Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

IP Verification of DMA Controller for
OpenPOWER Processor Core Based Fabless
System on Chip (SoC)

Kuncham Penchalanarasaiah*,

T. Prahlad Reddy, M.Tech,

Dr. G. Mamatha, M.Tech,

M.Tech Student*, (Ph.D.)**, Ph.D.***
Department of ECE, Assistant Proffessor(Adhoc)**, Assistant Proffessor***,
JNTUACEA, Anantapur, Department of ECE, Department of ECE,

Andhra Pradesh, India.

Abstract— Direct memory access (DMA) is a memory speed-up
method that enables an input/output (1/0) device to send or
receive data to or from the main memory without passing via the
CPU. DMA operates by "cycle stealing™ memory bus access time
from the CPU. It lowers CPU usage by enabling the network
device to transport packet data straight into the system's
memory. The device requests that the CPU retain its data,
address, and control buses using a DMA controller so that it is
free to transport data directly to and from the memory. Eight
DMA channels, each with a 16-bit address and count registers,
make up the DMA controller. This project aims to accomplish IP
Verification of DMA controller, which is connected to an
OpenPower processor A20 core based fabless SoC, using the
AXI4 interface. The IP verification environment of DMA
controller can be created by using System Verilog, Verilog, and
verification  methodologies like  Universal  Verification
Methodology (UVM). Verification can be done by using software
tools from Mentor Graphics (Questa®) and Xilinx Vivado®,
respectively.

Keywords—DMA,  Verification, IP  Verification, SoC,
OpenPOWER, A20, UVM, System Verilog, Fabless.

I. INTRODUCTION

This DMA controller supports the 8 channels for all the
peripherals which are designed in this SoC and the operation of
all those will be activated depending on the registers which are
specified in the design of the DMA controller. There are
separate registers for the interrupts handling, software
commands, address paths which includes the write as well as
the read transactions which will happen and in the similar
manner this also includes the registers which are meant for the
data path for both write as well as the read transactions. If we
want to configure the external bus easily there is also an
interface which is mentioned with the APB and the AXI
interface has been given for the configuration of the registers of
the DMA controller. Verification is the critical stage in the
creation of a design. Nearly 80% of time in the design cycle is
spent on verification. Technology requires a rapid and
trustworthy verification mechanism in order to narrow the gap
between supply and product demand. We are forced to create

JNTUACEA, Anantapur,
Andhra Pradesh, India.

JNTUACEA, Anantapur,
Andhra Pradesh, India.

prone to errors. Traditional verification techniques do not work
well with them. The most common methodology for verifying
intricate VLSI designs is UVM. UVM uses automation
mechanisms including the production of random stimuli and
Data and automation aspects like read, write, compare and copy
are addressed by transaction-level modelling (TLM). The
development of a test bench for AXI14 bus to Memory controller
is to verify transactions between them. The authentication of
write or read activities over Bridge is justified by UVM
verification. verifying bridge transition with UVM is a crucial
goals, and test bench acts as the master’s for the AXI4 interface,
which provide the needed input signals. As a result, The
addition of a self checking mechanisms in the test bench was
driven by the assertions at interface for the integration of
reusable-environment into the tolerance detection approaches.
When a necessary condition (or conditions) is (are) broken,
assertions identify errors as well as run-time fatal errors. use of
the two different interfaces in place of one, especially for bridge
node with independent clocks mechanism, allows
synchronization to absorb the unique qualities of the bridge
more quickly. The provided testbench supports reusable
environment and works with all bridge transitions.

Il. DESIGN VERIFICATION

These higher-level integrations are individually confirmed

once the components are tested and connected to a subsystem,

and then they are combined with additional integrations to
create even bigger assemblies. until all systems have been
integrated and tested.

Activities:

following activities are performed:

1. Create processes for subsystem verification, If a sub-
system verification plan was created, specific instructions
would need to be provided in order to carry out the sub-
system verification. The precise steps that will be done to
validate each requirement assigned to the sub-system are
defined by this method.

