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Abstract — The aim of this research is to propose an loT based
model for real-time condition monitoring of electrical machines,
which addresses the challenges of data storage and
scalability. The proposed model is evolved with an experimental
setup having two sets of DC motor coupled to AC Generator and
an loT device to elucidate integrated monitoring and decision
making.  This 10T based vibration and temperature analytic
model uses an 10T2040 Gateway with custom Linux OS

image built for acquisition and streaming of vibration
signals. The Python target application acquires DC
motors‘shaft vibration using vibration sensors and

communicates the data as events to cloud through serial device
driver interface. The 10T service running in cloud receives the
data from multiple  machines through lightweight
RESTful HTTP and records the same which are
retrievable for analysis and  algorithm development in
any platform. The retrieved data have been analyzed
using the proposed statistical classification based signal
decomposition algorithm as well as time-frequency analysis to
estimate the vibration thresholds of every machine connected to
10T cloud. Such estimated thresholds corresponding to different
operating and environmental conditions maintained in cloud are
used to build a repository of context specific solutions for
machine conditions leading to improved maintenance
decisions. The uniformity of threshold values obtained from loT
based model in comparison with that of analysis carried
out on the machines locally using myRIO for data
acquisition ensures the integrity of the proposed statistical
classification algorithm and reliabilty of the 10T model for
condition monitoring with assured scalability.

Index Terms— Electrical machines, Condition
monitoring, 10T Gateway, Vibration Analytics, Signal
Processing, Cloud.

. INTRODUCTION

Condition monitoring is the most predominant strategy used
for predictive maintenance of machines. In any enterprise or
industry, the objective of plant maintenance has always been to
maximize the uptime and efficiency through better preventive
or predictive maintenance and condition monitoring diagnostics
so that the desired targets could be achieved with increase of
revenue. At present, most of the condition monitoring systems
are local systems, which collect vibration data from
the machines and use wvarious algorithms to check for
defectiveness or  unusual  behaviour —and compare the
results with the knowledge base for effective decision
making.  This is the usual methodology adopted in many
industries, which faces certain challenges such as inadequate
storage space for data and especially scalability when
multiple machines at different locations are to be monitored.
The preciseness, volume, variety and analysis of the
machine data are the major contributing

factors for effectiveness in condition monitoring. High volume
and variety of data to be collected from the machines
at different  locations  during  online  monitoring  for
the interpretation of  their behaviour ~ at dynamic or
abnormal operating conditions pose the challenges of data
storage and scalability [1].

The practical challenges faced by maintenance engineers are the
introduction  of new technologies for the enhancement of

plant  productivity, methods of data acquisition and
analysis, inconsistent outcomes and shortage of resources. The
present condition monitoring systems pOSSess

advanced instrumentation that could acquire data at high
throughput with less noise but lags in volume, variety and
extent of data analysis. The preliminarily identification of
the machine’s abnormal behavior is carried out by comparing the
measured value with the vibration severity limits prescribed in
1S12075, Bureau of Indian Standards, 2008. The method is
simple but lacks sufficient information to identify the
behavioural patterns during dynamic conditions [2]. National

Instruments while discussing the aforesaid challenges and
benefits of fleetwide monitoring has cited that
maintenance ~ managers  require innovative  strategy  for
continuous and automated data collection from more

industrial assets to make data comparison with  baseline
behaviour and analyse the performance using algorithms
specific to application so that the maintenance and the real-
time  decisions are improved [3]. This  kind  of
maintenance strategy could successfully be achieved by
practising 10T based condition monitoring in cloud platform.
Advantech in its white paper [4] has discussed on
the importance of the implementation of cloud based
SCADA system using Industrial [oT (lloT) and points out
that even though SCADA monitors the instantaneous
conditions well within the enterprise, the adoption of cloud
offers pervasive analytics  and  decisions  additionally
irrespective  of  the hardware wused and thus making
Industry 4.0 effective. It is observed that condition
monitoring, a process which involves data acquisition, data

processing and information extraction plays the lead role in
bringing out  successful  diagnostics and  prognostics.
Mallikarjun  Kande et al. [5] have extensively reviewed
and discussed about  existing machine  condition

monitoring techniques and industrial automation for plant-wide
condition monitoring of rotating electrical machines, which
includes machine diagnostics using artificial intelligence. They
pointed out the importance for on-equipment, on-premise and
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on-cloud integration  of  condition  monitoring  and
the Distributed Control System to provide continuous
monitoring of the equipment with high update rates from the
sensors, to collect and send sensor data to diagnostics running as
part of plant operations and to offer the elasticity required for
the data and computational resources. The effective
implementation of real-time integration of various data
acquisition devices demands lightweight and uniform
communication standards. While  discussing  about  on-

equipment  and  on-premise integration methods, the need
for on-cloud monitoring using loT gateway has been
substantiated to  meet the requirements of advanced
diagnostics and data platforms for  enhanced

computation. The integration of remote services gives the
benefit of making intensive data analysis even with
the application of basic data acquisition devices for
condition monitoring.

