
kNN-DP:Dealing with Dataskewness in

kNN-Joins Utilizing MapReduce

Archana Mohan
M.Tech Computer Science and Engineering

Believers Church Caarmel Engineering College,Perunad

Pathanamthitta, India

Abstract— In this examination, I found that the information

skewness issue forces unfavorable effects on MapReduce-based

parallel kNN-join activities running bunches. I propose an

information parceling approach - called kNN-DP - to reduce

load awkwardness caused by information skewness. The general

objective of kNN-DP is to similarly isolate information objects

into an extensive number of segments, which are handled by

mappers and reducers in parallel. At the core of kNN-DP is an

information parceling module, which progressively and wisely

segments information to streamline kNN-join execution by

stifling information skewness on Hadoop bunches. Information

dividing choices to a great extent relies upon information

properties (e.g., circulations), the examination of which is

exceedingly costly for a gigantic measure of information. To

accelerate the information property examination, I fuse an

inspecting procedure to profile the information appropriation of

a little example dataset speaking to huge datasets. In the wake of

structure an information dividing cost model for parallel kNN-

goes along with and I infer the time-multifaceted nature upper

and lower limits of parallel kNN-join calculations. The cost

model offers us a direction to efficiently research kNN-DP's

execution. kNN-DP gets worldwide closest neighbors utilizing

nearby closest neighbors. The exploratory outcomes

demonstrate that kNN-DP essentially improves the execution of

LSH and z-esteem while offering high extensibility and

adaptability on Hadoop groups. A deduplication conspire was

presented in this paper which will lessen the calculation cost.

Keyword:- Dataskewness.deduplication,MapReduce

I. INTRODUCTION

The k-closest neighbor join (i.e., kNN-join) is a crude

activity broadly received by a wide scope of datamining

applications like k-implies grouping and anomaly discovery.

Consolidating the kNN question and the join task, kNN-join

turns into an over the top expensive task. To moderate the

high overhead of kNN-join, a bunch of earlier investigations

have advanced a progression of parallel kNN-join techniques

utilizing MapReduce. I find that a typical impediment of the

current MapReduce-based kNN-join arrangements lies in

information skew issues, which lead to imbalanced

outstanding task at hand among MapReduce errands. In this

examination, I proposed an all-encompassing way to deal

with handling the information skew issue by parceling

information among hubs of a Hadoop bunch. I demonstrate

that taking care of information skew can considerably

improve the execution MapReduce-based kNN-join tasks. In

specific, I consistently incorporate our information dividing

conspire with the area touchy hashing-based (i.e., LSH [1])

furthermore, space-filling-bends based (i.e., z-esteem [2])

kNN-join calculations. I fundamentally spurred by the

accompanying three perceptions to address the information

skew issue in MapReducebased kNN-joins.

Perception1. A kNN-join activity consolidates each object of

one dataset with its kNNs in another dataset, giving more

significant question results than range joins (a.k.a., run

likeness joins). kNN-joins are costly tasks, since both the

closest neighbor look and the join tasks are tedious. The high

overhead of kNN-join turns out to be increasingly articulated

with regards to expansive datasets with multi-measurements.

In the previous decade,streamlining calculations were

proposed to improve kNNjoin execution [3] [4]. Prevalent

advancement thoughts that help in lessening I/O and CPU

costs incorporate join planning, information arranging, just as

separating and decrease [5]. These basic but then effective

methods improve proficiency of preparing high-dimensional

information.

 Perception2. An expanding number of parallel kNNjoin

calculations are created to manage the quickly developing

input datasets with multi-measurements (see, for instance,

[6]). A larger part of customary parallel kNN-join

calculations comprise of three stages, in particular, task

creation, task, also, parallel undertaking execution [7].

Saving information area is an effective method for

diminishing both CPU and I/O cost. Aside from traditional

parallel kNN-joins, MapReduce- based kNN-joins catch

much consideration in the previous few a long time [2] [8]

[9] [10]. MapReduce [11] is a straightforward yet proficient

parallel processing system offering high adaptability and

adaptation to internal failure. Earlier examinations affirmed

that MapReduce is a significant structure of preparing a huge

measure of information with multi-measurements. I spurred

to address execution issues in MapReduce-based kNN-join.

