
 Investigation of Heuristic Search Techniques for

Path Planning

Subramanian Raghavan
School of Computing and Engineering

University of Huddersfield

Huddersfield, United Kingdom

Abstract— Greedy Best First Search (GBFS) and A* search

algorithms are studied for path planning by defining their core

behavior, then explaining them with suitable examples. We

compare both search techniques in terms of their accuracy,

performance, and resource requirements. We also cover delete

relaxation method and its impact on path planning.

Keywords—Greedy best-first search, A*, best-first search

algorithms, delete-relaxation, path planning

I. INTRODUCTION

In the field of Robotics, finding the optimal path from the

current point in space to the destination or goal is the key for a

field agent (i.e., Robot) to work effectively. The optimal path

should ideally be also the shortest path to reach the destination

if the limited precious resources (e.g., memory, power etc.)

must be judiciously used. However, such ideal conditions fail

to exist in real world where an autonomous, self-navigating,

field agent must encounter unknown or inevitable hurdles

such as humans, natural obstructions which it may fail to

interpret correctly. Path planning, therefore, becomes essential

in enabling a robot to do its intended job correctly and without

encountering mishaps or straying away from the destination.

An effective path planning should allow the robot to reach its

destination in minimum time avoiding obstacles while also

conserving its resources. There are various search techniques

developed over the years that allow such path planning

systems to be implemented. Of these, Greedy best-first search

(GBFS) [1], A* [2] are generally considered as two of the

important algorithms to search a given state-space. They are

both variants of the best-first search algorithms. GBFS and A*

are part of a group of algorithms whose search mechanism is

unidirectional and whose heuristics expansion based. For

domains where it is difficult to reach the goal from all states,

best-first searches are usually preferred. Although they are

both variants of best-first search algorithms, GBFS and A*

work differently and are suited for different real-time

scenarios. While choosing one over the other, the system

designer needs to understand their core capabilities and their

limitations before deciding on the right algorithm for path

planning. This paper aims to provide insight into each of these

algorithms by defining and explaining the core behavior of

these two algorithms, with examples, while also comparing

them. The investigation will also cover Delete relaxation as it

is an important method to relax planning tasks that are created

with GBFS and A*.

II. A* ALGORITHM: DEFINITION, EXPLANATION

 A* is a best-first search which is represented as (1):

 f(n) = h(n) + g(n) (1)

where,

n=node (or state) at which A* will calculate f value

h(n) = heuristic function which is the distance left to cover

between this node (n) and goal node

g(n) = cost incurred to reach this node n

In A* search, the least expensive path from the starting

node to a given node 'n' is coursed. Whenever a node needs to

be extended, the algorithm will save the cost incurred to reach

the node (i.e., g(n)) along with an index to its parent node. The

closer a node is to the goal, the more weightage it is given in

comparison to other, far away nodes.

For a Heuristic function to be admissible or accepted, it is

important that the function estimates the distance left to cover

between this node (n) and goal node (g) correctly. This

distance is the shortest distance between two points in a plane

and given by the Euclidean formula. Thus, for a 2D plane, the

formula to calculate the shortest distance becomes as given by

(2):

h(n) =SQRT ((nₓ − gₓ)² + (ny − gy)²) (2)

 If the Heuristic function does not calculate this correctly, it

is said to either underestimate or overestimate the distance and

the calculated distance is not optimal. Such values which are

not optimal are said to be not admissible.

This process continues till goal node is found (i.e., nodes

cannot be expanded any further). The least expensive cost

path from the starting node till the goal node is then found by

tying back the indexes from the goal node to the starting node.

If C* is the expense incurred to arrive at the solution and

one which is optimal and n be the given node, then it follows

that: -

• if f(n) < C*, it implies that Node n will be expanded by

A*, and

• if f(n) > C*, it implies that Node n will not be expanded

by A*.

III. A* ALGORITHM: STRENGTHS AND

WEAKNESSES

Assuming h(n) is admissible, it can be safely concluded

that A* will always find the most optimal solution. That is, A*

will always calculate the lower bound on the path to the Goal

state. But this also means that A* relies on the effectiveness of

the heuristic function for its efficiency. When faced with

situations where heuristics plateau, A*’s performance relies

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050239
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

353

www.ijert.org
www.ijert.org
www.ijert.org

on the efficiency of its tiebreaker to identify the nodes which

are least expensive to expand (i.e., least h-value). In almost

every type of A* logic implemented; the challenge faced by

planners has been with its performance-especially in universes

which undergo noticeable change frequently. Specifically,

considering the processing time of the A* algorithm, the count

of nodes identified for the next move, and the length of their

paths etc.