Steve Lacey [6] has stated that condition monitoring carried out
with  the incorporation of cloud facilitates comparative
analysis of the conditions of similar machines or related
machines. The adoption of cloud allows data sharing and
enables implementation of new analysis techniques when
unknown signal patterns are observed at the user end.
The cloud environment provides an added value of being
able to share and compare the local machine condition data
with other similar machines across the plant, or with other
machines at multiple plants wherever they are located. The
cloud based condition monitoring system can infer the data
from the distributed databases for effective decision making in
vibration analysis. ~ The vibration data is further processed in
the cloud with the combination of data of one machine and
other similar machines’ data with extensive analysis options.
This increases the reliability of the diagnosis information
for appropriate decision making. The perceptions of various
industries on the adoption of cloud based condition
monitoring  have been portrayed by Sheila Kennedy [7]. The
author has pointed out that Siemens has developed a cloud
application for asset analytic services that receives high
volume of physical and process data for analysis and
generates alarms automatically under critical conditions. It
is inferred that multiple access provided by the cloud
environment  to multiple  condition monitoring experts
improves the decisions for effective maintenance
solutions. Fran Dougherty, CTO of the Worldwide Incubation
Enterprise and Partner Group of Microsoft has outlined in
the special report composed by Jim Montague [8] that
industries look for innovation, scalability and business
growth for which the use of private and public clouds has been
appreciated. Hybrid cloud was considered to be the best option by

him, as industries can choose the type of analysis
dynamically as per the requirements.

Development of customized software layers based on
the  monitoring requirements and lightweight

communication between cloud and the end user makes loT
devices to operate reliably with high speed and throughput so
that performing data analytics meets the real-time
requirements of operational decisions and seamless
maintenance schedules for machines.

Il. EXPERIMENTAL SETUP AND DATA ACQUISITION

Out of wvarious machine parameters namely vibration,
humidity, temperature, pressure, sound, thermography, motor
current, insulation resistance, electrical capacitance and

electrical inductance, the choice of the parameter for condition
monitoring depends on the type of industrial equipment
and condition to be assessed (Hashemian et al. [9]). In
order to improve the performance and uptime of electrical
motors, the condition of each machine is monitored and
assessed by observing the input electrical variable such as
current as in Motor Current Signature Analysis (Mehala et al.
[10]) or the mechanical parameters such as  acceleration,
velocity, displacement as in vibration analysis (Asoke Nandi et al.
[11]). Measuring vibration is the widely used condition
monitoring technique for detecting the faults and diagnosing
the equipment behavior. It is proposed to use an loT Gateway to
acquire the vibration data from multiple machines. The loT
device can communicate using different protocols such as
MQTT, XMPP, DDS, AMQP and HTTP, each of which
follows specified format and mode of data communication. The
high-level application, which is developed in the IloT
enabled gateway collects the machine’s physical data and
automatically performs the task of transmitting the acquired
data to the cloud more effectively with less programming
overheads than conventional embedded systems. The present
work illustrates the process of building a customized Linux
OS image for embedding into 10T2040 Gateway, on which
the required Python device drivers and application logic are
run to acquire the data from the vibration sensors mounted
on the shaft of the DC motors. The acquired data are sent to
cloud through RESTful service developed in Python which

uses lightweight RESTful HTTP  protocol for
communication.  The HTTP protocol has the advantages of
creating, updating, deleting and retrieving the resources
from  loT  Cloud service with  the  options  of
compressing headers  and obtaining response  as
acknowledgement.

The loT based framework proposed for machine

vibration monitoring at enterprise level has been depicted in
Figure 1 and implemented on the experimental set up shown in
Figure 2. 1oT based processing is adopted for condition
monitoring of multiple machines operating at different
locations as it evolves as a better choice due to the attributes of
cloud storage, flexible application development, data
aggregation,  scalability —and platform of multiple services.
The proposed framework will enhance the machine condition

monitoring functionality with methodologies of scalable
and platform independent data aggregation and
collaborative analysis that the real-time industrial

applications demand extensively. The experimental set up
consists of two similar sets of machines having DC shunt motor
coupled to three phase AC Generator and a SIMATIC 1072040
Gateway. The vibration signals have been acquired during the
motor is started and ran to the rated speed of 1500 rpm at
no load condition and then loaded by AC Generator at fixed load

changes.  To analyze the effects of industrial environment on
shaft vibration, a 3-phase squirrel cage induction motor
placed in the proximity of DC motor is made
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to run at constant speed of 1500 rpm and the shaft vibration
data of the DC motor is acquired as carried out for
standalone condition. The acquired vibration data under the
operating conditions of starting to no load speed with and
without external disturbance and loading are streamed to cloud
through 1072040 gateway. Similar ~ experimentation  has
been carried out for acquiring the shaft vibration data using
myRI10-1900 [12] as acquisition device and tri-axial
accelerometer (ADXL345) as vibration sensor. The ADXL345
mounted on the rigid structure supporting the DC motor’s rotor
shaft senses the shaft vibration which is acquired by my-RIO in
fast data transfer mode of 12C

(400 kHz) with output data rate and bandwidth as 800 Hz and
400 Hz respectively.  The ADXL345 is used in 13-bit
resolution at measurement range of +16g with sensitivity of 256

LSB/g. The data acquired in both cases have been
analyzed using a statistical classification algorithm
developed in  LabVIEW DIAdem [19]. The algorithm

extracts the major amplitude levels of non-stationary vibration
oscillations and clusters the determined levels for precise
enumeration  of  vibration thresholds at dynamic operating
conditions.
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Figure 1. The loT based condition monitoring model
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Figure 2. Experimental Set Up
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1. IMPLEMENTATION OF I0T BASED CONDITION
MONITORING MODEL

Building a custom host OS Image for the development
of Python interface to acquire data through the SIMATIC
10T2040 gateway is a challenging task and has been detailed as
follows. The bottom up approach to build the custom Yocto
Linux image that boots the lIoT Gateway is depicted in Figure
3. SIMATIC 10T2040 is an Intel Quark X1020 based
System on Chip Industrial 10T gateway which runs with Linux
Open Embedded Core OS. It supports external RS232 / RS422 /
RS485, Ethemnet, USB and internal Arduino shield, Mini
PCle card hardware interfaces [13].

