

IP Verification of DMA Controller for

OpenPOWER Processor Core Based Fabless

System on Chip (SoC)

Kuncham Penchalanarasaiah*,
M.Tech Student*,

Department of ECE,

JNTUACEA, Anantapur,

Andhra Pradesh, India.

T. Prahlad Reddy, M.Tech,

(Ph.D.)**,

Assistant Proffessor(Adhoc)**,

Department of ECE,

JNTUACEA, Anantapur,

Andhra Pradesh, India.

Dr. G. Mamatha, M.Tech,

Ph.D.***,

Assistant Proffessor***,

Department of ECE,

JNTUACEA, Anantapur,

Andhra Pradesh, India.

Abstract— Direct memory access (DMA) is a memory speed-up

method that enables an input/output (I/O) device to send or

receive data to or from the main memory without passing via the

CPU. DMA operates by "cycle stealing" memory bus access time

from the CPU. It lowers CPU usage by enabling the network

device to transport packet data straight into the system's

memory. The device requests that the CPU retain its data,

address, and control buses using a DMA controller so that it is

free to transport data directly to and from the memory. Eight

DMA channels, each with a 16-bit address and count registers,

make up the DMA controller. This project aims to accomplish IP

Verification of DMA controller, which is connected to an

OpenPower processor A2O core based fabless SoC, using the

AXI4 interface. The IP verification environment of DMA

controller can be created by using System Verilog, Verilog, and

verification methodologies like Universal Verification

Methodology (UVM). Verification can be done by using software

tools from Mentor Graphics (Questa®) and Xilinx Vivado®,

respectively.

 Keywords—DMA, Verification, IP Verification, SoC,

OpenPOWER, A2O, UVM, System Verilog, Fabless.

I. INTRODUCTION

This DMA controller supports the 8 channels for all the

peripherals which are designed in this SoC and the operation of

all those will be activated depending on the registers which are

specified in the design of the DMA controller. There are

separate registers for the interrupts handling, software

commands, address paths which includes the write as well as

the read transactions which will happen and in the similar

manner this also includes the registers which are meant for the

data path for both write as well as the read transactions. If we

want to configure the external bus easily there is also an

interface which is mentioned with the APB and the AXI

interface has been given for the configuration of the registers of

the DMA controller. Verification is the critical stage in the

creation of a design. Nearly 80% of time in the design cycle is

spent on verification. Technology requires a rapid and

trustworthy verification mechanism in order to narrow the gap

between supply and product demand. We are forced to create

bigger, more capable, and more sophisticated designs by

technological demands. High complexity designs are more

prone to errors. Traditional verification techniques do not work

well with them. The most common methodology for verifying

intricate VLSI designs is UVM. UVM uses automation

mechanisms including the production of random stimuli and

Data and automation aspects like read, write, compare and copy

are addressed by transaction-level modelling (TLM). The

development of a test bench for AXI4 bus to Memory controller

is to verify transactions between them. The authentication of

write or read activities over Bridge is justified by UVM

verification. verifying bridge transition with UVM is a crucial

goals, and test bench acts as the master’s for the AXI4 interface,

which provide the needed input signals. As a result, The

addition of a self checking mechanisms in the test bench was

driven by the assertions at interface for the integration of

reusable-environment into the tolerance detection approaches.

When a necessary condition (or conditions) is (are) broken,

assertions identify errors as well as run-time fatal errors. use of

the two different interfaces in place of one, especially for bridge

node with independent clocks mechanism, allows

synchronization to absorb the unique qualities of the bridge

more quickly. The provided testbench supports reusable

environment and works with all bridge transitions.

II. DESIGN VERIFICATION

These higher-level integrations are individually confirmed

once the components are tested and connected to a subsystem,

and then they are combined with additional integrations to

create even bigger assemblies. until all systems have been

integrated and tested.

Activities:

 following activities are performed:

1. Create processes for subsystem verification, If a sub-

system verification plan was created, specific instructions

would need to be provided in order to carry out the sub-

system verification. The precise steps that will be done to

validate each requirement assigned to the sub-system are

defined by this method.

2. Combine the parts into a subsystem. Applications are

created by combining modules and components into a

subsystem.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110173
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

284

www.ijert.org
www.ijert.org
www.ijert.org

3. Performs the Sub-system verification. The subsystem

needs are verified using the sub-system verification

procedures defined.

III. VERIFICATION PLAN

The establishment of test benches and automation are two

ways that are included in the verification plan as procedures to

be followed. The verification strategy is typically separate

from the actual Verification Tests.

a) Design features

b) Testbench Architecture

c) Coverage models

d) Self-checking strategy

e) Test scenarios

f) Executable verification plan

The verification technique is guided by a verification plan that

specifies the hardware design elements that must be

confirmed. For instance, the characteristics of a system may be

defined in the verification plan and then translated into the

established coverage metrics. The design cannot go on to the

following stage of the flow unless those coverage targets have

been achieved. Although the verification plan does not include

the actual tests, it may specify the strategy to be used. Using

formal methods, some objectives may be simpler to achieve.

Others may require execution on an emulator or virtual

prototype if the anticipated runtimes are longer than what can

be accommodated by simulation, while some may be better

suited to simulation.

IV. TEST PLAN

 A specification document called a verification test plan will

include all the information needed to validate a design. Initially,

the Design Verification Engineer who is in charge of

establishing the test plan is familiar with the specifications of

the Design under test (DUT).