IV. GREEDY BEST FIRST SEARCH: DEFINITION,

EXPLANATION

The simplest of algorithms falling in the category of

satisficing search is the Greedy Best-First Search (GBFS). It is

also the algorithm that is most considered by the planners.

Instead of finding a solution which is assured and optimal,

A Greedy based search will try to identify the required search

path in shortest possible time. If GBFS finds the solution, it

stops search process at that node returning the solution. Else it

will calculate the heuristic value and expand the child node

whose heuristic value is lowest. That is, GBFS supposes that

states that have lower values of Heuristics lie on a path that is

least expensive to reach the nearest goal state. Thus, in every

step, heuristic value is calculated and then compared to all the

states generated till that point (but not expanded yet). This

trade-off ensures that a possible search path gets identified

quickly proving extremely beneficial sometimes.

GBFS's evaluation function(f(n)) is usually determined by

the heuristic function(h(n)) and expressed as (3):

 f(n) = h(n) (3)

In other words, state which will be identified for expansion

will be determined by the Evaluation function. The state

giving the lowest such value is expanded. This process

continues till the goal state is finally generated.

V. GBFS STRENGTHS, WEAKNESSES, AND WAYS

TO IMPROVE ITS EFFICIENCY

Due to its search behavior (i.e., greedy), GBFS will never

be able to ensure that the generated search plan is cost-

optimal. Due to this inaccuracy GBFS may end up having

states with same heuristic value.

For complex search problems, GBFS tends to generate a

huge number of heuristic plateaus (i.e., heuristics with same

values). This makes task of identifying the least expensive

state to expand next difficult or accurate. In such scenarios,

GBFS fails. For example, in Fig. 1 [3], let node S be the

starting node. Let, G be the target node or the goal node.

Assume the subtree of nodes be ST. Then, D shown in the

figure correspond to the depth of ST. Let all nodes of ST have

a Heuristic value of 6. Since GBFS considers only Heuristic

value in its evaluation, it will search the entire ST before it

decides to expand node N to reach G-even though all nodes in

ST have the same Heuristic value of 6 (i.e., heuristic plateau).

The greater the value of D, the more time GBFS will take to

reach G. For instance, when D is 10, 1024 nodes would need

to be expanded and when D’s value increases to, say, 20,

10,00,000 nodes would have been expanded in ST as the

search reaches N.

 Fig. 1 Nodes and sub tree being evaluated in a path search

GBFS may not be considered a clearly stated algorithm

but instead a collection of such algorithms (A* for instance)

where the tie-breaking policy decides how to get

differentiated.

If a planner based on GBFS fails to come up with an

effective guided search, the problem could be usually with its

tiebreaker or the implemented Heuristic. In such scenarios, the

performance of GBFS degrades. As a solution, many times the

standard search algorithm is enhanced by two methodologies

namely “preferred operators” and “multi-heuristic best-first

search” [4]. These methodologies make the algorithm better

informed and as a result, the state space is searched more

effectively. This process introduces variation in the original

search by imparting knowledge to the standard algorithm and

is also known to be “knowledge-based” [5]. The other way to

make the GBFS more effective is by selecting the nodes at

random and not the ones the Heuristic has identified. This is

also known as “random exploration” [5].

VI. DELETE-RELAXATION: ANALYSIS, EXAMPLES,

PROS AND CONS

A classical planning problem in STRIPS framework is

represented as (4):

 ‘Π = (Po, Ac, Is, Go) (4)

where,

Π=tuple representing the planning problem (or task)

Po=set of facts or conditions (i.e., propositional variables)

Ac=set of actions or operations which is a triple of

precondition (e.g., pre(ac)), add list (e.g., add(ac)), delete list

(e.g., del(ac)), each a subset of Po

Is=Initial State (Is ⊆ Po)

Go=Goal (Go ⊆ Po)’ [6], [7].

Conjunctive conditions on action, precondition and goal

can consist of both positive and negative literals. However, in

classical planning, delete-relaxation [8], [9] mentions action

precondition and the goal will constitute only positive

conjunctions. In the formula shown above, Conjunctive

conditions can be represented as fact sets.

Delete relaxation considers delete lists as empty.

Therefore, plans which follow such consideration are termed

as relaxed plans. This means, negative “delete” literals [8],

[9], e.g., logical not, will not be processed by a planner

implementing delete-relaxation heuristic if they are present in

either action precondition or problem goal description. The

delete-relaxation heuristic function is usually denoted by “h+”

[10]. It returns the cost calculated for an optimized relaxed

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050239
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

354

www.ijert.org
www.ijert.org
www.ijert.org

plan. It is considered as well-informed heuristic for classical

planning.