Perception3. I expand a charming dataskewness issue in

MapReduce-based kNN-joins. I watch that current kNN-join

calculations utilizing MapReduce are touchy to information

attributes and information skewness. Skewed information

definitely hinder parallel kNN-joins, in light of the fact that

information skewness prompts imbalanced remaining burden

making a few hubs an act bottleneck in MapReduce

groups.The information skewness issue inspires us to propose

an information dividing plan to accomplish adjusted burden

in groups running MapReduce-based kNN-joins.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050190
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

242

www.ijert.org
www.ijert.org
www.ijert.org

A. Contributions

 The more than three recognitions move me to structure a

comprehensive arrangement called kNN-DP to portion data

among a Hadoop pack's datanodes to address the data skew

issue. Data skewness unavoidably prompts imbalanced

weight over Hadoop gatherings, thusly inside and out limiting

kNNjoin execution (see also recognition 3). The data

skewness ends up being continuously explained in kNN-joins

when (1) input datasets R and S seek after out and out various

spreads and (2) set R is liberally greater than set S. Such data

skewness is facilitated by kNN-DP's data allotting

framework, which applies the dynamic package limit

modifying method to admirably make all of the centers

likewise process kNN-participates in parallel.

The pile modifying thought of kNN-DP is through and

through unique in relation to standard weight altering plans

that split assignments into tinier ones and reassign a segment

of the endeavors to sit processors. Rather than doling out

assignments, kNN-DP hopes to modifying load through data

course of action decisions making each center point similarly

handle kNN-join undertakings. I lead tests to demonstrate

that by managing data skewness, kNN-DP improves the

execution of MapReduce-based kNN-join exercises. Data

isolating decisions, as it were, depend upon data properties

(e.g., courses). It is exceedingly exorbitant to get data

properties of a tremendous proportion of data. To get data

properties in a brief time allotment period, I propose an

inspecting framework to profile the data scattering of a model

dataset, which is an unobtrusive piece of a noteworthy

dataset.

Like prior parallel kNN-joins, my kNN-DP gets

worldwide nearest neighbors using close-by nearest

neighbors. Such a conjecture course of action may be unfit to

discover all the worldwide nearest neighbors, cutting down

kNN-join accuracy. In solicitation to improve the kNN-join

exactness, I grow the close-by data of each center marginally

of abundance data, which is fastened to the head and tail of

each datum square. I moreover quantitatively evaluate the

impact of the kNN-DP's overabundance data strategy on the

kNN-join precision.

One striking component of my data isolating arrangement

is that it is symmetrical to a wide extent of MapReduce based

kNN-join estimations. This segment empowers me to

speedily what's more, reliably consolidate my kNN-DP with

existing parallel kNN-join estimations, for instance, LSH-

based [1] and z valuebased [2] kNN-joins.

Here, I first present kNN-join method, sought after by an

introduction of the MapReduce framework. A deduplication

plot was likewise acquainted which will help with expel the

copy duplicates. Deduplication conspire is equipped for

lessen the capacity tasks on account of bigger frameworks

and improves the capacity use.

II. FUNDAMENTALS

A. kNN Join

Give us a chance to consider two datasets R and S in

space Rd, where each item (e.g., r 2 R and s 2 S) is spoken to

as a d-dimensional item. We measure the likeness separate

between items r 2 R and s 2 S utilizing their euclidean

separation d(r; s). It would be ideal if you note that the

different methods for measuring likeness separation can be

found in Section 4.5. Task knn(r; S) restores a lot of k closest

neighbors or kNN of point r from set S.

Given article r 2 R, the kNN-join activity knnJ(R; S) of

datasets R and S restores a blend set of each item r's kNN set.

Therefore, we express knnJ(R; S) utilizing kNN-join task

knn(r; S) as pursues. knnJ(R; S) = f(r; knn(r; S))j for all r ∈

R}: (1)

B. MapReduce Framework

MapReduce is a parallel programming model proposed by

Google [11]. The objective of MapReduce is to disentangle

the handling of extensive datasets on cheap bunch PCs. A

MapReduce program commonly comprises of a couple of

user defined map and decrease capacities. Hadoop is an open

source programming actualizing the MapReduce processing

system. Information in Hadoop are put away in a Hadoop

circulated record framework, which comprises of numerous

information hubs and an ace hub called namenode.

The Hadoop runtime framework builds up two procedures

- JobTracker and TaskTracker. The JobTracker parts a

submitted work into guide and decrease assignments, which

are planned also, doled out to all accessible TaskTrackers.

The TaskTrackers acknowledge and processes the relegated

guide/diminish undertakings. After finishing all mappers in a

Hadoop program, the Hadoop runtime framework bunches

every single middle of the road result and dispatches reducers

to creating last outcomes.

