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 Abstract—This paper presents a new methodology of 

formulating Jacobian matrix for limited degree of freedom 

(DOF) parallel kinematic machine (PKM), which is a very 

important tool to relate the end-effector velocity with the joint 

rate velocity. Even if it is believed by many researchers that 

Jacobian matrix is critical to generating the trajectories of the 

prescribed geometry in the end-effector space, it was 

cumbersome to formulate in simple and descriptive form by 

partial differentiation. In this work screw mathematics is used to 

formulate the Jacobian matrix in simple and integrated form 

under a unified framework and it is proved that the resulted 

Jacobian matrix is 66 which provides clear information about 

the architecture and singularity condition of the manipulator. 

Obtaining Jacobian matrix in unambiguous way is very crucial 

step to formulate and solve velocity, acceleration and motor 

torque equations with less computational burden. The 3PRS 

parallel kinematic machine is selected as an example to 

demonstrate the methodology. The numerical solution is 

obtained using MATLAB.
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I.

  

INTRODUCTION

  The development of limited-DOF (degree of freedom) 
PKMs (parallel kinematic machines) has been hot research 
area due to their advantage in terms of simple structure, lower 
cost and easy to control comparing with 6-DOF parallel 
manipulators. The appearance and application of limited DOF 
PKMs with coupling of translation and rotation provides an 
option for a bottleneck problem of the manufacture and 
assembly for large components in aircraft and automobile 
industries. As an outstanding

 

representation of the limited-
DOF PKMs, the 3PRS (prismatic-revolute-spherical) 
manipulator has been applied to many areas because of 
compact architecture and excellent kinematic and dynamic 
performances. For example, the famous sprint-Z3 head made 
by DS Technology Company in Germany [1, 2].

 It is well known that the Jacobian of 6-DOF general 

purpose parallel manipulator is 66

 

matrix, relating the end-

effector linear and angular velocities to the six input joint 
rates. However, it is not clear as to what is the best way to 
express the Jacobian of limited-DOF parallel manipulator. A 

smart approach is to drive an input-output velocity 
relationship from which the Jacobian matrix of such a 
manipulator can be formulated [3, 5]. While this approach is 
valid for general purpose planar and spatial parallel 
manipulator for which the connectivity of each serial 
chain(limb) is equals to the mobility of the moving platform, it 
is not necessarily true for parallel manipulators  with less than 

6-DOF.  For example, this approach leads to 33 Jacobian 

matrix for the 3-UPU parallel manipulator assembled for pure 

translation [4, 6]. However, such a 33 Jacobian matrix 

cannot predict all possible singularities and cannot provide full 
information about the architecture.

 In what follows, the researcher develops a methodology 
for the Jacobian analysis of limited DOF parallel kinematic 
machines. The Jacobian matrix so derived provides full 
information about both architecture and constraint 
singularities. The 3-PRS parallel manipulator [5, 7] is used to 
illustrate the methodology.

 
II.

  

JACOBIAN

 

ANALYSIS

 In this section generalized Jacobian for limited-DOF 
parallel manipulator is developed. A limited DOF manipulator 
possesses F-DOF, where

 

F is between 0 and 6. Also it is 
considered that the moving platform is constrained by F 
number of limbs and each limb is driven by one actuator. 
Then apply the theory of reciprocal screw to find the Jacobian 
matrix that can relate the joint rate and end-effector velocity. 
In this regard, the

 

instantaneous twist   

                               

 (1)

 
 
Where ci

 

is joint connectivity

 
i,j

θ

 

is intensity and 
ij,Ŝ

 represents a unit screw

 

associated with j
th

 

joint of the i
th

 

limb. 

 The twist of the moving platform is defined as 

 TTTvωpS 

 
Where, ω

 

is angular velocity of the moving platform and 

v

 

is the linear velocity of a point in the moving platform 





ic

1j

ij,ij,p ŜθS
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which is instantaneously coincident with the origin of 
reference frame in which the screws are expressed. 

The iC  numbers of screw on a limb forms n
th

 systems for 

which a one system of reciprocal screw exists. This reciprocal 
screw forms a Jacobian of constraint and it is reciprocal to all 
the joint screw of the i

th
 limb from a (6-Ci) reciprocal screw 

system. Since this reciprocal screw can be identified let 

pij,r, SŜ   denote the j
th 

reciprocal screw of the i
th
 limb. 

Therefore taking the orthogonal product both sides of Eq. (1) 
with each of reciprocal screw gives 

0SS pij,
T

r  for j=1,2,3--6-Ci              (2) 

Writing equation to once for each limb produces the 
following constraint matrix. 
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Each row in Jc represents a unit wrench of constraints 

imposed by the joint of a limb and it is known that its rank 

should be equal to Ci6  to properly constrain the moving 

platform. Then the generalized Jacobian for 3 DOF 
manipulator will be 
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itc,2,Ŝi,wc,2,Ŝ
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(3) 

Where, ,1gwa,Ŝ 1

T  is the wrench of actuation, 

,1gta,Ŝ 1

T is twist screw of actuation, iwc,1,ŜT  is the 

wrench of constraints and itc,1,ŜT  twist screw of the 

constraint if each limb and generally cJ  and aJ  are Jacobian 

of constraint and Jacobian of actuation respectively. 