2. Combine the parts into a subsystem. Applications are
created by combining modules and components into a

bigger, more capable, and more sophisticated designs by subsystem.
technological demands. High complexity designs are more
| JERTV11IS110173 www.ijert.org 284

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

3. Performs the Sub-system verification. The subsystem
needs are verified using the sub-system verification
procedures defined.

I1l. VERIFICATION PLAN

The establishment of test benches and automation are two
ways that are included in the verification plan as procedures to
be followed. The verification strategy is typically separate
from the actual Verification Tests.

a) Design features

b) Testbench Architecture

c) Coverage models

d) Self-checking strategy

e) Test scenarios

f)  Executable verification plan

The verification technique is guided by a verification plan that
specifies the hardware design elements that must be
confirmed. For instance, the characteristics of a system may be
defined in the verification plan and then translated into the
established coverage metrics. The design cannot go on to the
following stage of the flow unless those coverage targets have
been achieved. Although the verification plan does not include
the actual tests, it may specify the strategy to be used. Using
formal methods, some objectives may be simpler to achieve.
Others may require execution on an emulator or virtual
prototype if the anticipated runtimes are longer than what can
be accommodated by simulation, while some may be better
suited to simulation.

IV. TEST PLAN

A specification document called a verification test plan will
include all the information needed to validate a design. Initially,
the Design Verification Engineer who is in charge of
establishing the test plan is familiar with the specifications of
the Design under test (DUT).

Sl ao Title e Generate Tiestcase_name Tags

Bandom stifmuus vesat tast S, UV

Fandom stirmulus base fest V.UV

i el 7
A oroagh the A0 bos Rangsmsinis | sirected reg write read. test | BV, UV, Memory

Packagetest  [levil pestor al th s axcherites, and = A test plg S, UV

Fig 1. DMA Test plan

To conduct verification with quality and within a reasonable
time frame, preparation is always essential. If you don't give
this enough weight, you're often setting yourself up for failure
later on in the project. This could involve quality loss, bug
escape, rewriting of various infrastructure tasks, and timing
constraints. Details on all the design aspects that need to be
confirmed should be included in the plan. Each item in the test
plan should provide a brief description of each feature. Along
with the features, the test plan should provide a list of all

supported configurations that these features should be
evaluated in. These features/configurations won't all require
separate testing. The majority of the time, a mix of these
features and settings has to be evaluated. Accordingly,
information on stimulus infrastructure should be provided. It
is wise to record particular micro-architectural examples that
require verification of accuracy in addition to characteristics
and combinations. This could entail explicitly identifying
instances for certain test scenarios or coverage analysis.
Various interface features and internal micro-architectural
events are a few instances of this like fifos, arbitration, state
machines, and logical block interactions. Other things to test
include particular stimulus patterns, interactions, high level
usage scenarios, potential deadlock or livelock situations, etc.;
some of these depend on the type of design. At the end, this
section should provide a high quality stimulus and coverage
qualities that can ensure the stimulus' quality.

V. TEST BENCH ARCHITECTURE

The VLSI industry uses the Universal Verification
Methodology (UVM), which is a System Verilog language-
based verification methodology, extensively. a approach
called UVM was developed to create test stands for design
verification. here APB VIP UVM Testbench Architecture is
for DMA Register configuration and AXI VIP is for stimulus
generation for memory.

A. APB VIP UVM Testbench Architecture

top_tb

test

Agent 1

o s Scoreboard

Iy

I
i

Agent 2

Interface

DuT

Fig 2. APB Testbench Architecture

B. AXI VIP UVM Testbench Architecture

APB

DUT (AXI DMA) Interface

I AXI Interface

AXI Slave Agent

slave Driver

Read Monitor

- |

Write Monitor

Slave Sequencer AXI Itermn

Default Sequence

| AXI Item

Data Monitor

| Memory I

AXI Itemn

Fig 3. DMA_AXI Testbhench Architecture

IJERTV111S110173

www.ijert.org 285

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

Test: Setting up the testbench. builds the environment at the
next level down in the hierarchy to begin developing the test
bench component (env). starts the sequences, which initiates
the stimuli.