N
Boot SIMATIC 10T2040 Gateway from Micro
SD Card Image

A

>
BitBake builds Yocto BSP image and

store in a Micro SD Card

Y
A

Setting up of build environment using
configuration files

Y
N

Yocto-BSP script to custom recipes and
configurations for creation of new BSP layer

\ y,
Local Git Repositories - of Poky containing build R
tools, and of Meta-Intel containing Yocto based
Open Embedded Core Metadata, Configuration,
Recipes and BSP Layers

/

' ~\

Linux Distribution Packages in Host
| J

Figure 3. Development of Custom Host OS image for 10T2040 Gateway

The custom Open Embedded Linux core with specific
hardware configuration as per application requirements
facilitates flexible and faster operational features. The 1072040
gateway utilized to monitor the vibration signals is operated on
open source Linux platform (Yocto Linux image obtained from

BitBake build process) with custom Board Support
Package (BSP) optimized for Intel Galilieco development
boards.  The BSP contains directory of file structure that

specifies about its hardware features, kernel configuration
namely “standard, tiny or preempt-rt” and all the additional
supporting  hardware platforms and drivers. The BSP does not
possess build system rather it contains information only about
the hardware with a task executor and scheduler (BitBake) of
an Embedded Linux build system. These are available in Git
repository and cloned as local  copy in the  host
project  using  “git  clone git://git.yoctoproject.org/poky”.
The host build process parses the  metadata  of recipes,
classes, and configuration files and builds hardware specific
binary output that run on specific hardware or on Quick
Emulator (www.yoctoproject.org). The BitBake build process
using either “Native build’ or ‘Docker build’  yields  kernel
configuration, tools and furnishes a bootable SD card
image (github.com). This layer built on the

top of “meta-i0t2040-bsp” provides services to exploit the
features for  application development in 10T2040. The
application specific components such as drivers and cloud
protocols available under the host OS are added in this
layer. The image thus built boots the 1072040 with the
preconfigured IP address for an Ethernet interface.

The SDK installer script specific to the custom OS image has
been run to install the toolchain, which is a collection of
hardware specific  cross-compilers, linkers and debuggers
running on a target architecture that also supports development of
software compatible with other target architectures. The
environment setup script for the SDK with a configuration file,
version file and root file system (sysroots) for the target system is
also to be run to enable application development and
deployment in 10T2040 platform.  10T2040 thus booted with
custom embedded Linux OS image has been used in the
proposed model to develop an application for machine
condition monitoring.

The 10T2040 Gateway application development and software
commissioning are carried out using remote desktop tool called
MobaXterm (mobaxterm.mobatek.net) which connects the loT
device with a PC through Secure Shell (SSH) session.

The 1072040 Gateway and the PC network settings are
configuredto  be in the same subnet using the
command “nano/etc/network/interfaces” which opens a

network configuration file with details as given below:

iface eth0 inet static

address XX.XX.XXX.XXX
netmask XXX.XXX.XXX.X
gateway XX.XX.XXX.X

After editing the values of the fields viz., address, netmask
and gateway appropriate to the connected network, the
MobaXterm identifies the 1072040 Gateway through the newly
configured 1P and opens the Linux platform for
application development through SSH. Any software package
required for the application development can be installed
using package manager, in addition to the Linux image
built with Board Support Package. The package manager
of Yocto, “opkg” is used to install the packages downloaded
from the Intel or Git repositories.The application developed
in Python not only acquires data through RS232 interface

but also uploads the vibration signal data to the cloud using
RESTful services. Toread the vibration data from RS232
hardware interface of 10T2040 Gateway, it requires serial

package compatible for Python. The installation of Python
serial package requires virtual environment or Python Installer
Program, “pip” which invokes the system to build the desired

package i.e., the Python serial —package called “pyserial”
(pip.pypa.io).  The  piezo electric vibration sensor fixed with
magnetic mount on each of
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the rotor shaft’s rig senses the shaft vibration and sends the raw
data through RS232 interface to 10T2040 Gateway. The
Python application reads the vibration data as ‘x” and ‘x1’
from the shafts of +two DC motors through  serial
communication interface of 1072040 and processes the
serial data of 16 bits length to convert the raw values into
vibration in ‘g’. The loT device streams the vibration datato
cloud through RESTful HTTP Request / Response
communication. Any cloud that is running loT service
requires the client to send the unique API keys that are
generated for read or write operations. The vibration data to
be updated in the cloud are saved as

‘parameters’ along with the Write API key using the method
available in urllib Python package,

parameters = urllib.urlencode ({‘field1’:x, ‘field2”:x1, ‘key”:

Write API key})

