Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

KNN-DP:Dealing with Dataskewness Iin
KNN-Joins Utilizing MapReduce

Archana Mohan
M.Tech Computer Science and Engineering
Believers Church Caarmel Engineering College,Perunad
Pathanamthitta, India

Abstract— In this examination, | found that the information
skewness issue forces unfavorable effects on MapReduce-based
parallel KNN-join activities running bunches. | propose an
information parceling approach - called KNN-DP - to reduce
load awkwardness caused by information skewness. The general
objective of KNN-DP is to similarly isolate information objects
into an extensive number of segments, which are handled by
mappers and reducers in parallel. At the core of KNN-DP is an
information parceling module, which progressively and wisely
segments information to streamline KNN-join execution by
stifling information skewness on Hadoop bunches. Information
dividing choices to a great extent relies upon information
properties (e.g., circulations), the examination of which is
exceedingly costly for a gigantic measure of information. To
accelerate the information property examination, | fuse an
inspecting procedure to profile the information appropriation of
a little example dataset speaking to huge datasets. In the wake of
structure an information dividing cost model for parallel KNN-
goes along with and | infer the time-multifaceted nature upper
and lower limits of parallel KNN-join calculations. The cost
model offers us a direction to efficiently research KNN-DP's
execution. kNN-DP gets worldwide closest neighbors utilizing
nearby closest neighbors. The exploratory outcomes
demonstrate that KNN-DP essentially improves the execution of
LSH and z-esteem while offering high extensibility and
adaptability on Hadoop groups. A deduplication conspire was
presented in this paper which will lessen the calculation cost.

Keyword:- Dataskewness.deduplication,MapReduce

I. INTRODUCTION

The k-closest neighbor join (i.e., KNN-join) is a crude
activity broadly received by a wide scope of datamining
applications like k-implies grouping and anomaly discovery.
Consolidating the KNN question and the join task, KNN-join
turns into an over the top expensive task. To moderate the
high overhead of KNN-join, a bunch of earlier investigations
have advanced a progression of parallel KNN-join techniques
utilizing MapReduce. | find that a typical impediment of the
current MapReduce-based KNN-join arrangements lies in
information skew issues, which lead to imbalanced
outstanding task at hand among MapReduce errands. In this
examination, | proposed an all-encompassing way to deal
with handling the information skew issue by parceling
information among hubs of a Hadoop bunch. | demonstrate
that taking care of information skew can considerably
improve the execution MapReduce-based kNN-join tasks. In
specific, | consistently incorporate our information dividing
conspire with the area touchy hashing-based (i.e., LSH [1])
furthermore, space-filling-bends based (i.e., z-esteem [2])
KNN-join calculations. | fundamentally spurred by the

accompanying three perceptions to address the information
skew issue in MapReducebased kKNN-joins.

Perceptionl. A kNN-join activity consolidates each object of
one dataset with its KNNs in another dataset, giving more
significant question results than range joins (a.k.a., run
likeness joins). KNN-joins are costly tasks, since both the
closest neighbor look and the join tasks are tedious. The high
overhead of KNN-join turns out to be increasingly articulated
with regards to expansive datasets with multi-measurements.
In the previous decade,streamlining calculations were
proposed to improve kKNNjoin execution [3] [4]. Prevalent
advancement thoughts that help in lessening 1/0 and CPU
costs incorporate join planning, information arranging, just as
separating and decrease [5]. These basic but then effective
methods improve proficiency of preparing high-dimensional
information.

Perception2. An expanding number of parallel kNNjoin
calculations are created to manage the quickly developing
input datasets with multi-measurements (see, for instance,
[6). A larger part of customary parallel KNN-join
calculations comprise of three stages, in particular, task
creation, task, also, parallel undertaking execution [7].
Saving information area is an effective method for
diminishing both CPU and I/O cost. Aside from traditional
parallel kNN-joins, MapReduce- based kNN-joins catch
much consideration in the previous few a long time [2] [8]
[9] [10]. MapReduce [11] is a straightforward yet proficient
parallel processing system offering high adaptability and
adaptation to internal failure. Earlier examinations affirmed
that MapReduce is a significant structure of preparing a huge
measure of information with multi-measurements. | spurred
to address execution issues in MapReduce-based KNN-join.

