ICONNECT-2022 Conference Proceedings

IoT based Baby Monitoring System in Incubator

M. Dhivyaa Assistant Professor,

Department Electronics and Communication Engineering, Sri Shanmugha College of Engineering and Technology, Salem, Tamilnadu, India

> K. Sindhuja **UG** Scholar

Department Electronics and Communication Engineering, Sri Shanmugha College of Engineering and Technology, Salem, Tamilnadu, India

S. Bannari UG Scholar.

Department Electronics and Communication Engineering, Sri Shanmugha College of Engineering and Technology, Salem, Tamilnadu, India

> P. Sneka UG Scholar

Department Electronics and Communication Engineering, Sri Shanmugha College of Engineering and Technology, Salem, Tamilnadu, India

A. Sudha **UG** Scholar

Department Electronics and Communication Engineering, Sri Shanmugha College of Engineering And Technology, Salem, Tamilnadu, India

Abstract:- In recent times, baby care has come more important and challenging for working maters. Indeed at home, working maters won't have enough time to cover their babies continuously. They give the responsibility of their baby to either a baby caretaker or they shoot the baby to their grandparents' house. In the proposed work, a smart cradle with an automated baby monitoring system was developed. In the baby covering system, the necessary parameters of the child like temperature, Twinkle rate, gas motes, capture the stir and position of the baby were measured and covered. TheS.ODI board is used for uniting the detectors and selectors. The baby monitoring system is attached to the cradle so that an incubator kind of terrain will be created for the baby. The baby monitoring system monitors the baby 24x7. The measured parameters regarding the baby's health like temperature, twinkle rate, moistness on the baby bed will be displayed in the mobile Operation. If the recorded readings show any abnormalities, the necessary conduct like controlling temperature, switching on or off the addict, setting up cradle's movement, playing music for the baby will be taken. However, If the readings feel abnormal.the caretaker along with the parents will get an alert communication. The stir and posture status of the child can be covered using stir Eye OS. The baby covering system prototype helps the parents in time operation and makes it easier for the caretakers as well. This baby monitoring system is proven to have lower detriment for the baby with the most delicacy. This monitoring system is a largely effective IoT grounded system for real- time monitoring with the stylish security measures.

Keywords Baby covering system; Cradle; IoT device; Real-Time Monitoring; S.ODI IoT device; Surveillance.

INTRODUCTION

In India in recent times, both the parents working has been common. In these times baby monitoring will be the most delicate thing for working parents. While they can have a caretaker for the baby, but it would be delicate and hard for them to have a view of the baby and its health status (1). In addition to this, nearly one in every ten babies is born precociously. Unseasonable babies are the most sensitive than normal born babies. Unseasonable babies suffer a lot with home atmospheres and after also coming from incubators in hospitals. Unseasonable babies are those who are born further than three weeks before the baby's estimated time of delivery. They frequently have medical issues and advanced pitfalls of life (2). The condition of the baby needs to be covered for every alternate to alternate and time to time (3) - (5). They will be kept in an insulated chamber or incubator, for a total nanosecond to Nanosecond monitoring. Unseasonable babies need to have a longer stay in the sanitarium than a normal born baby in the nursery unit or neonatal ferocious care unit (NICU) (6). The most common problem that unseasonable babies face is PDA and low blood pressure (hypotension), trouble in breathing due to an immature respiratory system. They also lose their body temperature and suffer due to an underdeveloped vulnerable system etc. (2). On a check base, 4 million babies worldwide would die in the first month of their life due to low birth weight (7). The high temperatures and sticky surroundings also make babies suffocate. These types of conditions Produce fresh pitfalls to the baby's health. To maintain the baby's condition, they bear an fresh regulator in an incubator for maintaining the baby's body temperature (8), moisture, and palpitation rate, and oxygen overflows (9) without any backing. In the same way, when the unseasonable baby's period in sanitarium is completed, they need to be taken utmost care of in their homes too. Caretakers and parents alone cannot take care of baby nanosecond to nanosecond (3), (10),(11). In general, in the hospitals, the incubator protects and monitors the baby's condition with every parameter that needs to be covered. Whereas in homes there's commodity further compatible for the baby, where it can cover the

