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Abstract— Greedy Best First Search (GBFS) and A* search 

algorithms are studied for path planning by defining their core 

behavior, then explaining them with suitable examples. We 

compare both search techniques in terms of their accuracy, 

performance, and resource requirements. We also cover delete 

relaxation method and its impact on path planning. 
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I.  INTRODUCTION  

In the field of Robotics, finding the optimal path from the 

current point in space to the destination or goal is the key for a 

field agent (i.e., Robot) to work effectively. The optimal path 

should ideally be also the shortest path to reach the destination 

if the limited precious resources (e.g., memory, power etc.) 

must be judiciously used. However, such ideal conditions fail 

to exist in real world where an autonomous, self-navigating, 

field agent must encounter unknown or inevitable hurdles 

such as humans, natural obstructions which it may fail to 

interpret correctly. Path planning, therefore, becomes essential 

in enabling a robot to do its intended job correctly and without 

encountering mishaps or straying away from the destination. 

An effective path planning should allow the robot to reach its 

destination in minimum time avoiding obstacles while also 

conserving its resources. There are various search techniques 

developed over the years that allow such path planning 

systems to be implemented. Of these, Greedy best-first search 

(GBFS) [1], A* [2] are generally considered as two of the 

important algorithms to search a given state-space. They are 

both variants of the best-first search algorithms. GBFS and A* 

are part of a group of algorithms whose search mechanism is 

unidirectional and whose heuristics expansion based. For 

domains where it is difficult to reach the goal from all states, 

best-first searches are usually preferred. Although they are 

both variants of best-first search algorithms, GBFS and A* 

work differently and are suited for different real-time 

scenarios. While choosing one over the other, the system 

designer needs to understand their core capabilities and their 

limitations before deciding on the right algorithm for path 

planning. This paper aims to provide insight into each of these 

algorithms by defining and explaining the core behavior of 

these two algorithms, with examples, while also comparing 

them. The investigation will also cover Delete relaxation as it 

is an important method to relax planning tasks that are created 

with GBFS and A*.  

 

 

II. A* ALGORITHM: DEFINITION, EXPLANATION 

 A* is a best-first search which is represented as (1): 

 f(n) = h(n) + g(n)          (1) 

where, 

n=node (or state) at which A* will calculate f value 

h(n) = heuristic function which is the distance left to cover  

between this node (n) and goal node 

g(n) = cost incurred to reach this node n 

In A* search, the least expensive path from the starting 

node to a given node 'n' is coursed. Whenever a node needs to 

be extended, the algorithm will save the cost incurred to reach 

the node (i.e., g(n)) along with an index to its parent node. The 

closer a node is to the goal, the more weightage it is given in 

comparison to other, far away nodes.  

For a Heuristic function to be admissible or accepted, it is 

important that the function estimates the distance left to cover 

between this node (n) and goal node (g) correctly. This 

distance is the shortest distance between two points in a plane 

and given by the Euclidean formula. Thus, for a 2D plane, the 

formula to calculate the shortest distance becomes as given by 

(2): 

h(n) =SQRT ((nₓ − gₓ)² + (ny − gy)²)                       (2)

   

 If the Heuristic function does not calculate this correctly, it 

is said to either underestimate or overestimate the distance and 

the calculated distance is not optimal. Such values which are 

not optimal are said to be not admissible. 

This process continues till goal node is found (i.e., nodes 

cannot be expanded any further). The least expensive cost 

path from the starting node till the goal node is then found by 

tying back the indexes from the goal node to the starting node. 

If C* is the expense incurred to arrive at the solution and 

one which is optimal and n be the given node, then it follows 

that: - 

• if f(n) < C*, it implies that Node n will be expanded by  

A*, and 

• if f(n) > C*, it implies that Node n will not be expanded  

by A*. 

III. A* ALGORITHM: STRENGTHS AND 

WEAKNESSES 

 

Assuming h(n) is admissible, it can be safely concluded 

that A* will always find the most optimal solution. That is, A* 

will always calculate the lower bound on the path to the Goal 

state. But this also means that A* relies on the effectiveness of 

the heuristic function for its efficiency. When faced with 

situations where heuristics plateau, A*’s performance relies 
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on the efficiency of its tiebreaker to identify the nodes which 

are least expensive to expand (i.e., least h-value). In almost 

every type of A* logic implemented; the challenge faced by 

planners has been with its performance-especially in universes 

which undergo noticeable change frequently. Specifically, 

considering the processing time of the A* algorithm, the count 

of nodes identified for the next move, and the length of their 

paths etc. 

IV. GREEDY BEST FIRST SEARCH: DEFINITION, 

EXPLANATION 

The simplest of algorithms falling in the category of 

satisficing search is the Greedy Best-First Search (GBFS). It is 

also the algorithm that is most considered by the planners. 