The HTTP connection from the application running in
10T2040 Gateway to the resource in the IoT cloud service has
been made by referring to the end point of the
resource containing the address url and port number 80 as given
below:

httplib. HTTPConnection (“cloud resource end point")

Consequently, while making HTTP Request, the POST
method sends the vibration data, x and x1 saved as ‘parameters’
together with the headers that define the response type,
data type and encoded features.

headers = {"Content-typZZe": "application/x-www-form-
urlencoded"”, "Accept": "text/plain"}
conn.request("POST", "lupdate", parameters, headers)

Having established the network connection, the vibration
data sent to the cloud is visualized as chart history and saved in
data fields. The vibration data received over a period are stored as

historical data in the cloud platform. The loT service
processes the vibration data online and enables other
collaborated data experts in remote location to get the

data shared through content provider as shown in Figure 1to
develop and execute application specific algorithms that
provide  more  meaningful insight into data. In the
proposed model, the vibration data present in the data fields of
cloud are retrieved by LabVIEW  client  application
developed using RESTful VIs of HTTP Client palette [14].
The LabVIEW application sends request to the cloud with
authentication details of username and password through Open
Handle VI of the palette. In addition, this VI opens a client
handle which allows multiple requests and responses between
the application and loT service using the same credentials, thus
provisioning for scalability. The GET VI uses GET HTTP
method and combines the client handle, Read APl Key,
URL of the vibration data, number of data entries for retrieval
while making the Web request to the cloud APl end point.
While running the application, this VI gets the Headers and
Body from the cloud service of which the Headers contain

the details such as protocol version, content length and meta
data while the Body contains the vibration data in JSON
format.

IV. PROPOSED CLASSIFICATION TECHNIQUE FOR NON-
STATIONARY VIBRATION SIGNAL ANALYSIS

Effective monitoring of vibration is the major criterion for
precise identification of machine behavior specific to the type
of physical component, environment and operating conditions.
PJ.Tavner [15] has stated that the vibration signal analysis
seems to provide comprehensive and reliable condition
monitoring  subject to availability of high data rate
and advanced analytic techniques. It has been reviewed
that the conventional spectral analysis remains  suitable
when  the machine maintains a constant speed for substantial
amount of time. In the cases where machine speed changes or
when the machine is fed by electric drive with inbuilt
harmonics, the complexity that is endured in capturing and
interpreting  the spectral content of signals having high
bandwidth and low signal-to-noise  ratio, demands the
application of multi- parameter or soft-computing or

effective non-stationary signal processing techniques. Rakesh et
al. [16] performed online condition monitoring  of
induction motor through Motor Current Signature
Analysis,  which identifies  frequencies corresponding to

faults using the current spectrum and this method is said to lag
during varying load torque conditions. As the signals are non-
stationary, the characterization of the signal and the
classification of the machine states are challenging tasks for
condition assessment under dynamic load and speed
variations.  Due to the limitations observed in the Time
Frequency Representation (TFR) and wavelet based TFR,
Cardona Morales et al. [17] have proposed the application of
Linear  Frequency  Cepstral  Coefficients (LFCC) and
Spectral Sub-Band Centroids (SSC) on time frequency
response as a measure of reducing the feature loss in the
estimation. The one class classifier applied on such extracted
features has been said to give better classification  of
machine states under non- stationary operations.  The
results of the above stated work substantiate the occurrence
of frequency interferences in time frequency response during
the estimation of dynamic features.

From the Gaussian distribution of raw vibration data,
the values of the mean and standard deviation are
calculated. Jablonski et al. [18] have assessed the nature of
vibration from the range of values falling in between the
multiples of standard deviation determined from Gaussian
distribution. Generally, the real time data do not take Gaussian
distribution always and hence the calculations lead to false
alarms. Thus different distributions  such  as  Weibull
probability distribution, generalized  extreme  value
probability distribution, extreme value probability distribution and
inverse Gaussian probability distribution are used instead
of Gaussian distribution to characterize the vibration
data for threshold fixation.  Various such  works portray
different methodologies have been developed for condition
monitoring, where focus is more towards the diagnosis of
abnormalities from the available data nature than the threshold
estimation adaptive to operating conditions.
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The threshold calculations in condition monitoring are more
important but are not given due consideration. Thousands
of false alarms are generated due to adoption of default
threshold levels.  Unless thresholds are estimated precisely, the
criticality of the abnormal conditions could not be realized to
the fullest extent.

A statistical classification  based signal decomposition
algorithm is proposed for identification of denser vibrating
regions  dynamically under wvarious machine  operating
conditions and thereby to enumerate adaptive thresholds
for quick and accurate prediction of abnormalities. The
vibration signal data received as JSON string is unflatten to
actual values and has been segmented into classes of equal
width over the range of maximum and  minimum
amplitudes. The data read from the cloud are streamed to
DIAdem [19] as .tdms file for carrying out statistical
classification of the vibration signal into
‘n’ number of classes and obtain the transition matrix which is fed
as input to the signal decomposition algorithm developed in
LabVIEW to identify the vibration thresholds.  The proposed
signal decomposition algorithm  determines the vibration
oscillations at multiple levels of the signal amplitude using the
transition matrix obtained through statistical classification. The
variations in the range of maximum number of vibration
oscillations within the scope of segmented classes, which have
been observed with respect to the operating conditions
of starting to no load speed and loading along with environmental
disturbances  reveal the  significance  of  computing
the thresholds dynamically. The technique further traces
the changes in signal transitions at every level of class
accurately which helps to illustrate the machine behavior.

oscillations starting from a class and ending at the same class or at
different class in any of the direction either upper or lower, which
will aid to extract the wuseful information from the
random signal that will be a significant indicator for condition
monitoring using vibration analysis. Thus, the deceptive
thresholds that hide the incipient changes in the behavioral
pattern are clearly outlined, resulting to effective condition
monitoring.