C. Deduplication

Proficient and versatile deduplication methods are

required to serve the need of evacuating copied information

in enormous information handling stages, for example,

Hadoop. In this paper, a coordinated deduplication approach

is proposed by taking the highlights of Hadoop into account

and utilizing parallelism dependent on MapReduce and

HBase in order to accelerate the deduplication strategy.

III. DATA PARTITIONING IN PARALLEL KNN JOINS

A. Overview

In this segment, I present the advancement of kNN-DP,

the information parceling plan that advance kNN-joins

running in the MapReduce programming structure. In the

wake of advertising kNN-DP's review in the next section,

then I talk about the information testing systems actualized in

the information preprocessing technique. Next, I depict kNN-

DP's first MapReduce work, which partitions information

tests into n allotments pursued by modifying information in

unequal allotments. At last, I give an depiction on the second

MapReduce work that segments information in a manner to

adjust load among reducers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050190
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

243

www.ijert.org
www.ijert.org
www.ijert.org

Profiling Sample Data. The pre-preparing system ponders

tests from info datasets R and S. The profiling data on the

examples catches information dissemination properties of the

info datasets.The inspecting procedure executed in the

preprocessing methodology improves the exactness of

information apportioning requiring little to no effort.

 Obtaining Data-Partition Boundaries. The first MapReduce

work decides limits of information allotments. This activity

plans to guarantee that each parcel's handling time intricacy is

around equivalent to the best-case time unpredictability,

which suggests that all the allotments are very much adjusted.

The calculation of the first MapReduce work is planned

utilizing the dynamic segment limit changing strategy.

 Partitioning Data and Computing kNN-joins. The second

MapReduce work accomplishes two objectives. To begin

with, mappers in this activity parcel input information

crosswise over datanodes as indicated by the limits controlled

by the first MapReduce work. Second, reducers are situated

to seek k closest neighbors in dataset S for r ∈ R.

a) Profiling Sample Data

A perfect information apportioning technique to improve

kNN-joins should bunch objects dependent on their

comparability, expecting to make various segments with

equivalent burden. Whenever equalsized allotments are

circulated to numerous hubs, each of which handle one

parcel, the preparing time of hubs are near one another. At

the end of the day, making various allotments share with

comparable handling time unpredictability is a productive

method for enhancing parallel kNN-join calculations. To

similarly segment an expansive info information, one needs

to contemplate the information's conveyance property. The

overhead of profiling information property is high, since it

requires arranging and examining the gigantic measure of

information. To diminish the costly profiling process, I

depend on a little example dataset to take after the expansive

information's property. I actualize a pre-process methodology

completed in the ace hub of a Hadoop group to acquire

information circulation properties of enormous information

from little examples. Despite the fact that there exist different

testing strategies, none of these inspecting plans can be

broadly connected to treat all information types. In this way,

it is ostensibly evident that a commonsense route is to utilize

a proper inspecting technique as per information attributes.

So as to acquire information parcel limits at low processing

cost, I plan the accompanying three information examining

plans running on Hadoop bunches.

 Simple Random Sampling. We produce a little test set

from a vast info information dispersion put away on HDFS, if

datasets R and S pursues an equivalent dissemination.

Heterogeneous Random Sampling. Heterogeneous

information conveyance alludes to situations where

information appropriations of datasets R and S are

extraordinary. I proposed heterogeneous arbitrary examining

to independently perform examining on R and S. In this

manner, R and S have two distinctive little example sets

utilizing the above straightforward irregular testing strategy.

Interval Sampling. At the point when the dispersion of

datasets R and S is obscure from the earlier, I apply interim

testing to profile input information. Test datasets R0

furthermore, S0 are extricated by isolating a similar number

of items (i.e., "2 N) from R and S, separately. Here N is the

items number of dataset R or S; " is in the range somewhere

in the range of 0 and 1 (i.e., " 2 (0; 1)).

b) Obtaining Data-Partition Boundaries

The first MapReduce work in kNN-DP endeavors to

separate test dataset to n equivalent gatherings by

progressively modifying segment limits in unbalance

gatherings. The pseudocode of this MapReduce work is point

by point in Algorithm 1, which performs information

parceling combined with changes utilizing MapReduce.

Calculation 1 consolidates the dynamic partitionboundary

modifying strategy to get problematic parcel limits in Lines

11-14 (see additionally Algorithm 2).

