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Abstract—  This paper presents a cost effective solution to static 

transmission planning problem in the deregulated power system 

environment under non-random uncertainties. It is proposed to 

develop the methodology using Genetic Algorithm (GA).The 

methodology so developed shall be applied to Graver’s six-bus 

network to check its effectives. The methodology then shall be 

applied to the problem by including losses in transmission line 

expansion. The major contribution of this thesis is optimized cost 

and improves efficiency static transmission power system like 

Graver six-bus network under Deregulated environment 

(handling only non-random uncertainties) by using Genetic 

Algorithm  

 Index Terms— Transmission system, Transmission expansion 

planning, Genetic Algorithm, Power flow. 

I.  INTRODUCTION   

 Electricity is backbone for almost all economic activities in 

present times and it is a proven fact that access of this precious 

perishable commodity to people bears direct impact on pace of 

development of the country. The power system is the 

interconnection of generating unit to the load pass through 

high voltage electric transmission line and in general it‟s 

controlled by a mechanical system. The power system can be 

divided into several parts like generation, substation and 

distribution. Generation part is the main source that supply to 

the load. In this area the value of voltage is about 132 kV and 

above. While the substation make a function like medium 

channel. It‟s used transmits the power from the generation to 

the load. At this area the value of voltage that used is about 

11kV and 66 kV. Then the distribution part is the load. The 

voltage flow is 240V for the single phase and 415V for three 

phases. Transmission lines that also interconnect neighboring 

utilities permit economic power dispatch across regions during 

normal conditions as well as the transfer of power between 

regions during emergency. Over  the  past  few  decades,  the  

amount  of  electric  power  energy  to  be transferred from 

generation sites to major load areas has been growing 

dramatically. Due to increasing costs and the essential need 

for reliable electric power systems, suitable and optimal 

design methods for different sections of the power system are 

required. Transmission systems are a major part of any power 

system therefore they have to be accurately and efficiently 

planned. With rapid industrialization and increasing 

population the demand for electricity is increasing day by day. 

Existing power system is expanding due to increased 

demand and becoming more complex with different types of 

loads and generation from varied and distributed resources and 

with new technology and restructuring of electrical power 
system adds to the complexity of the modern power system.  

In this research, electric power transmission systems are 

studied with regard to optimizing the transmission expansion 

planning (TEP) problem. Expansion of power system along 

with restructuring and deregulation the complexity of system 

is increasing continuously. 
 

The remaining part of the paper is organized as follows. 

Section II Treatment of the Transmission Expansion Planning 

and DC Power flow. Section III represent the overview about 

Genetic Algorithm Optimization Technique. Section IV 

presents the Application of GA for Transmission Network 

Expansion Planning. Section V presents the Case Study. 

Results is presented in Section VI. Finally conclusion is drawn 

in Section VII. 

II. TREATMENT OF THE TRANSMISSION EXPANSION 

PLANNING AND DC POWER FLOW 

A. Treatment of the Transmission Expansion Planning       

Based on the treatment of planning horizon, transmission 

expansion planning can be traditionally classified into two 

categories, namely static (single-stage) and dynamic (multi-

stage) planning. In static planning, only a single time period is 

considered as a planning horizon. In contrast, dynamic 

planning considers the planning horizon by separating the 

period of study into multiple stages [1]. For static planning, 

the  planner searches for an appropriate  number of  new 

circuits that should be added into each branch of the 

transmission system and in this case, the planner  is  not  

interested   in  scheduling  when the new lines should be 

constructed and the total expansion investment is carried out at 

the beginning of the planning horizon [2]. Many research 

works regarding the static TEP are presented in [3, 4, 5, 6, 7, 

8, 9, 10, 11, 12, 13] that are solved using a variety of the 

optimisation techniques.  
         In contrast, time-phased or various stages are 

considered in dynamic planning while an optimal expansion 
schedule or strategy is considered for the entire planning 
period. Thus, multistage transmission expansion planning is a 
larger-scale and more complex problem as it deals with not 
only the optimal quantity, placement and type of transmission 
expansion investments but also the most suitable times to carry 
out such investments. Therefore, the dynamic transmission 
expansion planning inevitably considers a great number of 
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variables   and constraints that consequently require enormous 
computational effort to achieve an optimal solution, especially 
for large-scale real-world transmission systems. Many research     
work regarding the dynamic TEP [14, 15, 16, 17, 18, and 19] 
are presented some of the dynamic models that have been 

developed. 