Perception3. | expand a charming dataskewness issue in
MapReduce-based KNN-joins. | watch that current KNN-join
calculations utilizing MapReduce are touchy to information
attributes and information skewness. Skewed information
definitely hinder parallel KNN-joins, in light of the fact that
information skewness prompts imbalanced remaining burden
making a few hubs an act bottleneck in MapReduce
groups.The information skewness issue inspires us to propose
an information dividing plan to accomplish adjusted burden
in groups running MapReduce-based KNN-joins.

IJERTV8I S050190

www.ijert.org 242

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

A. Contributions

The more than three recognitions move me to structure a
comprehensive arrangement called KNN-DP to portion data
among a Hadoop pack’s datanodes to address the data skew
issue. Data skewness unavoidably prompts imbalanced
weight over Hadoop gatherings, thusly inside and out limiting
kNNjoin execution (see also recognition 3). The data
skewness ends up being continuously explained in KNN-joins
when (1) input datasets R and S seek after out and out various
spreads and (2) set R is liberally greater than set S. Such data
skewness is facilitated by kNN-DP's data allotting
framework, which applies the dynamic package limit
modifying method to admirably make all of the centers
likewise process KNN-participates in parallel.

The pile modifying thought of kNN-DP is through and
through unique in relation to standard weight altering plans
that split assignments into tinier ones and reassign a segment
of the endeavors to sit processors. Rather than doling out
assignments, KNN-DP hopes to modifying load through data
course of action decisions making each center point similarly
handle KNN-join undertakings. | lead tests to demonstrate
that by managing data skewness, KNN-DP improves the
execution of MapReduce-based kNN-join exercises. Data
isolating decisions, as it were, depend upon data properties
(e.g., courses). It is exceedingly exorbitant to get data
properties of a tremendous proportion of data. To get data
properties in a brief time allotment period, I propose an
inspecting framework to profile the data scattering of a model
dataset, which is an unobtrusive piece of a noteworthy
dataset.

Like prior parallel kNN-joins, my KkNN-DP gets
worldwide nearest neighbors using close-by nearest
neighbors. Such a conjecture course of action may be unfit to
discover all the worldwide nearest neighbors, cutting down
kNN-join accuracy. In solicitation to improve the KNN-join
exactness, | grow the close-by data of each center marginally
of abundance data, which is fastened to the head and tail of
each datum square. | moreover quantitatively evaluate the
impact of the KNN-DP's overabundance data strategy on the
kNN-join precision.

One striking component of my data isolating arrangement
is that it is symmetrical to a wide extent of MapReduce based
KNN-join estimations. This segment empowers me to
speedily what's more, reliably consolidate my kNN-DP with
existing parallel KNN-join estimations, for instance, LSH-
based [1] and z valuebased [2] KNN-joins.

Here, | first present KNN-join method, sought after by an
introduction of the MapReduce framework. A deduplication
plot was likewise acquainted which will help with expel the
copy duplicates. Deduplication conspire is equipped for
lessen the capacity tasks on account of bigger frameworks
and improves the capacity use.

Il. FUNDAMENTALS

A. kNN Join

Give us a chance to consider two datasets R and S in
space Rd, where each item (e.g., r 2 R and s 2 S) is spoken to
as a d-dimensional item. We measure the likeness separate
between items r 2 R and s 2 S utilizing their euclidean
separation d(r; s). It would be ideal if you note that the
different methods for measuring likeness separation can be
found in Section 4.5. Task knn(r; S) restores a lot of k closest
neighbors or KNN of point r from set S.
Given article r 2 R, the KNN-join activity knnJ(R; S) of
datasets R and S restores a blend set of each item r's KNN set.
Therefore, we express knnJ(R; S) utilizing kNN-join task
knn(r; S) as pursues. knnJ(R; S) = f(r; knn(r; S))j for all r €
R}: (1)

B. MapReduce Framework

MapReduce is a parallel programming model proposed by
Google [11]. The objective of MapReduce is to disentangle
the handling of extensive datasets on cheap bunch PCs. A
MapReduce program commonly comprises of a couple of
user defined map and decrease capacities. Hadoop is an open
source programming actualizing the MapReduce processing
system. Information in Hadoop are put away in a Hadoop
circulated record framework, which comprises of numerous
information hubs and an ace hub called namenode.