The mapper work in the principal work for the most

part extricates highlights of a dataset with various

measurements; the component extraction is actualized by

rapidly ascertaining a separation between two items. I express

each multi-dimensional information object as a one-

dimensional esteem utilizing capacity charact(o), which

might be actualized in an assortment of ways. Test executions

of capacity charact(o) are the region touchy hashing-based

plan [1], and the spacefilling- bends based plan [2] These two

plans are regularly received in parallel kNN-join computing. I

incorporate kNN-DP with LSH and z-esteem; we allude to

the two kNN-DPenabled arrangements as LSH+ and z-

value+. LSH+: Integrating kNN-DP and LSH-based

kNNjoins.

In the LSH conspire, each item in test datasets R0 and

S0 is spoken to as a hash code (i.e., one-dimensional hash

esteem) by the hash work. At that point, a few items with

comparable hash codes are put into a similar can, which

speaks to an information parcel. Each can contains objects

whose hash codes that are in a given range balanced by our

kNNDP to adjust processing load among cans. z-value+:

Integrating kNN-DP and z-esteem based kNN-joins. z-bend is

one of the space filling bends, which maps an item in test

dataset R0 or S0 to one-dimensional z esteem. The z esteems

are isolated into n segments utilizing the Balance R conspire.

kNNDP is connected to adjust the n parcels.

The principle objective of the Reduce work is to

modify the segment limits begun by the above guide work.

The parcel modification tries to adjust handling time

multifaceted nature of each parcel, guaranteeing that

allotments are around equivalent in size. The Reduce work

makes the three strides underneath to achieve segment

modifications. In the first place, test dataset R0 is arranged in

a non-diminishing request of one-dimensional qualities,

which are dictated by the previously mentioned guide work.

The underlying parcel limits are gotten by the Balance R

technique (see Lines 16-17). Second, the preparing time of

each segment is evaluated utilizing time multifaceted nature

examination (see Lines 19). At long last, given an

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050190
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

244

www.ijert.org
www.ijert.org
www.ijert.org

information skewness-degree limit (see Section3.2), we

should look at the evaluated handling time of the

considerable number of segments against the best-case parcel

(i.e., perfect case). Such correlations are executed in the

Reduce work by contrasting the information skewness-degree

and its edge. Correlation results oversee dynamic changes of

information questions in a lopsidedness parcel utilizing the

dynamic segment limit modifying plan (see Lines 20-24),

which is portrayed in Algorithm 2.

Algorithm 1 Computing Data-Partition Boundaries

1: input: R0; S0;/* Two testing datasets */

2: yield: Boundary esteems;

3: work MAP (key balance, values R0 [S0)

4: for all (o ∈ R0 ∪ S0) do

5: o:value← charact(o);/* process o's character esteem */

6: on the off chance that (o ∈ R0) at that point/* o is an article

in set R' */

7: o:f slack = Flag R/*o:f slack shows object o in R0*/

8: else

9: o:f slack = Flag S;/*o:f slack demonstrates object o in S0*/

10: end if

11: object ← o

12: emit(object; (o:value; o:f slack));

13: end for

14: end work

15: work REDUCE(key object, values (o:value, o:f slack))

16: BoundarySet ←sort(R0);/* sort dataset R0 */

17: Boundary[n]← get(BoundarySet);/* Obtain n limits from

BoundarySet utilizing Balance R plot */

18: for (i=1;i<n;i++) do/*n is the quantity of partitions*/

19: Calculate the sizes jR0i j and jS0i j of R0 and S0 in I-th

run;

20: if (jO(jRijlog2jSij)−Obest/ Obest≤j T) at that point/*see

Formula 5*/

21: Boundary[i] = Optimizing Boundary(Boundary[i])

/* Make limits way to deal with the best case. (see

Algorithm2) */

22: else

23: emit(i;Boundary[i]_S);

24: end if

25: end for

26: end work

c) Dynamically Adjusting Partition Boundaries

Review I get beginning estimations of parcel limits

from Calculation 1's Line 17, which has not yet

comprehended the dataskewness issue. Presently we propose

a calculation to decide ideal limits, easing imbalanced burden

among information allotments. The pseudocode is outlined in

Calculation 2, which comprises of the accompanying three

stages.

Stage 1. This progression includes the quantity of items in

test sets R0 and S0 in the ith segment (see Line 5), in which

the quantities of articles in R0 and S0 are communicated by

jR0i j and jS0 ij, separately.