Using amplitude classification analysis based on transition
matrix [19], the nature of the vibration of the machine is
determined by extracting the oscillatory information at any of
the amplitudes that the vibration has taken. The transition
matrix shown in Table 1 contains the number of signal
transitions from one class to every other class, where STy, and
STa represent Signal Transitions from class k to class n and
class n to class k respectively. For ‘n” number of classes, the n n
transition matrix consisting of n? elements represent the
transitions from the Start Classes (indexed in rows) to Target
Classes (indexed in columns). Positive slope represents
transition of the signal from a lower class to higher class
and vice-versa for the negative slope. Thus, the upper
diagonal matrix indicates the counts of positive slopes and
lower diagonal matrix corresponds to the counts of negative slopes.
In general, any row ‘k> of the transition matrix gives
the transitions of the signal from the class corresponding to the row
‘class k’ (Start Class) to other [n-1] classes (Target Classes)
and the same applies to any column ‘k’. The sum of upper and
lower off-diagonal elements along each column have been
referred as level crossing counts of positive and negative
slopes.

Also, it attempts to  identify the behavioral changes by
determining the
TABLE 1. TRANSITION MATRIX
Target Class
Class 1 l Class 2 l Class 3 l Class k l Class n l
Sl ST ST STk NET
Class 1 -
e 2 ST ST STz STx ST ;}
a3 @
s _— =
O STt STz ST ST ST S
5 Class 3 3
&H ol ST ST STia ST STin
 —
Class n STn]_ STnZ STn3 STnk STnn
Negative¢ Slopes
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In the proposed vibration analysis technique, corresponding
row-wise and column-wise class transitions have been
considered to calculate the oscillations happening at every class
i.e., to extract the actual vibration pattern of the shaft from the
signal transition data described by the transition matrix by
progressing along the columns and rows with diagonal
elements as reference.

While analysing the transition matrix (Table 1) along its
rows, the elements right to the diagonal element gives the
transition of the physical signal from a class referred by
the diagonal element to higher classes. Similarly, the elements left
to the diagonal element give the signal transitions to the
lower classes. Hence the class ‘1’ of the transition matrix
(represented by first diagonal element) will have only positive
transitions to higher classes and the last diagonal element
representing the class ‘n’ will have only negative transitions to
lower classes. The classes in-between referred by the
corresponding diagonal elements, possess signal transitions
from one class to all the other higher classes as per the
positive slopes and all the lower classes according to the
negative slope values. The sum of positive slopes of each
row gives the total number of transitions made by the signal
from the respective class ‘k’ to the upper classes and the sum of
negative slopes of each row gives the total number of
transitions from class ‘k’ to the lower classes.

In the column-wise perception of the transition matrix, the
elements above the diagonal element of every column reveal
the signal transitions from lower classes to the class represented by
positive slopes and the elements below gives the signal
transitions from higher classes to the class as per the negative
slopes. Thus Class ‘1’ (having only negative slopes), has
transitions only from higher classes and class ‘n’ (having only
positive slopes) has transitions only from lower classes. The in-
between classes referred by the respective diagonal elements,
have signal transitions from lower classes to class as per the
positive slopes and from higher classes to the class as per
the negative slopes. The sum of positive slopes of every
column gives the total number of signal transitions from the
lower classes to respective class ‘k’ and the sum of negative
slopes gives the total number of transitions from upper classes to
class
K.

V. ALGORITHM

An efficient algorithm is proposed [20] to identify the shaft
vibration patterns quickly and precisely that will lead to various
condition monitoring decisions such as fixation of adaptive
thresholds for various operating modes at normal conditions,
tracing the abnormality patterns accurately from the shifts of
oscillations to different class levels and measuring the intensity of
abnormality from the range of shifts.  The calculation
framework for the determination of oscillations in the real time
non-stationary  vibration signal at multiple class levels
is detailed below:

Step 1: Determine the maximum and minimum amplitudes of
the shaft acceleration signal of the DC motor and choose them as
the initial and end points of classification.

Step 2: Divide the amplitude of the shaft vibration signal in the
range of selection into classes of considerable width and obtain the
transition matrix and class mean of the classification.

Step 3: From the transition matrix extract the column-wise
positive slopes (STj) and row-wise negative slopes (STj)
pertaining to each class represented by the diagonal element
and compare every pair of values that a class possess to identify the
lowest value (OSC;) as shown in Equation 1. Every
lowest value (OSCj) will represent the oscillations completed
between corresponding class j and the lower class i.