The Hadoop runtime framework builds up two procedures
- JobTracker and TaskTracker. The JobTracker parts a
submitted work into guide and decrease assignments, which
are planned also, doled out to all accessible TaskTrackers.
The TaskTrackers acknowledge and processes the relegated
guide/diminish undertakings. After finishing all mappers in a
Hadoop program, the Hadoop runtime framework bunches
every single middle of the road result and dispatches reducers
to creating last outcomes.

C. Deduplication

Proficient and versatile deduplication methods are
required to serve the need of evacuating copied information
in enormous information handling stages, for example,
Hadoop. In this paper, a coordinated deduplication approach
is proposed by taking the highlights of Hadoop into account
and utilizing parallelism dependent on MapReduce and
HBase in order to accelerate the deduplication strategy.

I1l. DATAPARTITIONING IN PARALLEL KNN JOINS

A. Overview

In this segment, | present the advancement of KNN-DP,
the information parceling plan that advance kNN-joins
running in the MapReduce programming structure. In the
wake of advertising KNN-DP's review in the next section,
then | talk about the information testing systems actualized in
the information preprocessing technique. Next, | depict KNN-
DP's first MapReduce work, which partitions information
tests into n allotments pursued by modifying information in
unequal allotments. At last, | give an depiction on the second
MapReduce work that segments information in a manner to
adjust load among reducers.

IJERTV8I S050190

www.ijert.org 243

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

Profiling Sample Data. The pre-preparing system ponders
tests from info datasets R and S. The profiling data on the
examples catches information dissemination properties of the
info datasets.The inspecting procedure executed in the
preprocessing methodology improves the exactness of
information apportioning requiring little to no effort.

Obtaining Data-Partition Boundaries. The first MapReduce
work decides limits of information allotments. This activity
plans to guarantee that each parcel's handling time intricacy is
around equivalent to the best-case time unpredictability,
which suggests that all the allotments are very much adjusted.
The calculation of the first MapReduce work is planned
utilizing the dynamic segment limit changing strategy.

Partitioning Data and Computing kKNN-joins. The second
MapReduce work accomplishes two objectives. To begin
with, mappers in this activity parcel input information
crosswise over datanodes as indicated by the limits controlled
by the first MapReduce work. Second, reducers are situated
to seek k closest neighbors in dataset S forr € R.

a) Profiling Sample Data

A perfect information apportioning technique to improve
KNN-joins should bunch objects dependent on their
comparability, expecting to make various segments with
equivalent burden. Whenever equalsized allotments are
circulated to numerous hubs, each of which handle one
parcel, the preparing time of hubs are near one another. At
the end of the day, making various allotments share with
comparable handling time unpredictability is a productive
method for enhancing parallel kNN-join calculations. To
similarly segment an expansive info information, one needs
to contemplate the information's conveyance property. The
overhead of profiling information property is high, since it
requires arranging and examining the gigantic measure of
information. To diminish the costly profiling process, |
depend on a little example dataset to take after the expansive
information's property. | actualize a pre-process methodology
completed in the ace hub of a Hadoop group to acquire
information circulation properties of enormous information
from little examples. Despite the fact that there exist different
testing strategies, none of these inspecting plans can be
broadly connected to treat all information types. In this way,
it is ostensibly evident that a commonsense route is to utilize
a proper inspecting technique as per information attributes.
So as to acquire information parcel limits at low processing
cost, | plan the accompanying three information examining
plans running on Hadoop bunches.

Simple Random Sampling. We produce a little test set
from a vast info information dispersion put away on HDFS, if

datasets R and S pursues an equivalent dissemination.

Heterogeneous Random Sampling. Heterogeneous
information conveyance alludes to situations where
information appropriations of datasets R and S are
extraordinary. | proposed heterogeneous arbitrary examining
to independently perform examining on R and S. In this

manner, R and S have two distinctive little example sets
utilizing the above straightforward irregular testing strategy.

Interval Sampling. At the point when the dispersion of
datasets R and S is obscure from the earlier, | apply interim
testing to profile input information. Test datasets RO
furthermore, SO are extricated by isolating a similar number
of items (i.e.,, "2 N) from R and S, separately. Here N is the
items number of dataset R or S; " is in the range somewhere
in the range of 0 and 1 (i.e., " 2 (0; 1)).

b) Obtaining Data-Partition Boundaries

The first MapReduce work in kKNN-DP endeavors to
separate test dataset to n equivalent gatherings by
progressively modifying segment limits in unbalance
gatherings. The pseudocode of this MapReduce work is point
by point in Algorithm 1, which performs information
parceling combined with changes utilizing MapReduce.
Calculation 1 consolidates the dynamic partitionboundary
modifying strategy to get problematic parcel limits in Lines
11-14 (see additionally Algorithm 2).