Stage 2. At the point when a segment's time unpredictability

is littler than that of the best case, the segment will be

extended by converging with the following segment until

information skewness-degree O(jRijlog2jSij)/Obest

Obest increases than limit 􀀀T (i.e., O(jRijlog2jSij)/Obest

Obest 􀀀T; see Lines 6-10). Along these lines, a little segment

is reached out to an extensive one. Stage 3. In a major

information segment, we embrace the parallel inquiry

strategy to enhance the segment's lower limit. After Stage 3 is

finished, we get the underlying upper limit what's more, the

enhanced lower limit, which structure a streamlined new

parcel. The handling time intricacy of the new parcel is

exceptionally near the perfect time unpredictability (see Lines

11-14).

Algorithm 2 Optimizing Boundary ()

1: input: jR0j, jS0j; Initial limit esteems: limit esteems;

2: yield: Optimized limit esteem exhibit: boundary [];

3: Boundary[n] ←Boundary esteems

4: for (i=1,j=0;i+j<n;i++) do/* n is the quantity of

segments.*/

5: jR0i j, jS0i j ←count (Boundary[i-1],Boundary[i]);/*

Calculate sizes jR0i j and jS0i j in a range between

Boundary[i-1] and Boundary[i]. */

6: while (O(jRijlog2jSij−Obest/Obest < -T) do/*The ith

parcel's time multifaceted nature is little than the perfect

value.(see Equation (6))*/

7: Boundary[i]=Boundary[i+j];/* Merging segments and

altering limit */

8: j++;

9: jR0i j, jS0i j count (Boundary [i-1], Boundary[i]);/*

Recalculating jR0i j and jS0i j: */

10: end while

11: if (O (jRijlog2jSij)−Obest /Obest > T) at that point/*see

Formula (6)*/

12: Best Binary-Search (Boundary [i-1], Boundary[i]);/*

Binary look through the range between jR0i j and Best to

guarantee that jR0ij log2jS0i j T.*/

13: Boundary[i] Best;/* Obtain the ith enhanced limit. */

14: end if

15: output (Boundary[i]);

16: end for

d) Partitioning Data and Computing kNN-joins.

The second MapReduce work has two duties. To begin

with, this activity means to parcel information as per the

limits acquired in the first MapReduce work. Second, the

activity executes kNN-join tasks in parallel on a Hadoop

bunch.

Algorithm 3: Data Partitioning and kNN-join Computing

1: input: R, S, and Boundary[n];

2: yield: kNNSet;

3: work MAP (key balance, values R0 [S0)

4: for all (o ∈ R ∪ S) do

5: o:value← charact(o);/* Compute character estimation of

o*/

6: for (i=1; i<n; i++) do/* n is the quantity of allotments. */

7: in the event that (Boundary [i - 1] ≤ o≤value Boundary[i])

at that point

8: emit(i; (o.value; o.f lag));/* o is put in the ith parcel */

9: in the event that (o.flag=Flag S) at that point

10: Array_S[i]← o:value;

11: end if

12: end if

13: end for

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050190
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

245

www.ijert.org
www.ijert.org
www.ijert.org

14: end for

15: for (i=1;i<n-1;i++) do

16: sort(Array_S[i]);

17: RedundantMin← k least incentive in Array_S[i];

18: emit(i−1; (RedundantMin:value;RedundantMin:flag)); /*

Add k excess articles in set Si-1. */

19: RedundantMax k most extreme incentive in Array S[i];

20: emit(i+1; (RedundantMax:value;RedundantMax:flag)); /*

Add k excess articles in set Si+1. */

21: end for

22: end work

23: work REDUCE (key parationID, values object)

24: parse Ri and Si(Si1, Si2, : :, Sim) from (parationID,

object)

25: for all (o 2 Ri) do

26: for (j=1;j<m;j++) do/* m is the quantity of items in Si. */

27: Dis[m]← distance(o:value; Sij);/* ascertain remove from

article o to protest Sij*/

28: end for

29: kNN(o; S) get(Dis[m]);/* Get k least esteem */

30: emit(o; kNN(o; S));

31: end for

32: end work

The pseudocode of the second employment is

outlined in Algorithm 3, which comprises of the

accompanying five stages.

Stage 1. This progression figures the component estimation

of every datum object in datasets R and S. Information items'

component esteems can be utilized to think about the

likenesses among these items (see Line 5).