ICONNECT-2022 Conference Proceedings

ISSN: 2278-0181

baby nanosecond to nanosecond regarding its health issues and surveillance also. The baby needs to be taken care of the moisture and temperature around it. The monitoring systems and robotization with data exchange are growing fleetly with the Internet of Effects (IoT). IoT bias correspond of wireless detectors, software, selectors, cyber systems, computer bias, and all are attached to an object that provides the internet. It also enables the transfer of data and controlling of the detectors and any connected bias with its data transferring software (12). With the help of the IoT, a nanosecond to minute real-time monitoring is established without any mortal intervention. IoT bias are integrated with the rearmost technology which makes a blend of communication or commerce over the internet, managed, and controlled ever when needed through. installed fabrics, constant disquisition, and artificial intelligence. In real- time, cyber systems work and help at stylish in each stage over the internet (13), (14). The IoT also enables surveillance mode for the monitoring system, which in turn helps better health and environmental monitoring. In this work, there are modules like room temperature control, moisture control, representation of unsafe feasts, and monitoring of the twinkle parameters are measured with the help of proper detectors. In addition to this, a videotape surveillance system is installed with the help of Jeer Pi. The baby's health status containing the detectors readings are streamlined on the mobile operation. The detectors are bedded into the S.ODI board i.e., the frame on board development interface (2). This reduces the introductory circuit complexity around the baby and the onboard complexity. The cradle is the first place for the baby in a home. By taking care of this, the baby's health status is covered and controlled by regular updates and health readings. This cradle helps the baby in having both comfort and security. The cradle contains lower complexity in circuits which reduces the threat of short circuits (15). The cradle has a surveillance system and the baby's positional status and area are fully covered every time either in an online web gate (16) or a mobile operation. In addition, the arithmetic blocks also used major role in related to presented methodology. [14-17]

II.DESIGN AND DEVELOPMENT OF SYSTEM

In this, an IoT- controlled baby monitoring system is designed that will continuously cover and control the baby's condition like temperature, palpitation, baby crying, and moistness, and sends the control signals according to it to the parents to alert the baby position. This system is designed by using an S.ODI microcontroller which has a erected-in wi-fi module to use for remote surveillance, along with those detectors like temperature detector, palpitation detector, microphone, gas detector, moisture detector, camera, etc. are connived with microcontroller to read the needed data of child for examiner and control the condition of the baby.

A. System Condition

The system tackle is designed with anS.ODI microcontroller board with DS18b120 detector for seeing

temperature, palpitation detector, MQ135 detector as the gas detector, Heater used for secerning Temperature, microphone module for relating the weeping of baby and camera module, and the tackle conditions are tabulated below.

B.S. ODI is a mongrel IoT development board that is integrated with all communication interfaces and binary-Regulator units onboard for enhanced data handling and offers multiple detector connectivity. It's a full-fledged IoT development board that's erected tough for trim hardly precise processing of data. Our device is uniquely equipped with multi-connectivity systems like Wi-Fi, communication system It's having two kinds.S.ODI standard — with 3 dispatches 1 communication interface and (5) Detectors and Interfaces. It contains a set of 23 digital legs and another set of 7 analog legs. It works only on 3.3 v and 5v. It's equipped with four modules (solo1, Solo2, MS1, MS2).

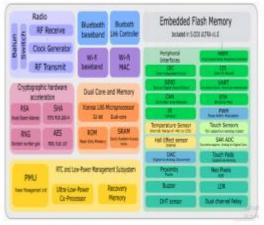
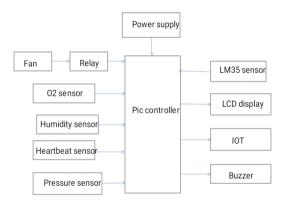


Fig. 1 Block Diagram of S. ODI

C. Features

ODI IoT device is a mongrel binary- regulator unit. It contains 23 digital legs and 7 analog legs. This board has a spped of 8- bit processing and 4 modes with 2 master-slave modes. It has advanced- position dispatches and can be integrated with any firmware (developed).S. ODI uses Wi-Fi series (2 Mbps). It has Periodical UART, ILC, SPC protocol interfaces for wired connectivity. It has a capacity of

5 onboard detectors and an interface. Micro USB- type b is used for flexible communication. Resemblant processing is used for stylish performance. These are the specifications of the S.ODI Version 1.0.