The mapper work in the principal work for the most
part extricates highlights of a dataset with various
measurements; the component extraction is actualized by
rapidly ascertaining a separation between two items. | express
each multi-dimensional information object as a one-
dimensional esteem utilizing capacity charact(o), which
might be actualized in an assortment of ways. Test executions
of capacity charact(o) are the region touchy hashing-based
plan [1], and the spacefilling- bends based plan [2] These two
plans are regularly received in parallel KNN-join computing. |
incorporate KNN-DP with LSH and z-esteem; we allude to
the two kNN-DPenabled arrangements as LSH+ and z-
value+. LSH+: Integrating kKNN-DP and LSH-based
kNNjoins.

In the LSH conspire, each item in test datasets RO and
SO is spoken to as a hash code (i.e., one-dimensional hash
esteem) by the hash work. At that point, a few items with
comparable hash codes are put into a similar can, which
speaks to an information parcel. Each can contains objects
whose hash codes that are in a given range balanced by our
kKNNDP to adjust processing load among cans. z-value+:
Integrating KNN-DP and z-esteem based KNN-joins. z-bend is
one of the space filling bends, which maps an item in test
dataset RO or SO to one-dimensional z esteem. The z esteems
are isolated into n segments utilizing the Balance R conspire.
KNNDP is connected to adjust the n parcels.

The principle objective of the Reduce work is to
modify the segment limits begun by the above guide work.
The parcel modification tries to adjust handling time
multifaceted nature of each parcel, guaranteeing that
allotments are around equivalent in size. The Reduce work
makes the three strides underneath to achieve segment
modifications. In the first place, test dataset RO is arranged in
a non-diminishing request of one-dimensional qualities,
which are dictated by the previously mentioned guide work.
The underlying parcel limits are gotten by the Balance R
technique (see Lines 16-17). Second, the preparing time of
each segment is evaluated utilizing time multifaceted nature
examination (see Lines 19). At long last, given an

IJERTV8I S050190

www.ijert.org 244

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

information skewness-degree limit (see Section3.2), we
should look at the evaluated handling time of the
considerable number of segments against the best-case parcel
(i.e., perfect case). Such correlations are executed in the
Reduce work by contrasting the information skewness-degree
and its edge. Correlation results oversee dynamic changes of
information questions in a lopsidedness parcel utilizing the
dynamic segment limit modifying plan (see Lines 20-24),
which is portrayed in Algorithm 2.

Algorithm 1 Computing Data-Partition Boundaries
1: input: RO; SO;/* Two testing datasets */
2: yield: Boundary esteems;
3: work MAP (key balance, values RO [SO)
4: for all (0 € RO U S0) do
5: o:value« charact(o);/* process o's character esteem */
6: on the off chance that (o € RO) at that point/* o is an article
inset R */
7: o:f slack = Flag R/*o:f slack shows object o in RO*/
8: else
9: o:f slack = Flag S;/*o:f slack demonstrates object o in SO*/
10: end if
11: object < 0
12: emit(object; (o:value; o:f slack));
13: end for
14: end work
15: work REDUCE(key object, values (o:value, o:f slack))
16: BoundarySet «sort(R0);/* sort dataset RO */
17: Boundary[n]« get(BoundarySet);/* Obtain n limits from
BoundarySet utilizing Balance R plot */
18: for (i=1;i<n;i++) do/*n is the quantity of partitions*/
19: Calculate the sizes jROi j and jSOi j of RO and SO in I-th
run;
20: if (jO(jRijlog2jSij)—Obest/ Obest<j T) at that point/*see
Formula 5*/
21: Boundary[i] = Optimizing Boundary(Boundary[i])
/* Make limits way to deal with the best case. (see
Algorithm2) */
22: else
23: emit(i;Boundary[i]_S);
24: end if
25: end for
26: end work
c) Dynamically Adjusting Partition Boundaries
Review | get beginning estimations of parcel limits
from Calculation 1's Line 17, which has not yet
comprehended the dataskewness issue. Presently we propose
a calculation to decide ideal limits, easing imbalanced burden
among information allotments. The pseudocode is outlined in
Calculation 2, which comprises of the accompanying three
stages.
Stage 1. This progression includes the quantity of items in
test sets RO and SO in the ith segment (see Line 5), in which
the quantities of articles in RO and SO are communicated by
jROi j and jSO ij, separately.
Stage 2. At the point when a segment's time unpredictability
is littler than that of the best case, the segment will be