0=i(,) (1)

Step 4 Determine the difference between the positive
and negative slopes pertaining to each class represented by the
diagonal element of the transition matrix and record the
resulting positive difference and negative difference values as
separate  matrices. The positive difference values DS;;
(Equation 2) represent the excess positive slopes to the class
J, which refer to the existence of oscillations which have started
from a lower class but have not ended at the same lower class. The
negative difference values DS; give the excess negative
slopes of the class j, which represent the existence of
those oscillations ending at a lower class but have not started from
the same lower class.

=Sub(, ) .. if >0,

if <0 2)

The oscillations between a class and the lower classes
are calculated using the column-wise upper diagonal and row- wise
lower diagonal elements of the transition matrix. Likewise,
the oscillations between a class and upper classes are
computed using  column-wise  lower diagonal and row-
wise upper diagonal matrices. The proposed condition
monitoring is based on the feature, Similar Amplitude
Oscillations of non-stationary vibration signal that happen
between every class and the lower classes.  This methodology
has been applied to classify the vibration pattern by
determining the following aspects:

Classes having higher number of signal transitions with

lowerand / or upper classes.Dominant classes having
comparatively  higher number of oscillations with lower,
upper or  both  the  classes..Class-wise oscillation
distribution  of the dominant classes.ldentification  of

oscillation percentage of the dominant classes in
of total

respect
oscillations and Clustering of dominant classes.
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The classes which are identified to have comparatively
higher number of oscillations with lower classes are considered as
dominant upper classes. Such dominant upper classes which
cumulatively account for 90 to 95 percent of the
total oscillations are clustered as upper threshold classes.
The distribution of the oscillations pertaining to all the
dominant upper classes with respect to every lower class
identifies those lower classes with which dominant upper
classes make higher percentage of oscillations and are clustered as
lower threshold classes. The shifts in the upper and
lower threshold classes reveal the change of operating
conditions  or  abnormalities within a specific operating
condition. The range of deviations determines the intensity and
criticality of abnormalities. This identification of cluster of
classes as upper and lower thresholds adaptive to the
operating nature of the machines enables accurate fixation
of the vibration reference levels for condition monitoring.
The erroneous conditions could be tracked precisely
with  the determined adaptive levels and hence the
possibilities ~ of  incorrect  failure  diagnosis due to
misleading thresholds could be overcome.

This non-stationary vibration analysis algorithm has been
integrated  with 10T  service through LabVIEW client
application to  enable collaborated real-time  condition
monitoring of any machine whose data are streamed to cloud.
The analysis results updated to the IoT service running in cloud
lead to efficient decision making in machine condition
monitoring and make the maintenance of other connected
devices / machines automatic and effective. The updated
results create contextual vibration references for assessing the
condition of any other machine of same type that has
been exposed to similar operating conditions.

VI. RESULTS AND DISCUSSION

To comprehend the effectiveness of the vibration thresholds
identified from the loT based data analysis, a comparative
analysis has been made with the results of vibration data
acquired through myRIO.  The above stated algorithm is
implemented on the signals acquired in real-time to
perform vibration analysis on the DC motor shaft when
the motor is running under the following operating conditions:

Starting to no load speed and Loading at standalone
condition

Starting to no load speed in the presence of the mechanical
disturbance injected using a three-phase induction motor by
running it under constant speed in the neighbourhood of DC
machine

A. From Starting to No Load Speed — Standalone Condition

The shaft vibration signal of DC motor pertaining to the
operating  condition of starting to no load  speed
(standalone condition) has been acquired from the tri-axial
accelerometer ADXL345 with sensitivity of 256 LSB/g by
myRIO application developed using LabVIEW FPGA and RT
programming.  The acquired data are logged in an excel file
and imported to NI DIAdem for statistical classification.
The vibration signal pertaining to this mode holds the
maximum amplitude of 368

LSB and minimum amplitude of -286 LSB, which ranges to the
value of 654, has been divided into 12 classes with class width of
54.5. From the oscillations determined between every class and
its lower classes by applying the above algorithm, the
dominant classes which make comparatively higher number of
oscillations ~ with  the  respective  lower classes have
been identified. These dominant classes constituting to 91
percent of cumulative oscillations have been clustered to form the
upper threshold class cluster for this operating condition.
Similarly, for every class in the upper threshold class cluster
that makes

65 and above percentage of oscillations cumulatively with its
lower classes are extracted to constitute the lower
threshold class cluster. The vibration data during the same
operating condition are acquired by 10T2040 gateway (as
shown in Figure

4) from a Piezo electric sensor through serial interface
and transferred to cloud simultaneously. The data measured in
‘g’ are retrieved by LabVIEW client application and
post multiplied by 256 LSB/g (sensitivity of the ADXL345) to map
the 10T data scale in g equal to that of myRIO data scale in LSB.
The scaled loT data holds the maximum amplitude of 370

LSB and minimum amplitude of -285 LSB, which ranges to the
value of 655. The signal of this range has been divided into 12
classes with class width of 54.58. The vibration threshold class
clusters determined for the data acquired through loT model as
well as myRIO model using the statistical classification based
signal decomposition algorithm are furnished in Table 2.