III. BLOCK DIAGRAM

The block illustration of IoT grounded baby monitoring is shown inFig. 2. The tackle consists of multiple detectors like temperature detector, moisture detector, gas detector, palpitation detector, microphone, camera (etc.) for reading different parameters of the baby to cover and control the condition of the baby. The inbuilt Wi-Fi module is used to shoot the condition of the baby to their parents and croakers to warn them. The system is securely connected to the centralized third- party service provider appertained to

ISSN: 2278-0181

2022 controller 1 vecturings

as the pall to connect to the internet spped of 8- bit processing and 4 modes with 2 master- slave modes. It has advanced- position dispatches and can be integrated with any firmware (developed).S. ODI uses Wi-Fi series (2 Mbps). It has Periodical UART, ILC, SPC protocol interfaces for wired connectivity. It has a capacity of 5 onboard detectors and an interface. Micro USB- type b is used for flexible communication. Resemblant processing is used for stylish performance. These are the specifications of the S.ODI Version 1.0.

IV. WORKING AND FLOWCHART

A. Working Medium

It is amulti-utility board with a binary microcontroller that works on the resemblant medium with Wi-Fi and microcontroller. There are some necessary parameters for the Child that needs to be covered on diurnal base from time to time. Similar parameters are body temperature, gas detector, and palpitation rate that are measured using detectors. A microphone module is attached to the cradle that gives the necessary Suggestion of the baby, whether he/ she's crying or not. With this, the reason for the baby's weeping is temperature, palpitation rate difference, nature calls, or the baby's hunger can be linked. The detector's readings will be reused by the microcontroller and the recorded data is transmitted using the Blynk channel via a Wi-Fi module. The detector readings will be covered, and the necessary conduct will be reused according to the baby's condition. As per the readings, if the temperature is high and the baby is crying, the heater placed under the cradle provides sufficient heat for the baby to comfort. In the same way, when the temperature is too high, a movable addict is arranged on the top side of the cradle, which is operated with Situations of speed. Along with this, if the baby cries, the attached music plays the songs, and that will be managed by the microcontroller or external source. The cradle is controlled using a servo motor that makes the cradle swing whenever the baby cries. This will be detected using a microphone, and the controlling of the cradle will be done through the Blynk channel. Blynk is a coding interface that works in the backend of the S.ODI, and it shows all the readings and statuses of the detectors and other interfaces (Heater, Addict, and Music System). All the detectors are connected, and their readings are measured according to the inflow map. A camera is

connived with the jeer pi 0 and is placed on the cradle in a position that covers the whole baby's posture and movement. Through this, the baby's sleeping posture and baby's diurnal exertion in the mobile Operation through Motion Eye-OS can be covered. Motion Eye-OS is an interface that helps to capture camera visualization. This whole nonstop recording and monitoring help to check the baby's condition and health care Over to date and it's stoner-friendly, so that it'll be easier for anyone to understand the Child's comfort and health conditions.

B. System Architecture

The S.ODI microcontroller board is the main firmware of the design, which will admit the data from detectors and process those data and control the affair, and as well shoot the Needed data to parents and croaker to warn them. The moistness of the baby will check by using moisture detector DHT11, the temperature of the baby will read by the temperature detector DS18b120 and sends the data to the microcontroller, the twinkle and palpitation reading will be read by palpitation detector and sends to the microcontroller, the microphone module of the circuit will be used to check whether the baby was crying or not, the inbuilt Wi-Fi module is used to partake the condition of the baby that's whether the baby is crying or not, how important temperature the baby has and palpitation rate of the baby (etc.)., to the parents and croaker to warn them.