Instead of finding a solution which is assured and optimal, 

A Greedy based search will try to identify the required search 

path in shortest possible time. If GBFS finds the solution, it 

stops search process at that node returning the solution. Else it 

will calculate the heuristic value and expand the child node 

whose heuristic value is lowest. That is, GBFS supposes that 

states that have lower values of Heuristics lie on a path that is 

least expensive to reach the nearest goal state. Thus, in every 

step, heuristic value is calculated and then compared to all the 

states generated till that point (but not expanded yet). This 

trade-off ensures that a possible search path gets identified 

quickly proving extremely beneficial sometimes. 

GBFS's evaluation function(f(n)) is usually determined by 

the heuristic function(h(n)) and expressed as (3):  

   f(n) = h(n)          (3)  

In other words, state which will be identified for expansion 

will be determined by the Evaluation function. The state 

giving the lowest such value is expanded. This process 

continues till the goal state is finally generated. 

V. GBFS STRENGTHS, WEAKNESSES, AND WAYS 

TO IMPROVE ITS EFFICIENCY 

 

Due to its search behavior (i.e., greedy), GBFS will never 

be able to ensure that the generated search plan is cost-

optimal. Due to this inaccuracy GBFS may end up having 

states with same heuristic value. 

For complex search problems, GBFS tends to generate a 

huge number of heuristic plateaus (i.e., heuristics with same 

values). This makes task of identifying the least expensive 

state to expand next difficult or accurate. In such scenarios, 

GBFS fails. For example, in Fig. 1 [3], let node S be the 

starting node. Let, G be the target node or the goal node. 

Assume the subtree of nodes be ST. Then, D shown in the 

figure correspond to the depth of ST. Let all nodes of ST have 

a Heuristic value of 6. Since GBFS considers only Heuristic 

value in its evaluation, it will search the entire ST before it 

decides to expand node N to reach G-even though all nodes in 

ST have the same Heuristic value of 6 (i.e., heuristic plateau). 

The greater the value of D, the more time GBFS will take to 

reach G. For instance, when D is 10, 1024 nodes would need 

to be expanded and when D’s value increases to, say, 20, 

10,00,000 nodes would have been expanded in ST as the 

search reaches N.  

 Fig. 1 Nodes and sub tree being evaluated in a path search 

 

GBFS may not be considered a clearly stated algorithm 

but instead a collection of such algorithms (A* for instance) 

where the tie-breaking policy decides how to get 

differentiated. 

If a planner based on GBFS fails to come up with an 

effective guided search, the problem could be usually with its 

tiebreaker or the implemented Heuristic. In such scenarios, the 

performance of GBFS degrades. As a solution, many times the 

standard search algorithm is enhanced by two methodologies 

namely “preferred operators” and “multi-heuristic best-first 

search” [4]. These methodologies make the algorithm better 

informed and as a result, the state space is searched more 

effectively. This process introduces variation in the original 

search by imparting knowledge to the standard algorithm and 

is also known to be “knowledge-based” [5]. The other way to 

make the GBFS more effective is by selecting the nodes at 

random and not the ones the Heuristic has identified. This is 

also known as “random exploration” [5]. 

VI. DELETE-RELAXATION: ANALYSIS, EXAMPLES, 

PROS AND CONS 

A classical planning problem in STRIPS framework is 

represented as (4): 

  ‘Π = (Po, Ac, Is, Go)           (4) 

where, 

Π=tuple representing the planning problem (or task) 

Po=set of facts or conditions (i.e., propositional variables) 

Ac=set of actions or operations which is a triple of 

precondition (e.g., pre(ac)), add list (e.g., add(ac)), delete list 

(e.g., del(ac)), each a subset of Po 

Is=Initial State (Is ⊆ Po) 

Go=Goal (Go ⊆ Po)’ [6], [7]. 

Conjunctive conditions on action, precondition and goal 

can consist of both positive and negative literals. However, in 

classical planning, delete-relaxation [8], [9] mentions action 

precondition and the goal will constitute only positive 

conjunctions. In the formula shown above, Conjunctive 

conditions can be represented as fact sets. 

Delete relaxation considers delete lists as empty. 

Therefore, plans which follow such consideration are termed 

as relaxed plans. This means, negative “delete” literals [8], 

[9], e.g., logical not, will not be processed by a planner 

implementing delete-relaxation heuristic if they are present in 

either action precondition or problem goal description. The 

delete-relaxation heuristic function is usually denoted by “h+” 

[10]. It returns the cost calculated for an optimized relaxed 
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plan. It is considered as well-informed heuristic for classical 

planning. 

To illustrate this, let us consider the car-driving example 

[7]. Let there be three locations the car can move to. Let these 

locations be A, B, C. Let us assume, to reach C from A, a car 

can only move on one-way in a line i.e., from A->B->C. Any 

car that moves on this path will consume one unit worth of 

fuel. The car has a tank that can only hold one unit of fuel-

therefore refueling must happen in B. We know from (4), Π = 

(Po, Ac, Is, Go) 

Therefore, 

Po = {carA, carB, carC, fuel} 

Is = {carA, fuel} 

Go = {carZ} 

Ac=aAB{pre{CarA,fuel},add{CarB},del{carA,fuel}},aBC{

pre{CarB,fuel},add{CarC},del{carB,fuel}},aREFUEL{pre{carB

},add{fuel},del{}}. To be considered as a delete relaxation 

problem, del{carA, fuel} and del{carB, fuel} will have to be 

empty, i.e., del{}.  