5 |

Starting to No Load Specd - Standalone Condition

0.5

Shaft Acceleration in g from Cloud

I
T
80000

154

| |
T T T
0 20000 40000 60000 100000

Samples

Figure 4. Shaft Acceleration acquired by loT Gateway — Standalone Condition
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TABLE 2. THRESHOLD CLASS CLUSTERS OF SHAFT VIBRATION SIGNAL - STARTING TO NO LOAD SPEED

Standalone Condition

Disturbance Condition

loT Based Data
Analysis

myRIO Based Data
Analysis

loT Based Data
Analysis

myRI0 Based Data
Analysis

Upper Threshold Class Cluster

{15.20, 69.79, 124.37,
178.95, 233.54}

{13.88, 68.46, 123.05,
177.64, 232.23}

{0.03, 53.67, 107.32,
160.96, 214.60}

{-1.68, 51.88, 105.46,
159.03, 212.61}

Lower Threshold Class Cluster

{-148.54, -93.95, -39.37} {-149.88, -95.29, -40.70}

{-160.89, -107.25, -53.60} {162.41, -108.84, -55.26}

Thus, the occurrence of faults or any abnormality at
this operating condition can be diagnosed precisely with the
shift in the oscillation percentages of the denser class
regions and threshold class clusters from the predetermined
values.

B. From Starting to No Load Speed with External Disturbance

The impact of the mechanical disturbance on the DC motor
shaft vibration pattern has been examined by implementing the
analysis on shaft vibration signals acquired during external
disturbance condition using loT based data acquisition as well as
using LabVIEW with myRIO based system.  In both cases the
results have been compared with the shaft vibration pattern
measured  under  starting to  no load speed at
standalone condition. The  vibration  acquired by
myRIO  during disturbance holds maximum amplitude of
453.6 LSB and minimum of -296.3 LSB while the signal
from 1072040 gateway holds the maximum and minimum
amplitudes as 456
LSB and -295 LSB respectively. Both the data are segmented into
14 classes with class width of 53.5.  Using the transition matrix
which has resulted out of the classification and the algorithm
proposed, the oscillations existing between every class and
its  lower classes are calculated and  the dominant
classes with more percentage of oscillations measured
during the presence of external disturbance have been
identified to form the upper threshold class cluster. To
form the lower threshold class cluster, every class of the upper
threshold class cluster that has made 65 percent or more number
of oscillations cumulatively — with its  lower classes are
considered and the results are tabulated (Table 2). This
investigation brings out the changes that had happened in the
vibration pattern due to the disturbance and discloses the fact of
fixing adaptive condition monitoring threshold for a machine
when exposed to external disturbances at a particular operating
condition.

The criticality of the disturbances can be observed by
measuring the range of shifts from the limits of the upper and
lower threshold class clusters estimated during standalone
condition.

C. Load Changes at Standalone Condition

The vibration signal acquired by myRIO during the load
changes made at standalone running condition of the DC
machine is shown in Figure 5, which possesses the maximum
amplitude of 389 LSB and minimum amplitude of -292 LSB.
Similarly, the vibration data corresponding to this
operating condition acquired by loT Gateway in ‘g’ are
depicted in Figure
6, where the maximum and minimum amplitudes of the signal are
394 LSB and -291 LSB respectively.  The multiple class level
analysis is carried out by segmenting both categories of
vibration data (acquired using myRIO and loT based devices)
into 13 classes between the maximum and minimum amplitude
levels with class widths of 523 and 52.6 respectively.
The results of upper and lower threshold class clusters
obtained from the implementation of the signal decomposition
algorithm are furnished in Table 3.

400
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Figure 5. Shaft Acceleration acquired by myRIO during Loaded Condition
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Figure 6. 10T based acquisition of Shaft Acceleration during Loaded Condition

The observed thresholds during loading at standalone
condition imply that the external disturbance during starting to no
load speed condition has created a vibration effect on the
machine shaft equivalent to the loading at standalone condition.
This analysis helps to prescribe about the setting of operational
constraints for machines in real-time applications so that
the machine performance and lifetime can be improved.

TABLE 3. THRESHOLD CLASS CLUSTERS DURING LOAD CHANGES MADE AT
STANDALONE CONDITION

10T Based Data

Analysis myRI10 Based DataAnalysis

Upper Threshold Class Cluster

{-0.76, 52, 104.76, 157.53,
210.30}

{-3.79, 48.67, 101.13,
153.60, 206.07}

Lower Threshold Class
Cluster

{-159.07, -106.30, -53.53}

{-161.18, -108.72, -56.25}

The upper and lower threshold class clusters of DC motor’s
shaft vibration determined from the analysis of the
data acquired by loT Gateway and myRIO are furnished in
Tables 2 and 3, which define the scope of the amplitude levels
between which the majority of shaft vibrations oscillate
during the specified operating conditions.  The incipient
faults or abnormalities during any of the operating
conditions  can be diagnosed precisely by analysing the
margin of deviations in the threshold class clusters. The
considerable  shift  from the threshold values which are
estimated during the operating mode of starting to no load
speed under standalone condition with same spread pattern
reveals the existence of continuous and constant disturbance.
These distinct deviations in the upper and lower threshold
clusters demarcate the standalone and disturbance
conditions which are unseen in the measured values of DC
armature current. The proposed analysis when
implemented on the vibration signal corresponding to the

loading condition has precisely brought out the intrinsic effect of
mechanical disturbance which causes the motor shaft to
vibrate equivalent to that of loading.