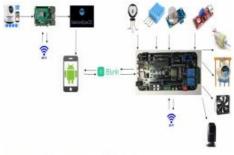


Fig. 3 Pict orial Representation of the System

C. Flow Chart

The below illustration shows that the flowchart of the baby monitoring system, then originally the stoner mobile will be connected to the microcontroller of the baby monitoring system, by using different detectors of the firmware the baby condition is covered, whether the baby is crying or not will be tasted by the microphone module, if the baby was crying also an alert communication will be transferred to the parent. The gas detector will smell the ammonium feasts which will help to identify whether there's a need to change the diaper or not. The temperature detector will read the temperature of the baby and if it's lesser than 98.6 oF also an alert communication will shoot to the parent. The palpitation detector will read the palpitation rate of the baby and if it's lower than 160 bpm also an alert will shoot to the parent that the palpitation rate of the baby is abnormal. Eventually, the room temperature detector will read the room temperature according to it the microcontroller will spark the cooler or heater according to the temperature. However, also the system will indicate that the baby's condition was safe and sends that the same

ISSN: 2278-0181

ICONNECT-2022 Conference Proceedings

communication to the parents also, If all the detectors reading is ok.

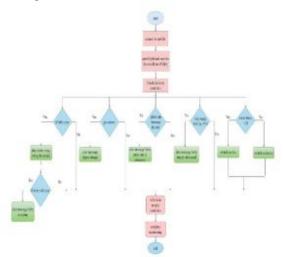


Fig. 4 FlowChart of the Baby Monitoring System

RESULT AND DISCUSSION

The communication between tackle and software can be seen in the Blynk. In the Blynk, the data measured by the detectors like a gas detector, temperature detector, palpitation detector can be Covered. From fig 6, the results for the baby's condition is displayed whether the baby has a high temperature or low temperature, the baby is safe or any disturbances in heart rate, and whether the baby has gone for any nature calls. Considering each parameter, for the baby's movements, and also it displays that the baby is safe. The proposed system provides an incubator kind of atmosphere for the baby in the cradle. It eases the caregiving easier for both parents and caretakers too. The system would be a veritably big relief for working maters and normal parents also. This system assists maters and caretakers in covering the baby's healthcare from time to time. This system makes the parents understand the baby health without any help of a croaker and parents can cover their baby through videotape surveillance 24X7 and in unborn updates can be done regarding seeing cough and frequent sneezing of the baby with the help microphone attached and that will be advised with a communication or phone call, and the farther updates can be done in numerous other ways.

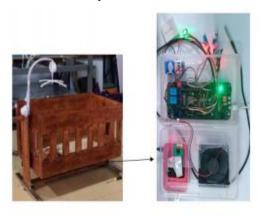


Fig. 5 Hardware Unit

III. **CONCLUSION**

In the advanced system all the necessary detectors that are used for measuring the parameters like temperature, humidity, palpitation rate, microphone, and the camera is connived with the S.ODI and Blynk. Blynk is the backend coding interface for S.ODI. In the Blynk operation, the caretaker gets necessary alarm dispatches or cautions regarding the baby's temperature, humidity, baby's bed moistness, and palpitation rate of the baby. Nanosecond to nanosecond monitoring of the child and posture monitoring can be done with a spi camera that's installed with the Motion Eye- Zilches. The necessary frame for baby monitoring with the webbing of necessary parameters like health monitoring and full-time surveillance of the baby is demonstrated.