Obest [1T; see Lines 6-10). Along these lines, a little segment
is reached out to an extensive one. Stage 3. In a major
information segment, we embrace the parallel inquiry
strategy to enhance the segment's lower limit. After Stage 3 is
finished, we get the underlying upper limit what's more, the
enhanced lower limit, which structure a streamlined new
parcel. The handling time intricacy of the new parcel is
exceptionally near the perfect time unpredictability (see Lines
11-14).

Algorithm 2 Optimizing Boundary ()

1: input: jROj, jS0j; Initial limit esteems: limit esteems;
2: yield: Optimized limit esteem exhibit: boundary [];
3: Boundary[n] «<Boundary esteems
4: for (i=1,j=0;i+j<n;i++) do/* n
segments.*/

5. jROi j, jSOi j <-count (Boundary[i-1],Boundary[i]);/*
Calculate sizes jROi j and jSOi j in a range between
Boundary[i-1] and Boundary[i]. */

6: while (O(jRijlog2jSij—Obest/Obest < -T) do/*The ith
parcel's time multifaceted nature is little than the perfect
value.(see Equation (6))*/

7: Boundary[i]=Boundary[i+j];/* Merging segments and
altering limit */

8: j++;

9: jROI j, jSOi j count (Boundary [i-1], Boundary[i]);/*
Recalculating jROi j and jSOi j: */

10: end while

11: if (O (jRijlog2jSij)—Obest /Obest > T) at that point/*see
Formula (6)*/

12: Best Binary-Search (Boundary [i-1], Boundary[i]);/*
Binary look through the range between jROi j and Best to
guarantee that jROij log2jS0ij T.*/

13: Boundary[i] Best;/* Obtain the ith enhanced limit. */

14: end if

15: output (Boundaryl[i]);

16: end for

d) Partitioning Data and Computing KNN-joins.

The second MapReduce work has two duties. To begin
with, this activity means to parcel information as per the
limits acquired in the first MapReduce work. Second, the
activity executes KNN-join tasks in parallel on a Hadoop
bunch.

is the quantity of

Algorithm 3: Data Partitioning and kNN-join Computing
1:input: R, S, and Boundary[n];

2: yield: KNNSet;

3: work MAP (key balance, values RO [SO)

4: forall (0 e RU S)do

5: o:value«< charact(o);/* Compute character estimation of
o*/

6: for (i=1; i<n; i++) do/* n is the quantity of allotments. */

7: in the event that (Boundary [i - 1] < o<value Boundary[i])
at that point

8: emit(i; (o.value; o.f lag));/* o is put in the ith parcel */

9: in the event that (o.flag=Flag S) at that point

10: Array_SJ[i]« o:value;

extended by converging with the following segment until 11: end if

information skewness-degree O(jRijlog2jSij)/Obest 12: end if

Obest increases than limit OT (i.e., O(jRijlog2jSij)/Obest 13: end for

IJERTV8I S050190 www.ijert.org 245

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

14: end for
15: for (i=1;i<n-1;i++) do
16: sort(Array_S[i]);
17: RedundantMin« K least incentive in Array_S[i];
18: emit(i—1; (RedundantMin:value;RedundantMin:flag)); /*
Add k excess articles in set Si-1. */
19: RedundantMax k most extreme incentive in Array SJi];
20: emit(i+1; (RedundantMax:value;RedundantMax:flag)); /*
Add k excess articles in set Si+1. */
21: end for
22: end work
23: work REDUCE (key parationID, values object)
24: parse Ri and Si(Si1, Si2, : :, Sim) from (parationID,
object)
25: for all (0 2 Ri) do
26: for (j=1;j<m;j++) do/* m is the quantity of items in Si. */
27: Dis[m]« distance(o:value; Sij);/* ascertain remove from
article o to protest Sij*/
28: end for
29: kNN(o; S) get(Dis[m]);/* Get k least esteem */
30: emit(o; kNN(o; S));
31: end for
32: end work

The pseudocode of the second employment is
outlined in Algorithm 3, which comprises of the
accompanying five stages.

Stage 1. This progression figures the component estimation
of every datum object in datasets R and S. Information items'
component esteems can be utilized to think about the
likenesses among these items (see Line 5).