An example from PDDL planner’s problem strips-gripper 

[11] is given below where it is seen that logical not 

conjunctions are not processed in delete-relaxation:- 
:effect (and (carry ?obj ?gripper)(not 

(at ?obj ?room)) (not (free ?gripper))) – 

without delete-relaxation 

:effect (and (carry ?obj ?gripper)) – 

with delete-relaxation 

Two major drawbacks of delete relaxation stem from the 

fact that it does not consider negative conjunctions i.e., 

ignores delete lists (as seen above). In many domains heuristic 

output does not change (i.e., its value remains the same) 

across states. For example, let us consider the logistics domain 

problem [4]. Under this example, the delete relaxation fails to 

account for the “moving back” action of the transportation 

vehicle. Once the vehicle starts charting the required course, it 

does not need to perform "moving back" action because it is in 

all the regions of the course at the same time. 

Putting it in another way, let us say there is a vehicle 

which needs to move over a line of path twice - first to pick up 

items for delivery and then to traverse the same path back to 

deliver the items. Here, we can see that the value of the 

heuristic remains the same (i.e., line of path) until the vehicle 

reaches the point of actual pick up. 

This means within states there are heuristic values that 

remain constant. The other drawback is “resource persistence” 

[12]. That is, planners implementing delete relaxation cannot 

track and control the consumption of resources that are limited 

and will not last forever. Frequently, planning activity 

involves identifying ways to make consumption of non-

replenishable resources, such as energy and money, more 

economical. The planner should therefore find prudent ways 

to use such resources otherwise the quantity of resources it 

started with will not be sufficient to reach the desired goal. It 

thus becomes one of the important tasks of the planner to 

manage agents working with limited or non-replenishable 

resources. Relaxed plans (e.g., delete-relaxation) consider any 

resource to last (persist) for infinity. They are, therefore, not 

suitable for planning for agents which have limited resources 

(e.g., memory, power etc.). 

VII. GBFS AND A*: A COMPARISON 

A* algorithm ensures that the solution is optimal (assuming 

admissible heuristic), whereas GBFS favours conserving time 

over optimality and hence fails to guarantee an assured 

solution. This core difference between the two extend even 

when they are used with delete-relaxation heuristic as shown 

below:- 

1. A* algorithm, unlike GBFS, requires the Heuristic 

to be both admissible and consistent. A* also assures 

optimality. But computing delete-heuristic (h+), 

which is optimal, is hard [10]. We also know that 

GBFS tends to expand the state with shortest path to 

the goal-and it does so without considering historical 

knowledge or any other criteria such as consistency 

and admissibility of the heuristic. Thus, h+ works 

much better with GBFS than with A*. 

2. Since delete-relaxation works well for satisficing 

planning [10] and because GBFS is used in 

satisficing planning where A* isn’t, delete-

relaxation works better for GBFS than for A*. 

3. When GBFS and A* both are used with delete-

relaxation heuristic, GBFS may overapproximate the 

overall effort to reach the goal in comparison to A* 

and by a large margin [10]. 

4. GBFS requires lesser computer memory than A* for 

computing the search path. Because delete-

relaxation heuristic does not factor in resource 

consumption while performing its calculations, it 

may consume more resources when working with 

A* algorithm. This may slow down A* even more 

than GBFS when either use delete relaxation 

heuristic. 

5. When both algorithms are used with delete-

relaxation heuristic, the quality of solution given by 

GBFS is inferior to given by A*. 

 

VIII. CONCLUSION 

An analysis of two common best-first search algorithms i.e., 

Greedy best-first search (GBFS) and A* was conducted. We 

identified that GBFS’s focus is on finding the solution fast 

rather than guaranteeing it or making the solution optimal. 

We found out that there is high likelihood of GBFS failing to 

determine an effective search whenever the heuristics 

plateau-especially when the number of states to transition is 

high. Some recent techniques such as “preferred operators” 

and “multi-heuristic best-first search” were highlighted which 

tend to impart additional knowledge making GBFS better 

informed and more effective. The trade-offs to the optimality 

of A* were identified to be its relatively slower performance 

and higher resource requirements when compared to GBFS. 

The main drawbacks of delete-relaxation heuristics i.e., 

ignoring empty delete lists and an inherent inability to 

consider resources as finite, were showcased with car-driving 

and logistics-domain examples. The impact of delete-

relaxation heuristic on GBFS and A* was analyzed while 

comparing characteristics of GBFS and A*. In general, 

delete-relaxation heuristic was found to work better with 

GBFS than with A*. 
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