To illustrate this, let us consider the car-driving example

[7]. Let there be three locations the car can move to. Let these

locations be A, B, C. Let us assume, to reach C from A, a car

can only move on one-way in a line i.e., from A->B->C. Any

car that moves on this path will consume one unit worth of

fuel. The car has a tank that can only hold one unit of fuel-

therefore refueling must happen in B. We know from (4), Π =

(Po, Ac, Is, Go)

Therefore,

Po = {carA, carB, carC, fuel}

Is = {carA, fuel}

Go = {carZ}

Ac=aAB{pre{CarA,fuel},add{CarB},del{carA,fuel}},aBC{

pre{CarB,fuel},add{CarC},del{carB,fuel}},aREFUEL{pre{carB

},add{fuel},del{}}. To be considered as a delete relaxation

problem, del{carA, fuel} and del{carB, fuel} will have to be

empty, i.e., del{}.

An example from PDDL planner’s problem strips-gripper

[11] is given below where it is seen that logical not

conjunctions are not processed in delete-relaxation:-
:effect (and (carry ?obj ?gripper)(not

(at ?obj ?room)) (not (free ?gripper))) –

without delete-relaxation

:effect (and (carry ?obj ?gripper)) –

with delete-relaxation

Two major drawbacks of delete relaxation stem from the

fact that it does not consider negative conjunctions i.e.,

ignores delete lists (as seen above). In many domains heuristic

output does not change (i.e., its value remains the same)

across states. For example, let us consider the logistics domain

problem [4]. Under this example, the delete relaxation fails to

account for the “moving back” action of the transportation

vehicle. Once the vehicle starts charting the required course, it

does not need to perform "moving back" action because it is in

all the regions of the course at the same time.

Putting it in another way, let us say there is a vehicle

which needs to move over a line of path twice - first to pick up

items for delivery and then to traverse the same path back to

deliver the items. Here, we can see that the value of the

heuristic remains the same (i.e., line of path) until the vehicle

reaches the point of actual pick up.

This means within states there are heuristic values that

remain constant. The other drawback is “resource persistence”

[12]. That is, planners implementing delete relaxation cannot

track and control the consumption of resources that are limited

and will not last forever. Frequently, planning activity

involves identifying ways to make consumption of non-

replenishable resources, such as energy and money, more

economical. The planner should therefore find prudent ways

to use such resources otherwise the quantity of resources it

started with will not be sufficient to reach the desired goal. It

thus becomes one of the important tasks of the planner to

manage agents working with limited or non-replenishable

resources. Relaxed plans (e.g., delete-relaxation) consider any

resource to last (persist) for infinity. They are, therefore, not

suitable for planning for agents which have limited resources

(e.g., memory, power etc.).

VII. GBFS AND A*: A COMPARISON

A* algorithm ensures that the solution is optimal (assuming

admissible heuristic), whereas GBFS favours conserving time

over optimality and hence fails to guarantee an assured

solution. This core difference between the two extend even

when they are used with delete-relaxation heuristic as shown

below:-

1. A* algorithm, unlike GBFS, requires the Heuristic

to be both admissible and consistent. A* also assures

optimality. But computing delete-heuristic (h+),

which is optimal, is hard [10]. We also know that

GBFS tends to expand the state with shortest path to

the goal-and it does so without considering historical

knowledge or any other criteria such as consistency

and admissibility of the heuristic. Thus, h+ works

much better with GBFS than with A*.

2. Since delete-relaxation works well for satisficing

planning [10] and because GBFS is used in

satisficing planning where A* isn’t, delete-

relaxation works better for GBFS than for A*.

3. When GBFS and A* both are used with delete-

relaxation heuristic, GBFS may overapproximate the

overall effort to reach the goal in comparison to A*

and by a large margin [10].

4. GBFS requires lesser computer memory than A* for

computing the search path. Because delete-

relaxation heuristic does not factor in resource

consumption while performing its calculations, it

may consume more resources when working with

A* algorithm. This may slow down A* even more

than GBFS when either use delete relaxation

heuristic.

5. When both algorithms are used with delete-

relaxation heuristic, the quality of solution given by

GBFS is inferior to given by A*.

VIII. CONCLUSION

An analysis of two common best-first search algorithms i.e.,

Greedy best-first search (GBFS) and A* was conducted. We

identified that GBFS’s focus is on finding the solution fast

rather than guaranteeing it or making the solution optimal.

We found out that there is high likelihood of GBFS failing to

determine an effective search whenever the heuristics

plateau-especially when the number of states to transition is

high. Some recent techniques such as “preferred operators”

and “multi-heuristic best-first search” were highlighted which

tend to impart additional knowledge making GBFS better

informed and more effective. The trade-offs to the optimality

of A* were identified to be its relatively slower performance

and higher resource requirements when compared to GBFS.