Stage 2. Every datum object is set into a particular parcel as
per the segment's limits controlled by the first MapReduce
work (see the yield of Algorithm 1). This step exchanges
parcel identifiers alongside a rundown of items in each
segment to the Reduce work (see Lines 6-13).

Stage 3. Nearby KkNN-join results are approximates of
worldwide KNN-joins. To improve the exactness of rough
KNN-join results, we grow each parcel of dataset S by
including a head fragment and a tail section. In particular, the
head fragment of the ith parcel in S contains the last k objects
in the | [J 1th parcel; the tail fragment of the ith segment in S
is involved the main k questions in the | + 1th parcel. Hence,
the first and last segments of dataset S have an aggregate of k
excess articles; different segments contain 2k excess articles
(see Lines 15-21).

IV. CONCLUSION

In this study, | developed a data partitioning approach
called kKNN-DP for kNN-join. KNN-DP alleviates load
imbalance incurred by the data skewness problem. kNN-DP
achieves the equitable data partitioning by optimizing the
partition boundaries. Specifically, KNN-DP has three salient
and advanced features. First, the sampling technique is
utilized to quickly capture the data distribution of a big
dataset through profiling a small sample set. Second, KNNDP
dynamically adjusts partition boundaries by assessing time
complexity of each partition in a sample dataset. Optimized

partition boundaries offer smart data-partitioning guidelines.
Third, to improve the accuracy of parallel kNNjoin using
MapReduce, KNN-DP employs a redundant-data strategy,
which augments each node’s local data by a small amount of
redundant data. Also a deduplication was introduced to
remove the duplicate data.

REFERENCES

[1] A. Stupar, S. Michel, and R. Schenkel, “Rankreduce-processing k-
nearest neighbor queries on top of mapreduce,” in Proc. 8"
Workshop on Large-Scale Distributed Systems for Information
Retrieval, 2010, pp. 13-18.

[2] C.Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large
data in mapreduce,” in Proc. ACM 15th International Conference
on Extending Database Technology, 2012, pp. 38—49.

[3]1 C.Yu, R. Zhang, Y. Huang, and H. Xiong, “High-dimensional knn
joins with incremental updates,” Geoinformatica, vol. 14, no. 1, pp.
55-82, 2010.

[4] C.Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based knn join
processing for high-dimensional data,” Information and Software
Technology, vol. 49, no. 4, pp. 332-344, 2007.

[5] C. Xia, H. Lu, B. C. Ooi, and J. Hu, “Gorder: an efficient method
for knn join processing,” in Proc.3th International Conference on
Very Large Data Bases-Volume 30, 2004, pp. 756—767.

[6] M. Batko, C. Gennaro, and P. Zezula, “A scalable nearest
neighbor search in p2p systems,” in Proc. InternationalWorkshop
on Databases, Information Systems, and Peer-to-Peer Computing,
2004, pp. 79-92.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Parallel processing of
spatial joins using r-trees,” in Proc. IEEE Twelfth International
Conference on Data Engineering, 1996, pp. 258-265.

[81 M. Jang, Y.-S. Shin, and J.-W. Chang, “A grid-based k-nearest
neighbor join for large scale datasets on mapreduce,” in Proc. IEEE
International Conference on High Performance Computing and
Communications (HPCC), 2015, pp. 888-891.

[9] G. Song, J. Rochas, F. Huet, and F. Magoules, “Solutions for
processing k nearest neighbor joins for massive data on
mapreduce,” in Proc. 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, 2015, pp.
279-287.

[10] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” Proceedings of the
VLDB Endowment, vol. 5, no. 10, pp. 1016-1027, 2012.

[11] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72-77,
2010.

[12] M. Bouguessa and S. Wang, “Mining projected clusters in
highdimensional spaces,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 4, pp. 507-522, 2009. [13] J. Zhang,
S. Zhang, K. H. Chang, and X. Qin, “An outlier mining algorithm
based on constrained concept lattice,” International Journal of
Systems Science, vol. 45, no. 5, pp. 1170-1179, 2014.

[14] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the
nearest neighbor in high dimensional spaces?” in Proc. 26th
Internat. Conference on Very Large Databases, 2000, pp. 506-515.
databases,” ACM Transactions on Database Systems (TODS), vol.
24,

IJERTV8I S050190

www.ijert.org 246

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