B. DC Power Flow 

For a long-term TEP study, some assumptions are made and 

introduced for solving such planning problem, for example, a 

consideration of the reactive power allocation is neglected   in 

the first moment of the planning. In this stage, the main 

concern is to identify the principal power corridors that 

probably will become part of the expanded system. There are 

several types of the mathematical model employed for 

representing the transmission network in the TEP study; AC 

power flow model, DC power flow model, transportation 

model, hybrid model, and disjunctive model [4].   

          Basically, the DC power flow model is widely 

employed to the TEP problem and it is frequently considered 

as a reference because in general, networks synthesized by this 

model satisfy the basic conditions stated by operation planning 

studies. The planning results found in this phase will be 

further investigated by operation planning tools such as AC 

power flow analysis, transient and dynamic stability analysis 

and short-circuit analysis [20]. In the simulation of this 

research, the DC power flow model is considered as it is 

widely used in transmission expansion planning [3, 4, 10, and 

11].   

          The formulation of DC power flow is obtained from the 

modification of a general representation of AC power flow, 

which can be illustrated by the following equations.  

Pi= │Vi │  1𝑛
𝑘=0 │Vk│ [Gik cos (Өi − Өk) +Bik sin (Өi − Өk)]                     

                                                                          … (1) 

 

Qi= │Vi │  1𝑛
𝑘=0 │Vk│ [Gik cos (Өi − Өk) −Bik sin (Өi − Өk)]                              

                                                                         ......(2) 

          

 Where Pi and Qi are real and reactive power of bus i 

respectively. Vi and i are voltage magnitude and votage phase 

angle of bus i respectively.  Vk    is voltage magnitude at bus k. 

Gik and Bik are real and imaginary parts of element (i,k) of bus 

admittance matrix respectively. N is total number of buses in 

the system.  

        To modify AC power flow model to the DC power flow 

based model, the following assumptions are normally 

considered [22]:  

 Bus voltage magnitude at each bus bar is 

approximate one per unit (Vi = 1 p.u. for  all i buses);  

 Line  conductance  at  each  path  is  neglected  (Gik =  

0),  or  on  the  other  hand only line susceptance (Bik) 

is considered in the DC model;  

 Some  trigonometric  terms of AC model  in  

equations  (1)  and  (2)  can be 

             sin (θi-θk) ≈ ( θi-θk) and cos (θi-θk) ≈ 1 

         Given these assumptions, the AC power flow equation in  

(1) is therefore simplified to yield the DC power flow equation 

as follows:  

𝑃𝑖 =  𝐵𝑖𝑘
𝑛
𝑘=0 𝑆𝑖𝑛(𝜃𝑖 − 𝜃𝑘)                  (3) 

                                                                     
   

      Where Bik 
is the line susceptance between bus i and k. 

 

 

III.
 

    GENETIC ALGORITHM 
 

A Genetic Algorithm (GA) is a search
 

technique used in 

computing
 

to find exact or approximate
 

solutions to 

optimization
 

and search
 

problems. Genetic algorithms are 

categorized
 
as global search heuristics. Genetic algorithms are 

a particular class of Evolutionary Algorithms
 
(EA) that use 

techniques inspired by evolutionary biology
 

such as 

inheritance, mutation, selection, and crossover.
 

         Genetic algorithms are implemented
 

in a computer 

simulation
 
in which a population

 
of abstract representations 

(called chromosomes
 

or the genotype
 

of the genome) of 

candidate solutions
 

(called individuals, creatures, or 

phenotypes) to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as 

strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each 

generation, the fitness of every individual in the population is 

evaluated, multiple individuals are stochastically
 
selected from 

the current population (based on their fitness), and modified 

(recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next 

iteration of the algorithm. Commonly, the algorithm 

terminates when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been reached 

for the population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory solution may 

or may not have been reached.
 

         Genetic algorithms find application in bioinformatics, 

phylogenetics, computational science, engineering, 

economics,
 

chemistry, manufacturing, mathematics, physics
 

and other fields.
 

A typical genetic algorithm requires:
 

1.
 

A genetic representation
 
of the solution domain,

 
2.

 
A fitness function

 
to evaluate the solution domain.

