (1.4)-(1.5), (2.1), (2.11), (3.1) and solving the resulting 
equations, we obtain: 

���� = ∑ ����
������

��� + ���
��∗��       (4.3) 
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������

��� + ���
��∗��      (4.4)      
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��� + ���
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∑ ����
������

��� + ���
��∗��,                   (4.6)  

 

VI. SPECIAL CASES 
 

A. Micropolar Thermoelastic Solid 
In absence of three phase lag effect in Equations (4.3) - (4.7), 
we obtain the corresponding expressions of stresses, 
displacements and temperature for micropolar generalized 
thermoelastic half space. 
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