 Fig 1. DMA Test plan

To conduct verification with quality and within a reasonable

time frame, preparation is always essential. If you don't give

this enough weight, you're often setting yourself up for failure

later on in the project. This could involve quality loss, bug

escape, rewriting of various infrastructure tasks, and timing

constraints. Details on all the design aspects that need to be

confirmed should be included in the plan. Each item in the test

plan should provide a brief description of each feature. Along

with the features, the test plan should provide a list of all

supported configurations that these features should be

evaluated in. These features/configurations won't all require

separate testing. The majority of the time, a mix of these

features and settings has to be evaluated. Accordingly,

information on stimulus infrastructure should be provided. It

is wise to record particular micro-architectural examples that

require verification of accuracy in addition to characteristics

and combinations. This could entail explicitly identifying

instances for certain test scenarios or coverage analysis.

Various interface features and internal micro-architectural

events are a few instances of this like fifos, arbitration, state

machines, and logical block interactions. Other things to test

include particular stimulus patterns, interactions, high level

usage scenarios, potential deadlock or livelock situations, etc.;

some of these depend on the type of design. At the end, this

section should provide a high quality stimulus and coverage

qualities that can ensure the stimulus' quality.

V. TEST BENCH ARCHITECTURE

The VLSI industry uses the Universal Verification

Methodology (UVM), which is a System Verilog language-

based verification methodology, extensively. a approach

called UVM was developed to create test stands for design

verification. here APB VIP UVM Testbench Architecture is

for DMA Register configuration and AXI VIP is for stimulus

generation for memory.

A. APB VIP UVM Testbench Architecture

Fig 2. APB Testbench Architecture

B. AXI VIP UVM Testbench Architecture

Fig 3. DMA_AXI Testbench Architecture

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110173
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

285

www.ijert.org
www.ijert.org
www.ijert.org

Test: Setting up the testbench. builds the environment at the

next level down in the hierarchy to begin developing the test

bench component (env). starts the sequences, which initiates

the stimuli.

Environment: For higher level components like agents and

scoreboard, it serves as a container component.

Score Board: obtains the data items from the write monitor,

then compares them to the result.

Agents: The uvm component specific to an interface or

protocol is part of the UVM agent group.

Sequence_item: This will specify the pin activity that the

agent produces.

Monitor: analyzes the activity of the interface signal's pins

and turns it into data packets for transmission to components

like a scoreboard.

Driver: The stimulus from the sequencer will be received, and

it will then push the packet data inside the transaction into pin

level to the design that is being tested.

Sequence: This will specify the order in which the data item

must be created and transferred to or from the driver.

Sequencer: It will be in responsible for sending the sequence

item-generated data packets to the driver.

Interface: Contain design signals that will be driven or

monitored.

VI. RESULT

Testcase name1: reset_test

Fig 4. DMA_AXI Reset

Testcase name2: directed_reg_write_read_test

Fig 5. DMA Read and Write

VII. COVERAGE REPORT

The term "coverage" refers to how many functions or elements

of the design have been put to the test. Knowing what feature

has been covered by a set of tests in regressions will be helpful

in restricted random verification.

Fig 6. DMA Read and Write Coverage report

VIII. CONCLUSION

This Project developed, Simulated and Verified of DMA

Controller which uses A2O processor core based fabless SoC

uses SV and UVM using Questa Sim. Using AXI4, the DMA

gives the commands to one of the memory or peripheral to

transfer the data to another memory or peripheral. In Xilinx

Vivado, the design is developed and interfaced with A2O,

while Mentor Questa is used for simulation and coverage

report.

IX. REFERENCES

[1] PR200 configurable Dual Core High Performance AXI DMA controller

Reference Guide.

[2] Accellera organization, June 2011. universal verification
methodology(UVM) 1.1 Class Reference.

[3] Glasser M, February 4, 2011. UVM: The Next Generation in Verification

Methodology, Methodology Architect, Courtesy of Mentor Graphics
Corporation.

[4] Young-nam Yun, Jae-Beom Kim, Nam-Do Kim, Byeong Min, 2011.
Beyond UVM for Practical Soc verification, IEEE- 978-1-4577-0711-7,
pp 158-162.

[5] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Julian, 2014. UVM
Based testbench architecture for unit Verification. ISBN: 978-987-1907-
86-1 IEEE Catalog Number CFP1454E-CDR.

[6] https://opencores.org/projects/dma_axi

[7] G. Ma, H. He,Design and implementation of a advanced DMA controller

on AMBA-based SoC, in 2009 IEEE 8th International Conference on
ASIC (2009), pp. 419–422.

[8] K. Chen, L. Qi, H. Yu, Design of two dimensionDMAcontroller inmedia

multi-processor SoC, in 2008 Second International Symposium on
Intelligent Information Technology Application (2008), pp. 708–711.

[9] C. Yu, C. Liu, C. Kang, T.Wang, C. Shen, S. Tseng, An
efficientDMAcontroller formultimedia application inMPUbasedSOC,

in2007 IEEE International Conference on Multimedia and Expo (2007),
pp. 80–83

[10] Y.J.M. Shirur, K.M. Sharma, A. Aishwarya, Design and implementation

of efficient direct memory access (DMA) controller in multiprocessor
SoC, in 2018 International Conference on Networking, Embedded and
Wireless Systems (ICNEWS) (2018), pp. 1–6.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110173
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

286

www.ijert.org
www.ijert.org
www.ijert.org