VIl. COMPARATIVE STUDY OF THE PROPOSED VIBRATION
ANALYSIS WITH JOINT TIME-FREQUENCY ANALYSIS
TECHNIQUES

To illustrate the effectiveness of the statistical classification
algorithm  for the real-time condition monitoring of electrical
machines, the same set of vibration signals acquired at different
operating conditions are analysed using Joint Time-Frequency
analysis [21] in LabVIEW and are compared with. The results of
Short Time Fourier Transform (STFT) applied with different
windows and window lengths are shown in Figure 7 with
the details of window, its length and dominant frequencies
along with time index. The rectangular window chosen with length
of
6000 and time step of 1500 has captured the frequency of only
25 Hz in both normal and disturbance conditions, and has not
distinguished the change at all. However, the increase in
the window length to 24,000 with overlap of 6000, has
shown additional frequencies of 125 Hz and 75 Hz in
normal and disturbance condition respectively. Having set
these levels as thresholds for condition determination, further
analysis carried out with window length of 85000 and overlap of
56000, shows the existence of 25-160 Hz in normal
condition and 25-150 Hz
in disturbance condition. This overrides previous threshold of
125 Hz in normal condition (160 Hz) and 75 Hz of disturbance
condition (150 Hz) which leads to the condition of false alarms.
This study has been done on the vibration signals of normal and

disturbance  conditions based on same window
different

window lengths. An alternate perception of using different
windows for the same window length has been outlined below:

and

Out of the four windows chosen for STFT analysis, only Flat top
and Gaussian identify closely similar pattern of frequencies for all
window lengths in normal condition, whereas the same windows
show different patterns during disturbance condition. On the
other hand, considering the frequency of 75 Hz determined
by both windows (for length of 6000) as threshold will cause a
false alarm for 125 Hz present in the normal condition, which
is identified by the window length of 24,000. The occurrence of
125 Hz is observed at normal condition for both windows of
length 24,000, whereas, the Gaussian window detects 150 Hz
at disturbance condition and the same is unidentified by
Flat top.  From the examination, it is observed that STFT using
Gaussian window finds the presence of peak frequencies of 75,
125 and 140 (in Hz) under normal condition and 125, 150 and 25
(in Hz) under disturbance for the window lengths of 6,000,
24,000 and 85,000 respectively. Moreover, the performance of
Gaussian window is not so convincing when compared to
Flat top for the window length of
85000 in disturbance condition. The results of analysis made
using Gabor Transform on the same signal finds the
frequency  content ranging between 0-150 Hz at different time
instants in normal condition which is uncaptured by Gaussian
window in normal
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condition. Under disturbance, the frequencies from 0-270 Hz

have been observed which remain  unidentified by
STFT analysis.
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'Figure 7. Time Frequency Details of Vibration Signal during Starting to No
Load Speed (STFT)

Such inconsistency in the features extracted by STFT and
Gabor Transform for the same vibration signal creates
ambiguity in the aspect of threshold fixation. An intensive
feature extraction is required to fix the thresholds precisely and
thereby ~ make  comparisons  for  condition  monitoring.
Comprehensive information of the real-time vibration signal is
required for early detection of abnormalities. It is observed that the
features extracted  using the proposed technique are  more
appropriate to precisely identify and validate the changes in the
non-stationary vibration signal due to disturbance and other
operating conditions than time-frequency techniques which
depend on selection of window and length as major factors. The
information obtained in terms of oscillations at classified
amplitude levels and density based threshold class clusters
using the proposed technique provide detailed reference for
analysis of non-stationary vibration signal at dynamic
conditions.

VIIl. CONCLUSION

In either case of analysis based on myRIO or loT device,
the investigation uniformly brings out the changes that
had happened in the vibration pattern and upholds the fact of fixing
thresholds adaptive to the operating condition.  The deviation
between the threshold class clusters determined using the data
acquired by loT gateway and myRIO for starting to no
load speed at standalone and disturbance conditions s
around 0.2 percent of total amplitude range whereas the loaded
condition, it is 0.6 percent. The deviations perceived are
such that the threshold class clusters obtained from either loT
data or myRIO data do not lead to incorrect decisions and tends to
recognize the change of operating conditions without
ambiguity. Thus, the insight on the shaft vibration data
remains reliable in spite of narrow variations in the threshold
values. These attributes ascertain the reliability of the
vibration data streamed by loT gateway and available in
cloud for performing condition monitoring analysis and
decision making. The results also validate the efficiency of the
statistical classification based signal decomposition
algorithm in handling the non-stationary vibration signals at
various operating conditions by providing consistent  outcomes
irrespective of difference in the data acquisition resources.
The characteristics of 10T model to integrate the vibration

Sensors, actuators through Python and LabVIEW
applications  with  cloud in real-time ascertain generic,
interoperable and ubiquitous computational nature of the
model  for  implementation  of  effective  condition

monitoring. Realization of machine maintenance and process

automation platform with flexibility of data analysis in
application specific platform has been substantiated with
the real-time implementation of loT based condition

monitoring model. The stateless nature of REST architecture
used for the deployment of condition monitoring is observed to
enhance the scalability of the application. Thus, despite being
remote, loT based processing prevails as a better option for

condition monitoring  of multiple machines operating at
different locations due to the attributes of cloud
storage, flexible application development, data
aggregation, platform of multiple services and
scalability. The trait of the model developed to access the
distributed databases of machine data and  maintain a
repository of analysis results as contextual references

enhances the scope of precise decision making at the enterprise
level.
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