 

 
        A standard representation of the solution is as an array of 

bits. Arrays of other types and structures can be used in 

essentially the same way. The main property that makes these 

genetic representations convenient is that their parts are easily 

aligned due to their fixed size, which facilitates simple 

crossover operations. Variable length representations may also 

be used, but crossover implementation is more complex in this 

case. Tree-like representations are explored in genetic 

programming
 
and graph-form representations are explored in 

evolutionary programming.
 

          The fitness function is defined over the genetic 

representation and measures the quality
 

of the represented 

solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem
 
one wants to maximize 

the total value of objects that can be put in a knapsack of some 

fixed capacity. A representation of a solution might be an 

array
 
of bits, where each bit represents a different object, and 

the value of the bit (0 or 1) represents whether or not the 

object is in the knapsack. Not every such representation is 

valid, as the size of objects may exceed the capacity of the 

knapsack. The fitness
 
of the solution is the sum of values of all 
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objects in the knapsack if the representation is valid or 0 

otherwise. In some problems, it is hard or even impossible to 

define the fitness expression; in these cases, interactive genetic 

algorithms are used. 

          Once we have the genetic representation and the fitness 

function defined, GA proceeds to initialize a population of 

solutions randomly, and then improve it through repetitive 

application of mutation, crossover, inversion, and selection 

operators. 

A. Initialization 

Initially many individual solutions are randomly generated to 

form an initial population. The population size depends on the 

nature of the problem, but typically contains several hundreds 

or thousands of possible solutions. Traditionally, the 

population is generated randomly, covering the entire range of 

possible solutions (the search space). Occasionally, the 

solutions may be "seeded" in areas where optimal solutions 

are likely to be found. 

B. Selection 

During each successive generation, a proportion of the 

existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness 

function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate 

only a random sample of the population, as this process may 

be very time-consuming. 

         Most functions are stochastic and designed so that a 

small proportion of less fit solutions are selected. This helps 

keep the diversity of the population large, preventing 

premature convergence on poor solutions. Popular and well-

studied selection methods include roulette wheel selection and 

tournament selection 

C. Reproduction 

population of solutions from those selected through genetic 

operators: crossover (also called recombination), and/or 

mutation. 

            For each new solution to be produced, a pair of 

"parent" solutions is selected for breeding from the pool 

selected previously. By producing a "child" solution using the 

above methods of crossover and mutation, a new solution is 

created which typically shares many of the characteristics of 

its "parents". New parents are selected for each new child, and 

the process continues until a new population of solutions of 

appropriate size is generated. Although reproduction methods 

that are based on the use of two parents are more "biology 

inspired,” some research suggests more than two "parents" are 

better to be used to reproduce a good quality chromosome. 

            These processes ultimately result in the next generation 

population of chromosomes that is different from the initial 

generation. Generally the average fitness will have increased 

by this procedure for the population, since only the best 

organisms from the first generation are selected for breeding, 

along with a small proportion of less fit solutions, for reasons 

already mentioned above 

D. Termination 

This generational process is repeated until a termination 

condition has been reached. Common terminating conditions 

are: 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching or 

has reached a plateau such that successive iterations 

no longer produce better results 

 Manual inspection 

 Combinations of the above 

Simple generational genetic algorithm pseudo code 

1. Choose the initial population of individuals 

2. Evaluate the fitness of each individual in that 

population 

3. Repeat on this generation until termination: (time 

limit, sufficient fitness achieved, etc.)  

a) Select the best-fit individuals for 

reproduction 

b) Breed new individuals through crossover 

and mutation operations to give birth to 

offspring 

c) Evaluate the individual fitness of new 

individuals 

Replace least-fit population with new individuals 

IV. APPLICATION OF GA FOR TRANSMISSION NETWORK 

EXPANSION PLANNING  

 

GA's theory has been extensively presented in several papers 

in recent years covering a number of applications in power 

systems. It is a robust optimization technique that works above 

a set of candidate solutions (individuals) named population 

and performs a number of operations based on genetic 

mechanical. Such operators recombine the information 

contained in the individuals to create new populations. 

         GA uses a selection mechanism whose main objective is 

to select „good‟ individuals from the current population and 

inserting them into a mating pool. 

          Besides the well-known basic GAs operating principles, 

several modifications and improvements, considered critical to 

the performance of the optimization process, have been 

applied with success as a way to make possible the solution of 

the different problems. 

A. The Representation 

The most natural representation to adopt for the STNEP, but 

not the only one, is assigning one gene for each transmission 

route along the power system, whether existing or candidate. 