Environment: For higher level components like agents and
scoreboard, it serves as a container component.

Score Board: obtains the data items from the write monitor,
then compares them to the result.

Agents: The uvm component specific to an interface or
protocol is part of the UVM agent group.

Sequence_item: This will specify the pin activity that the
agent produces.

Monitor: analyzes the activity of the interface signal's pins
and turns it into data packets for transmission to components
like a scoreboard.

Driver: The stimulus from the sequencer will be received, and
it will then push the packet data inside the transaction into pin
level to the design that is being tested.

Sequence: This will specify the order in which the data item
must be created and transferred to or from the driver.
Sequencer: It will be in responsible for sending the sequence
item-generated data packets to the driver.

Interface: Contain design signals that will be driven or
monitored.

VI. RESULT
Testcase namel: reset_test

4 mh |

Fig 4. DMA_AXI Reset

Testcase name2: directed_reg_write_read_test

Fig 5. DMA Read and Write

VIl. COVERAGE REPORT

The term "coverage" refers to how many functions or elements
of the design have been put to the test. Knowing what feature
has been covered by a set of tests in regressions will be helpful
in restricted random verification.

Thae looenge [set  wifoud sats  indr sewsns wee s [ v ) | metes gzt restertierery Tosetieran e

Fig 6. DMA Read and Write Coverage report

VIII. CONCLUSION

This Project developed, Simulated and Verified of DMA
Controller which uses A20 processor core based fabless SoC
uses SV and UVM using Questa Sim. Using AXI4, the DMA
gives the commands to one of the memory or peripheral to
transfer the data to another memory or peripheral. In Xilinx
Vivado, the design is developed and interfaced with A20,
while Mentor Questa is used for simulation and coverage
report.

IX. REFERENCES

[1] PR200 configurable Dual Core High Performance AXI DMA controller
Reference Guide.

[2] Accellera organization, June 2011
methodology(UVM) 1.1 Class Reference.

[3] Glasser M, February 4, 2011. UVM: The Next Generation in Verification
Methodology, Methodology Architect, Courtesy of Mentor Graphics
Corporation.

[4] Young-nam Yun, Jae-Beom Kim, Nam-Do Kim, Byeong Min, 2011.
Beyond UVM for Practical Soc verification, IEEE- 978-1-4577-0711-7,
pp 158-162.

[5] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Julian, 2014. UVM
Based testbench architecture for unit Verification. ISBN: 978-987-1907-
86-1 IEEE Catalog Number CFP1454E-CDR.

[6] https://opencores.org/projects/dma_axi

[7] G.Ma, H. He,Design and implementation of a advanced DMA controller
on AMBA-based SoC, in 2009 IEEE 8th International Conference on
ASIC (2009), pp. 419-422.

[8] K.Chen, L. Qi, H. Yu, Design of two dimensionDMAcontroller inmedia
multi-processor SoC, in 2008 Second International Symposium on
Intelligent Information Technology Application (2008), pp. 708—711.

[91 C. Yu, C. Liu, C. Kang, T.Wang, C. Shen, S. Tseng, An
efficientDMAcontroller formultimedia application inMPUbasedSOC,
in2007 IEEE International Conference on Multimedia and Expo (2007),
pp. 80-83

[10] Y.J.M. Shirur, K.M. Sharma, A. Aishwarya, Design and implementation
of efficient direct memory access (DMA) controller in multiprocessor
SoC, in 2018 International Conference on Networking, Embedded and
Wireless Systems (ICNEWS) (2018), pp. 1-6.

universal  verification

IJERTV111S110173

www.ijert.org 286

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