The main drawbacks of delete-relaxation heuristics i.e.,

ignoring empty delete lists and an inherent inability to

consider resources as finite, were showcased with car-driving

and logistics-domain examples. The impact of delete-

relaxation heuristic on GBFS and A* was analyzed while

comparing characteristics of GBFS and A*. In general,

delete-relaxation heuristic was found to work better with

GBFS than with A*.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050239
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

355

www.ijert.org
www.ijert.org
www.ijert.org

REFERENCES
[1] J. E. Doran, D. Michie, and D. G. Kendall, “Experiments with the

Graph Traverser program”, Proceedings of the Royal Society of

London. Series A, vol. 294, pp. 235-259, Sep. 1966.
[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths”, IEEE Trans. Syst.

Sci. Cybern., vol. 4, pp. 100-107, 1968.
[3] R. A. Valenzano, and F. Xie, “On the Completeness of Best-First

Search Variants That Use Random Exploration”, in Thirtieth AAAI

Conference on Artificial Intelligence, 2016.
[4] C. Domshlak, J. Hoffmann, and M. Katz, “Red–black planning: A new

systematic approach to partial delete relaxation”, Artificial Intelligence,

vol. 221, pp. 73-114, Apr. 2015.
[5] R. Valenzano, N. Sturtevant, J. Schaeffer, and F. Xie, “A Comparison

of Knowledge-Based GBFS Enhancements and Knowledge-Free

Exploration”, in Twenty-Fourth International Conference on
Automated Planning and Scheduling, 2014, pp. 375-379.

[6] (2005) Stanford Research Institute Problem Solver. [Online].

Available:
https://en.wikipedia.org/wiki/Stanford_Research_Institute_Problem_So

lver

[7] M. Fickert, J. Hoffmann, and M. Steinmetz, “Combining the Delete
Relaxation with Critical-Path Heuristics: A Direct Characterization”,

Journal of Artificial Intelligence Research, vol. 56, pp. 269-327, May.

2016.
[8] D. V. McDermott, “Using regression-match graphs to control search in

planning”, Artificial Intelligence, vol. 109, pp. 111-159, Apr. 1999.

[9] B. Bonet, and H. Geffner, “Planning as heuristic search”, Artificial
Intelligence, vol. 129, pp. 5-33, Jun. 2001.

[10] A. Torralba, and C. Croitoru, AI Planning 9. Delete Relaxation

Heuristics, Part II: Pretending Things Can Only Get Better, A.
Torralba, and C. Croitoru, Ed. Saarbrücken, Germany: Saarland

University, Computer Science, 2018-2019.

[11] The PDDL Editor website. [Online]. Available:
http://editor.planning.domains/#

[12] A. Coles, M. Fox, D. Long, and A. Smith, “A hybrid relaxed planning

graph-LP heuristic for numeric planning domains”, in Proceedings of
the 18th International Conference on Automated Planning and

Scheduling (ICAPS'08), 2008, pp. 52-59.

[13] H. T. Dinh, A. Russell, and Y. Su, “On the Value of Good Advice: The

Complexity of A* Search with Accurate Heuristics”, in Proceedings of

the National Conference on Artificial Intelligence, 2007, pp. 1140-

1145.

[14] M. Fickert, “A Novel Lookahead Strategy for Delete Relaxation

Heuristics in Greedy Best-First Search”, Proceedings of the

International Conference on Automated Planning and Scheduling, vol.

30, pp. 119-123, Oct. 2020.
[15] M. Ghallab, D. Nau, and P. Traverso, Automated Planning : Theory

and Practice, Elsevier Science, Elsevier Ltd., 2004.

[16] E. Hansen, and R. Zhou, “Anytime Heuristic Search”, The Journal of
Artificial Intelligence Research, vol. 28, pp. 267-297, 2007.

[17] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, An

Introduction to the Planning Domain Definition Language, Morgan &
Claypool Publishers, 2019.

[18] M. Heusner, T. Kellar, and M. Helmert, “Understanding the Search

Behaviour of Greedy Best-First Search”, Tenth Annual Symposium on
Combinatorial Search, vol. 8, pp. 47-55, Jun. 2017.

[19] J. Hoffmann, “Local Search Topology in Planning Benchmarks: An

Empirical Analysis”, IJCAI International Joint Conference on Artificial
Intelligence, pp. 453-458, Jan. 2001.

[20] V. Martell, and A. Sandberg, “Performance Evaluation of A*

Algorithms”, B. CS. thesis, Blekinge Institute of Technology,
Karlskrona, Sweden, 2016.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS050239
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 05, May-2022

356

www.ijert.org
www.ijert.org
www.ijert.org