Stage 2. Every datum object is set into a particular parcel as

per the segment's limits controlled by the first MapReduce

work (see the yield of Algorithm 1). This step exchanges

parcel identifiers alongside a rundown of items in each

segment to the Reduce work (see Lines 6-13).

Stage 3. Nearby kNN-join results are approximates of

worldwide kNN-joins. To improve the exactness of rough

kNN-join results, we grow each parcel of dataset S by

including a head fragment and a tail section. In particular, the

head fragment of the ith parcel in S contains the last k objects

in the I 􀀀 1th parcel; the tail fragment of the ith segment in S

is involved the main k questions in the I + 1th parcel. Hence,

the first and last segments of dataset S have an aggregate of k

excess articles; different segments contain 2k excess articles

(see Lines 15-21).

IV. CONCLUSION

In this study, I developed a data partitioning approach

called kNN-DP for kNN-join. kNN-DP alleviates load

imbalance incurred by the data skewness problem. kNN-DP

achieves the equitable data partitioning by optimizing the

partition boundaries. Specifically, kNN-DP has three salient

and advanced features. First, the sampling technique is

utilized to quickly capture the data distribution of a big

dataset through profiling a small sample set. Second, kNNDP

dynamically adjusts partition boundaries by assessing time

complexity of each partition in a sample dataset. Optimized

partition boundaries offer smart data-partitioning guidelines.

Third, to improve the accuracy of parallel kNNjoin using

MapReduce, kNN-DP employs a redundant-data strategy,

which augments each node’s local data by a small amount of

redundant data. Also a deduplication was introduced to

remove the duplicate data.

REFERENCES

[1] A. Stupar, S. Michel, and R. Schenkel, “Rankreduce-processing k-

nearest neighbor queries on top of mapreduce,” in Proc. 8th

Workshop on Large-Scale Distributed Systems for Information
Retrieval, 2010, pp. 13–18.

[2] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large

data in mapreduce,” in Proc. ACM 15th International Conference
on Extending Database Technology, 2012, pp. 38–49.

[3] C. Yu, R. Zhang, Y. Huang, and H. Xiong, “High-dimensional knn

joins with incremental updates,” Geoinformatica, vol. 14, no. 1, pp.
55–82, 2010.

[4] C. Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based knn join

processing for high-dimensional data,” Information and Software
Technology, vol. 49, no. 4, pp. 332–344, 2007.

[5] C. Xia, H. Lu, B. C. Ooi, and J. Hu, “Gorder: an efficient method

for knn join processing,” in Proc.3th International Conference on
Very Large Data Bases-Volume 30, 2004, pp. 756–767.

[6] M. Batko, C. Gennaro, and P. Zezula, “A scalable nearest
neighbor search in p2p systems,” in Proc. InternationalWorkshop

on Databases, Information Systems, and Peer-to-Peer Computing,

2004, pp. 79–92.
[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Parallel processing of

spatial joins using r-trees,” in Proc. IEEE Twelfth International

Conference on Data Engineering, 1996, pp. 258–265.
[8] M. Jang, Y.-S. Shin, and J.-W. Chang, “A grid-based k-nearest

neighbor join for large scale datasets on mapreduce,” in Proc. IEEE

International Conference on High Performance Computing and
Communications (HPCC), 2015, pp. 888–891.

[9] G. Song, J. Rochas, F. Huet, and F. Magoules, “Solutions for

processing k nearest neighbor joins for massive data on
mapreduce,” in Proc. 23rd Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, 2015, pp.

279–287.
[10] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k

nearest neighbor joins using mapreduce,” Proceedings of the

VLDB Endowment, vol. 5, no. 10, pp. 1016–1027, 2012.
[11] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing

tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77,

2010.
[12] M. Bouguessa and S. Wang, “Mining projected clusters in

highdimensional spaces,” IEEE Transactions on Knowledge and

Data Engineering, vol. 21, no. 4, pp. 507–522, 2009. [13] J. Zhang,
S. Zhang, K. H. Chang, and X. Qin, “An outlier mining algorithm

based on constrained concept lattice,” International Journal of

Systems Science, vol. 45, no. 5, pp. 1170–1179, 2014.
[14] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the

nearest neighbor in high dimensional spaces?” in Proc. 26th

Internat. Conference on Very Large Databases, 2000, pp. 506–515.
databases,”ACM Transactions on Database Systems (TODS), vol.

24,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050190
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

246

www.ijert.org
www.ijert.org
www.ijert.org

