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Abstract:- An iterative method is developed to solve a class of nonlinear Volterra integral equations. This method uses the concept of
homotopy perturbation to approximate the exact solution of the integral equation. The convergence is discussed and illustrated with
examples. Examples are used to show the validity of the algorithm and theorems presented which shows that the method is effective and
easy to implement.
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1 INTRODUCTION

Solution to integral equations is of high interest in science since these equations appear in many applied problems; which in many
cases takes the form of the so called Fredholm or Volterra Integral Equations. This equations result from direct model or from
solving another problem like the one encountered by Chika and Hooshyar [5]. Di_erent methods have been developed to solve
these integral equations, some which are presented in [1]. These methods have some assumptions like requiring separable kernel,
linearity etc. hence, there is need to develop more methods that will solve di_erent classes of these equations.

Homotopy Perturbation Method (HPM) has been good in solving nonlinear equations ever since it was introduced by He
[7], and this has been applied to solve linear integral equations like the one by Abbasbandy [8]. The convergence of this method
has been studied as well like the ones presented in [4] and [6]. J. Biazar and H. Ghazvini [2] used this method to solve nonlinear
Fredholm integral which worked well. The aim of this work is to apply this method in nonlinear Volterra integral and study it's
convergence.

Numerical (or iterative) algorithm developed using homotopy perturbation as well as examples showing the validity of
the algorithm is presented in section 2. Section 3 discusses the convergence and section 4 has the conclusion and future works.

2 Numerical Algorithm and Examples
Let's consider the nonlinear Volterra Integral Equation:

w@) = f@) + A [T K@ @) mar (1)

X € [a; b] and m is a positive integer. This type of equations occurs in applied problems like those arising from solitons, fractals,
etc.

To get the solution to Eq(1), consider the expansion u(x) = Y1 P™ u,,(x) where p € [0; 1] such that the solution u(x) to Eq(1)
isu() = lim 57 P" un ()

Using the homotopy equation
H(u,p) = (1 — p)(u(x) — uo) + p(u(z) — f(x) — A / K (2, t)(u(t))"dt) = 0 (2)
Substituting u(x) = Y- P™" u,(x) in Eq(2) we have

H(u,p) = (1—p) (Z P (x) — uo{i‘))ﬁv (Z prun(z) — f(x) — A / K(z,t)(> P“(un(t))’“d‘t) =0
n=1 =1 wa n=1
(3)

Expanding the series in Eq(3) and equating like powers of p gives
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pY i ug(z) —up(z) =0
p'iu(z) +ug(x) — flz) — A [T K(z,t)(uo(t))™dt =0
ua(z) — A [7 I((m,tj(?uo(t)ul(ﬂ)dt =0, if m=2
uz(x) — ,\f% Kz, t)(3((uo(t))?u (t))dt =0, ifm=23
us(z) — A [ I((J t)(sl(ﬂo{t))“ul(t))dt =0, ifm=4
p? 'lig(.’l} — Af% Kz, t)(5(up(t))*u (2))dt =0, ifm=>5

It follows that
un(z) — A [T K(z, 1) > 5_ D(uk(t)un k—1(t))dt =0, ifm=2
un(z) = A [T K(z,1) 30 0 S 5_ (u,(t}uk(t}un k—i—1(t))dt =0, ifm=3
P U, (t) /\f K(z,t)3 1 ZE 5 1 > D’ (ul(t)uk(t)ug(t}u“ I—k—i—1(t))dt =0, ifm=4

Therefore, the numerical algorithm for solving Eq(1) can be written as, u,(x) = f(x)

forn>0
AT K(x, t)z';;;—(,‘(uk(t}un r—1(t))dt, ifm =2
MK () Sy e (tjuk(t)un k—i—1(t))dt, ifm=23
() = Af K(z, t)Z”_l PSR g () () ()t i1 (2))dE, if =4
Where
u(r) = Z Uy () (4)
In practice, we take u(x) = i(x)
N
i(r) = Z Up(2) (5)
n=1

is the so called partial sum.
To check the feasibility of the algorithm, we look at some examples

Example 1: Find the function u(x) such that u(x) = e* + —x(1 —e3) + f xu3(t)dt, x € [0 ] is satisfied.
Solution:
Using the algorithm

ug(z) = f(x) = + g=x(l — e

forn>1

un(2) = 5 fo 20y Srse () ug(£) i1 (£))dt
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We use MATLAB to compute the above quantity for di_erent values of x and N = 4. The exact solution to this problem is u(x) =
ex. As can be seen in Figure 1 and Table 1, there is good agreement between the exact solution and the numerical solution.