Such type of representation could be called as Decimal 

representation. An allele corresponds to the number of 

additions in a specific transmission route as shown in Figure 1, 

where only circuits 29–32 are presented. According to this 

representation, an individual with all genes equal to zero 

represents the existing transmission network. 
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Figure 1 Individual representing a transmission system 

 

B. The Fitness Function 

This function is responsible for measuring the quality of the 
individuals and is completely related to the objective function f. 
The lower the objective function value evaluated for an 
individual, the higher its quality. Several fitness functions F 
may be used, depending on the problem. The two fitness 
functions most frequently used are F=K1/f; usually K1=1 and, 
F=K2−f; K2 must be large enough for F to be positive. Tests 
performed indicated that there is no significant difference 
between the GA's performance using either one of the two 
fitness functions. As was stated before, the objective function is 
composed of two terms, corresponding to the investment and 
loss of load costs. The first term may be calculated easily, but 
the second one requires the solution of a liberalized optimum 
power flow (problem (2)), so that the respective loss of load for 
a particular configuration can be evaluated. This value must be 
then multiplied by the current value of the penalty factor α. 

C. The Selection Mechanism 

The selection or sampling mechanism begins the creation of 

the mating pool by selecting individuals from de current 

population. 

         A number of selection mechanisms have been 

implemented with success and all of them are attempts to 

achieve the correct balance between the population diversity 

and selective pressure, which are fundamental issues in the 

genetic exploration, since a low selective pressure makes the 

search ineffective, and a high selective pressure or deficient 

population diversity may lead to a premature convergence. 
          In this GA used in Paper, the Tournament Selection 

technique was used. It is a simple but efficient method of 
sampling that consists of randomly selecting a predefined 
number of individuals (tournament or window size s) and then, 
picks from this sample the one with the largest fitness value. 
This process is repeated N times (being N the population size). 
Large values of s increase selective pressure and, therefore, 
increase the chance of the GA converging prematurely to a 
sub-optimal solution [23]. The main advantage of this 
mechanism is the possibility of controlling the selective 
pressure, so that the tournament size is a critical parameter for 
the performance of the GA. Tournament Selection does not 
require the implementation of any scaling or ranking method 
because it just requires the relative differences of the fitness 
values between the selected individuals. 

D. The Crossover Mechanism 

Through this mechanism, the genetic information contained in 

the individuals belonging to the mating pool is exchanged. 

The crossover is usually not applied to all pairs of individuals, 

however, for the STNEP problem, it is important to stimulate 

a higher exchange of genetic information among the 

individuals by using a large crossover rate value with respect 

to the one used in another GA application which is about 0.5. 

In this work, the two-point crossover technique has been 

adopted. It has been referenced as a fairly suitable crossover 

technique [40]. 

E. The Mutation Mechanism 

From the viewpoint of genetic diversity, this mechanism is 
especially important to prevent the permanent loss of any 
allele. After several generations, it could be possible for a 
given gene to have the same allele in all the individuals. The 
mutation mechanism might restore missed alleles, leading the 
search to regions possibly not yet explored, acting as a source 
of diversity [25] .If a given gene is selected for mutation, its 
respective allele is swapped to another random-chosen value. A 
Simulated Annealing approach, similar to the one presented in 
[26], has been implemented in this work in order to enhance 
the mutation mechanism. 

F. The Stopping Criterion 

There are several strategies for stopping the evolution process 

of a GA. In this work, the GA has stopped, when it reached a 

predefined number of generations or when the best individual 

of the population did not change within a predefined number 

of generations. 

G. The Initial Population 

The initial population is built randomly starting from a 
head individual calculated by the solution of the expansion 
problem (1) but using continuous variables rather than integer. 
Although the best individual generated is often unfeasible, the 
genetic quality of the population thus generated is high 

V. CASE STUDY 

This objective of this work is to find a cost effective and an 

efficient solution to static transmission planning problem in 

the deregulated power system environment under non-random 

uncertainties. The cost of loss is depending on the current 

flowing in network and bus. while current depend on 

connected load of alternative plans and arrangement of 

network. We have taken different current constraint for 

different plans according to network arrangement. The 

methodology so developed shall be applied to Graver‟s six-

bus network to check its effectives and optimized the cost of 

loss. 
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Figure 2 Existing Generation and Transmission System 

 
Figure 3 Existing Network with Future Load and Generation 

  
TABLE I PLANS OF ADDER NETWORK 

 

Plan 

No. 