III. METHODOLOGY  

In this section the 3DOF parallel manipulator is used to 
demonstrate the methodology (specifically named 3PRS high 
speed machine).  

In this manipulator there are three limbs which connect the 
moving platform at point Bi and to the fixed base at point Ai. 
Also each link in a limb is connected by three joints prismatic, 
revolute and spherical respectively as shown in the following 
Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of 3PRS parallel robot. 

Each limb connects the fixed base to the moving platform 
by a prismatic joint followed by revolute joint and spherical 
joint. A linear actuator drives each of the three prismatic 
joints. The connectivity of each limb is equal to five. 

Therefore the instantaneous twist, pS  of the moving platform 

can be expressed as a linear combination of 5 instantaneous 
screws.                                                                  

 

(4) 

 
Where,    
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Where is is a unit screw along the i
th

 direction of each 

limb. These five screw forms a five system for which a one 
system of reciprocal screw exists. This reciprocal screw lies 
on the intersection of the two planes the first plane is 
perpendicular to the prismatic joint and the second plane is 
containing both the revolute and spherical joint. Fig. 2 shows 

 

i5,i5,i4,i4,i3,i3,i2,i2,i,1i1, ŝθŝθŝθŝθŝdps  
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the reciprocal screw which is orthogonal to all instantaneous 

screws except 1s and parallel to s2. 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

Fig. 2. Representation of the unit wrench screw. 








 


i2,

i2,i

ir,1,
s

sb
S                     (5) 

 
Taking the orthogonal product of both sides of equation 

one we found cJ . 

0SS ir,1,p  , since the constraint wrench is reciprocal 

to all screw, the right hand side equation will be set to zero. 
The constraint Jacobian of the manipulator along the revolute 
joint axis will be found where its row represents a unit wrench 
constraining the degree of freedom of the moving platform. 
Since, 3DOF manipulator is a capable of three independent 
DOF, but moves all in six, it is expected that the Jacobian of 
constraint would be composed of three rows.   

             

 

(6) 
 

 

This matrix represents the constraint imposed by the 
revolute joint. Then we look for the reciprocal screw for each 
limb which forms two systems. An additional basis screw 
which is reciprocal to the passive joint of the i

th
 limb can be 

identified as zero pitch screw passing through the center of 
spherical joint. This reciprocal screw represents wrench of 
actuation and it is normal to the previous one system. This can 
be represented as follow, 

 

                         

 (7) 

 

Take the inner product of this reciprocal screw with for 
both sides of the twist screw (1) gives 

)ŝŝ(dŝps ir2,i1,iir2,  
 

 

            

 

 

(8) 
 

 

Again, from the right hand side of the inner product we 

obtain qj . 
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Since this mechanism is not outer driving manipulator 

qj will not be identity matrix. 
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and we have seen that J is 









c

a

J

J
J .The generalized Jacobian 

for this manipulator will be 6 x 6. 

By combining the Jacobian of actuation and Jacobian of 
constraint we formulate the general Jacobian matrix as shown 
above which is very important to solve the velocity of the 
active joint.  

This 66 dimensional matrix characterizes the 
instantaneous motion of the moving platform. The upper sub-
matrix transforms the linear and angular velocity of the 
moving platform to the actuated joint rate. The constraint 
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singularity will be analyzed by evaluating the rank of Jc where 
as the architectural singularity occurs when the determinant of 
the overall Jacobian is equals to zero. 
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Equation (10) tells us how we use this Jacobian to relate 
the moving platform with joint rate velocity. 

                                   pSJq                                 (10) (10) 

Where q is the joint rate velocity which can be represented 

as follows in matrix form  
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and pS is the twist screw which contains the linear and 

angular velocity of the moving platform. It can also expressed 
mathematically as 
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Use the generalized Jacobian and expanding (10) will let 
to solve the active joint velocity in simple and unified form. 

 

 

 (13) 

 

                                                                                               

        

                                                                                              

(13) 

 

 

 

 

 

 

IV. NUMERICAL SOLUTION  

All numerical solutions shown are the sub and generalized 
Jacobian matrix of limited DOF parallel industrial robot and 
ranks of sub-matrices which tells us architectural and 
constraint singularity conditions. 
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Rank (Jc)=3 and rank (Ja)=3 

V. CONCLUSIONS 

In this paper it is shown that the Jacobian of small degree 
of freedom parallel kinematic machine can be driven using 
reciprocal screw which is not common for such application. 

The generalized Jacobian )J( is 6 x 6 matrix consists of 

two sub-matrices, one associated with the constraint imposed 
by the joint and the other associated with actuator movement. 
A manipulator is said to be an architecture singularity when 
the actuation sub-matrix  becomes rank deficient or the overall 
Jacobian becomes rank deficient while the constraint sub-
matrix have full rank. On the other hand the manipulator will 
be constraint singularity when the constraint sub-matrix 
becomes rank deficient. Therefore, conclude that one can get 
information about the manipulator simply like architectural 
and constraint singularities from the Jacobian matrix by 
obtaining it in unified and simple form. 
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