1.7 T - : - _L

1.6 r/a(_

1.1
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Exzct
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®
Figure 1: The graph of exact and approximate solution by HPM in Example 1
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Example 2: Find u(x) that satisfied u(x) = 1 + ooX " 750% T30t fo (x1 Hu (?dt u(x). The exact solution to this
4 6

equation is u(x) = 1 + x2. Applying the algorithm, we have; u,(x) = 1 + %Goxz ~ 700X T 300X
forn>1

1 x n-1
W@ =55 G-0) @w®
0 k=0
Looking at Figure 2 and Table 2, the exact solution and the numerical solution are in good agreement.
Example 3: Consider the equation u(x) = cos(x) + %cos(Zx) - éxz - Tio + %fox(x — t)u? (t)dt, x € [0; 1] whose solution
is u(x) = cos (x).

Table 1: Numerical output for example 1

T Exact u(x;) Approximate u(z;) Relative error (%)

0 1.0000 1.0000 0
0.0500 1.0513 1.0513 0.0002
0.1000 1.1052 1.1052 0.0017
0.1500 1.1618 1.1619 0.0059
0.2000 1.2214 1.2216 0.0149
0.2500 1.2840 1.2844 0.0308
0.3000 1.3499 1.3506 0.0564
0.3500 1.4191 1.4204 0.0953
0.4000 1.4918 1.4941 0.1516
0.4500 1.5683 1.5719 0.2308
0.5000 1.6487 1.6543 0.3394
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Table 2: Numerical output for example 2

x; Exact u(x;) Approximate u(z;) Relative error (%)
0 1.0000 0.9938 0.6250
0.1000 1.0100 1.0038 0.6139
0.2000 1.0400 1.0340 0.5809
0.3000 1.0900 1.0843 0.5269
0.4000 1.1600 1.1548 0.4523
0.5000 1.2500 1.2455 0.3569
0.6000 1.3600 1.3568 0.2385
0.7000 1.4900 1.4886 0.0929
0.8000 1.6400 1.6414 0.0863
0.9000 1.8100 1.8156 0.3084
1.0000 2.0000 2.0117 0.5855
Applying the algorithm .
up(x) = cos(x) + 145 cos(2z) — 5a? — 145

forn =0

Un(2) = o5 [ (2 — 1) Spo (wre(t)n—r—1 (t))dt

Figure 3 and Table 3 shows the comparison of the exact and the numerical solutions. It can be seen that the numerical

approximation performed well.

3 Convergence and Error Estimation

In this section, we discuss the convergence of the algorithm presented above. We are going to use Abel's Theorem [4],i.e if v =

Y, P* v, has radius of
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Figure 2: The graph of exact and approximate solution by HPM in Example 2
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Figure 3: The graph of exact and approximate solution by HPM in Example 3

Table 3: Numerical output for example 3

T; Exact u(z;) Approximate u(z;) Relative error (%)

0 1.0000 1.0000 0
0.1000 0.9950 0.9950 0.0004
0.2000 0.9801 0.9800 0.0041
0.3000 0.9553 0.9552 0.0184
0.4000 0.9211 0.9205 (0.0559
0.5000 0.8776 0.8764 0.1358
0.6000 0.8253 0.8230 (0.2856
0.7000 0.7648 0.7607 0.5435
0.8000 0.6967 0.6900 0.9636
0.9000 0.6216 0.6115 1.6246
1.0000 0.5403 0.5260 2.64%83

Convergence not less than one and the series Yo, v, is absolutely convergent, then,

u(x) = F}Lr{l_v = z P" v,
n=0

For this first work, we take m=2 to investigate the convergence.
Theorem 1: for m = 2, let K (X, t) and f(x) be continuous in the regions Q= [a; b] X [a; b] and Q = [a; b] respectively. K (x, t) and

f(x) is bounded such that |k (x,t)| < Ni and |f(x)| < N, for all x, t € [a, b] and C = NkNo. If [4] <

above is uniformly convergent in [a, b] for each p € [0, 1].