Bus 1-5 

Adder 

Circuit 

Bus 2-6 

Adder 

Circuit 

Bus 3-5 

Adder 

Circuit 

Bus 4-

6 

Adder 

Circuit 

A1 0 4 1 2 

A2 0 3 1 3 

A3 0 5 1 1 

A4 1 4 0 2 

A5 1 3 0 3 
 

 

 

 

 

 

 

 

 

 

 

 

 TABLE II CONSTRUCTION OF THE NETWORK 

 

 

Resistance and leakage reactance per kilometer of each line 

are 0.00012Ω and 0.0004 Ω, respectively. 
 

The methodology has been applied on Graver Six-bus 

Network with considering uncertainties (including losses in 

transmission line expansion) for optimization transmission 

Expansion planning total cost of alternatives plans and 

compare the result of each simulation to each other. 

 

  Closs=loss*Cmwh*kloss*8760       (4)                                                                                   

 

   Loss =∑ Rij iij
2
                           (5)                                                                                                                        

 

   Objective function=∑ Closs             (6)                       

 
TABLE III ARRANGEMENT OF LOAD 

 

Bus Load(MW) Bus Load(MW) 

1 100 4 170 

2 220 5 230 

3 50 6 0 
 

TABLE IV CONSTRAINT CONDITION OF PLAN A1 

 

Plan A1 

Current in 5-1 bus 16.33 Amp 

Current in 3-5 bus 0.24 Amp 

Current in 6-2 bus 22.69 Amp 

Current in 6-4 bus 22.69 Amp 

Fro

m 

Bus 

To 

Bu

s 

Length(km

) 

Resistance(Ω

) 

Reactance(Ω

) 

1 2 90 0.012 0.04 

1 3 100 0.0114 0.038 

1 4 120 0.018 0.06 

1 5 70 0.0072 0.024 

1 6 180 0.0204 0.068 

2 3 70 0.0066 0.022 

2 4 140 0.0132 0.044 

2 5 60 0.0078 0.026 

2 6 90 0.009 0.03 

3 4 125 0.0186 0.062 

3 5 40 0.006 0.02 

3 6 130 0.0144 0.048 

4 5 170 0.01884 0.0628 

4 6 85 0.0102 0.034 

5 6 140 0.0192 0.64 
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Figure 4 Construction View of Plan A1 

 

TABLE V CONSTRAINT CONDITION OF PLAN A2 

 

Plan A2 

Current in 5-1 bus 7.19 Amp 

Current in 3-5 bus 13.23 Amp 

Current in 6-2 bus 0.29 Amp 

Current in 6-4 bus 0.29 Amp 

 

 

Figure 5 Construction View of Plan A2 
 

TABLE VI CONSTRAINT CONDITION OF PLAN A3 

 

Plan A3 

Current in 5-1 bus 15.21 Amp 

Current in 3-5 bus 10.43 Amp 

Current in 6-2 bus 0.27 Amp 

Current in 6-4 bus 63.45 Amp 
 

 

 

 

Figure 6 Construction View of Plan A3 

 

TABLE VII CONSTRAINT CONDITION OF PLAN A4 

 

Plan A4 

Current in 5-1 bus 12.07 Amp 

Current in 3-5 bus 6.78 Amp 

Current in 6-2 bus 61.68 Amp 

Current in 6-4 bus 63.68 Amp 

 

 
Figure 7 Construction View of Plan A4 

 

TABLE VIII CONSTRAINT CONDITION OF PLAN A5 

 

Plan A5 

Current in 5-1 bus 35.49 Amp 

Current in 3-5 bus 62.39 Amp 

Current in 6-2 bus 9.27 Amp 

Current in 6-4 bus 8.19 Amp 
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FIGURE 8 CONSTRUCTION VIEW OF PLAN A5 

VI. RESULTS 

Plan Generation f-count f(x) Best 
Mean 

A1 41 6300 40.92 40.92 

A2 39 6000 2.949 2.949 

A3 51 7800 7.663 7.663 

A4 51 7800 31.98 31.98 

A5 51 7800 13.65 13.65 

 

In the case study,  

Graver Six-bus Network problem has been undertaken 
taking Uncertainties on account of transmission losses. The 
result has been obtained by using Methodology developed and 
compared with those available Table. These were found to be 
in good agreement. In both the case A2 plan has been found be 

most effective plan. 
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