REFERENCES

- [1] W. A. Jabbar, H. K. Shang, S. N. I. S. Hamid, A. A. Almohammedi, R. M. Ramli, and M. A. H. Ali, "IoT-BBMS: Internet of Things-Based Baby Monitoring System for Smart Cradle," IEEE Access, vol. 7, pp. 93791-93805, 2019.
- S. Maloji, S. Malakonda Sai Lokesh, K. Nikhil Sai, M. Vasavi Prasanna, M. K. Ashwaq, and S. Arunmetha, "An innovative approach for infant monitoring system using movel s.Odi based iot system," Int.J. Adv. Sci. Technol., vol. 29, no. 6, pp. 3623-3630, 2020.
- K. Jose Reena and R. Parameswari, "A Smart Health Care Monitor System in IoT Based Human Activities of Daily Living: A Review," Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 446-448, 2019, doi: 10.1109/COMITCon.2019.8862439.
- S. Ananth, P. Sathya, and P. Madhan Mohan, "Smart health monitoring system through IoT," Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, pp. 968-970, 2019, doi: 10.1109/ICCSP.2019.8697921.
- [5] M. V. Narayana, K. Dusarlapudi, K. Uday Kiran, and B. Sakthi Kumar, "IoT based real time neonate monitoring system using arduino," J. Adv. Res. Dyn. Control Syst., vol. 9, no. Special issue 14, pp. 1764–1772, 2017.
- H. Singh et al., "Neo-Bedside Monitoring Device for Integrated Neonatal Intensive Care Unit (iNICU)," IEEE Access, vol. 7, no. c, pp. 7803-7813, 2019, doi: 10.1109/ACCESS.2018.2886879.
- M. Koli, P. Ladge, B. Prasad, R. Boria, and N. J. Balur, "Intelligent Baby Incubator," Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no. Iceca, pp. 1036-1042, 2018, doi: 10.1109/ICECA.2018.8474763.
- "TEMPERATURE CONTROL AND [8] Kumar, MONITORING," vol. 22, no. 1, 2016.
- H. Patke, M. Borkar, N. Kenkre, and A. Gupta, "An innovative approach for infant monitoring system using pulse rate and oxygen level," in 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), 2017, pp. 1054-1058.
- [10] Z. U. Ahmed, M. G. Mortuza, M. J. Uddin, M. H. Kabir, M. Mahiuddin, and M. J. Hoque, "Internet of Things Based Patient Health Monitoring System Using Wearable Biomedical Device," 2018 Int. Conf. Innov. Eng. Technol. ICIET 2018, no. December, pp. 1-5, 2019, doi: 10.1109/CIET.2018.8660846.

- [11] K. V. Sowmya and J. K. R. Sastry, "Performance evaluation of IOT systems - basic issues," Int. J. Eng. Technol., vol. 7, no. 2, pp. 131–137, 2018, doi: 10.14419/ijet.v7i2.7.10279.
- [12] P. Gopi Krishna, K. Sreenivasa Ravi, K. Hari Kishore, K. Krishna Veni, K. N. Siva Rao, and R. D. Prasad, "Design and development of bi-directional IoT gateway using ZigBee and Wi-Fi technologies with protocol," Int. J. Eng. Technol., vol. 7, no. 2, pp. 125–129, 2018, doi: 10.14419/ijet.v7i2.8.10344.
- [13] G. D. Kumar, "Realization Of A Low Cost Smart Home System Using Telegram Messenger And Voice," Int. J. Pure Appl. Math., vol. 116, no. 5, pp. 85–90, 2017.
- [14] P. Anguraj and T. Krishnan, "Design and implementation of modified BCD digit multiplier for digit-by-digit decimal multiplier," Analog Integr. Circuits Signal Process., pp. 1–12, 2021.
- [15] T. Krishnan, S. Saravanan, A. S. Pillai, and P. Anguraj, "Design of high-speed RCA based 2-D bypassing multiplier for fir filter," Mater. Today Proc., Jul. 2020, doi: 10.1016/j.matpr.2020.05.803.
- [16] S. Vara Kumari, O. Sailaja, N. V S Rama Krishna, and C. Thrinisha, "Early Flood Monitoring System using IoT Applications," Int. J. Eng. Adv. Technol., no. 5, pp. 2249–8958, 2019
- [17] T. Krishnan, S. Saravanan, P. Anguraj, and A. S. Pillai, "Design and implementation of area efficient EAIC modulo adder," Mater. Today Proc., vol. 33, pp. 3751–3756, 2020.