1
c(b-a)

then the algorithm

I JERTV9I S090489

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

976


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 Issue 09, September-2020

Proof for m=2

|f(z \ E o = \“D{ | < No, |K(z,t)] < N

Ju(z)] = A [ K (2,1) (uo(t)™dt] < || [ K (z,1)]|(uo(t))|™dt < [N NN (z—
a)

lua(@)] = M [ K (z,6) uot)us (8)de] < | [ K (2, )12]uo(0)) | Cu (t))ld <

2APNINmH IQ‘”
luz(z)| < [A] [ K (2, )] (2] (o (1)) (ualt))| + | (ua(t))|*dt < GABNENm2! N;u

|tn(z)] < nI\}.|”NL‘N§1+“‘1% this implies

[ua(z)] < A"NENT Tz~ a)” (6)
Using Eq(6), for p € [0, 1]
Y () <D ptug(z)| < Z |, (2)] < Z APNENT (z—a)® < No Y (AINKN,(z—a))"
n=>0 n=0 n=(0 n=(0

Since m=2
This is geometric series, for convergence; _

NiNy(zr—a)| <1 = |A| < W

B i (x—a)
Therefore,
Al < : (7)
Clr—a)
or more strongly
1
Al < Ch—a (8)

N+
N dalcx- a))

Theorem 2: The Nth order approximation error of the solution to Eq(1) E,, (x) = N, Al

(ClA|(b—a)N+?
Eyn = No 1-C|A|(b-a)
Where

E,, = sup |H(I) —.ﬂ(:l‘.::l , u(x) = Z:::ﬂ un(z) and u(z) = Z:D:ﬂ u“{.rj

Note: This estimates the error between partial sum and infinite sum using HPM (not exact solution).

for all x € [a, b] or more strongly

Proof
Using Eq(6) and m = 2
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o N o0
lu(z) — a(z)| = | Z Up(x) — Z Un ()| = | Z U ()]
n=>0 n=>0 n=N+1
< Y |un(z)| £No Y |A"NENZ(z—a)"
n=N-+1 n=N+1
_ . (CIA(b—a)™T
~ YT CN(z —a)
(CIAl(B — a)N
< IV
<N T oG —a) ®)

From Theorem 1, if other quantities are constant; smaller A, gives better convergence and from Theorem 2 reduces the error; this
is illustrated in the next example.

Example 4: Using equation in example 3 and changing A from % to ﬁ , the equation becomes

) = cos(z) + - cos 1,2 1 1 [T 2
“‘_{i')_ = €05(x) + g5p €08(27) — 755" — 555 + To0 Jo (z —t)u?(t)dt, = € [0,1]
Notice: K(z,t) =z —t| < 1= N

. 1 1 .2 1 T
|[f(z)| < |cosx| + 55| cos 22| + | 552" + 55| = 1.005 = Ny
C — J.Nrjcf\l'r{} - 1.005

1
c(h-a)’
Comparing values in Table 3 and Table 4 as well as Figure 3 and Figure 4, HPM gives a better approximation in example 4 than
example 3, which confirms the validity of the Theorems.

This implies that |1] < therefore, the algorithm converges.

Table 4: Numerical output for example 4

T, Exact u(z;) Approximate u(xz) Relative Error (%)

0 1.0000 1.0000 0
0.1000 0.9950 0.9950 0.0001
0.2000 0.9801 0.9501 0.0009
0.3000 0.9553 0.9553 0.0038
0.4000 0.9211 0.9210 0.0116
0.5000 0.8776 0.8773 0.0279
0.6000 0.8253 0.8249 0.0583
0.7000 0.7648 0.7640 0.1100
0.8000 0.6967 0.6954 0.1935
0.9000 0.6216 0.6196 0.3237
1.0000 0.5403 0.5375 0.5242

4 Conclusion

The algorithm developed using homotopy perturbation method performs well as shown in the examples, the percentage error in
the shown examples are all less than 0.65% except in example 3 which has up to 2.65%. This is explained by the convergence
theorems. Since 4th partial sum is used in all the computations, better approximation can be gotten by adding more terms. This
algorithm is easy to implement and gives good approximation. Given the impressive performance, future communication will
involve more analysis and extending the method to more general class of nonlinear Volterra integral.

IJERTV9I S090489 www.ijert.org 978
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)
http://lwww.ijert.org I SSN: 2278-0181

Vol. 9 Issue 09, September-2020

0.95 | T i

0.9 “s.\l i

0.85 | *>, ]
0.8 f T -

g, O.75 \* -
0.7 "y |
0.65 | *, .

0.e - A 1

0.55 | *  Approximate [
Exzct

Lo 0.z 0.4 0.6 0.8 1

Figure 4: The graph of exact and approximéie solution by HPM in Example 4
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