Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

Investigation of Heuristic Search Techniques for
Path Planning

Subramanian Raghavan
School of Computing and Engineering
University of Huddersfield
Huddersfield, United Kingdom

Abstract— Greedy Best First Search (GBFS) and A* search
algorithms are studied for path planning by defining their core
behavior, then explaining them with suitable examples. We
compare both search techniques in terms of their accuracy,
performance, and resource requirements. We also cover delete
relaxation method and its impact on path planning.

Keywords—Greedy best-first search, A*, best-first search
algorithms, delete-relaxation, path planning

. INTRODUCTION

In the field of Robotics, finding the optimal path from the
current point in space to the destination or goal is the key for a
field agent (i.e., Robot) to work effectively. The optimal path
should ideally be also the shortest path to reach the destination
if the limited precious resources (e.g., memory, power etc.)
must be judiciously used. However, such ideal conditions fail
to exist in real world where an autonomous, self-navigating,
field agent must encounter unknown or inevitable hurdles
such as humans, natural obstructions which it may fail to
interpret correctly. Path planning, therefore, becomes essential
in enabling a robot to do its intended job correctly and without
encountering mishaps or straying away from the destination.
An effective path planning should allow the robot to reach its
destination in minimum time avoiding obstacles while also
conserving its resources. There are various search techniques
developed over the years that allow such path planning
systems to be implemented. Of these, Greedy best-first search
(GBFS) [1], A* [2] are generally considered as two of the
important algorithms to search a given state-space. They are
both variants of the best-first search algorithms. GBFS and A*
are part of a group of algorithms whose search mechanism is
unidirectional and whose heuristics expansion based. For
domains where it is difficult to reach the goal from all states,
best-first searches are usually preferred. Although they are
both variants of best-first search algorithms, GBFS and A*
work differently and are suited for different real-time
scenarios. While choosing one over the other, the system
designer needs to understand their core capabilities and their
limitations before deciding on the right algorithm for path
planning. This paper aims to provide insight into each of these
algorithms by defining and explaining the core behavior of
these two algorithms, with examples, while also comparing
them. The investigation will also cover Delete relaxation as it
is an important method to relax planning tasks that are created
with GBFS and A*.

II. A* ALGORITHM: DEFINITION, EXPLANATION
A* is a best-first search which is represented as (1):

f(n) = h(n) +g(n) @
where,

n=node (or state) at which A* will calculate f value

h(n) = heuristic function which is the distance left to cover

between this node (n) and goal node

g(n) = cost incurred to reach this node n

In A* search, the least expensive path from the starting
node to a given node 'n' is coursed. Whenever a node needs to
be extended, the algorithm will save the cost incurred to reach
the node (i.e., g(n)) along with an index to its parent node. The
closer a node is to the goal, the more weightage it is given in
comparison to other, far away nodes.

For a Heuristic function to be admissible or accepted, it is
important that the function estimates the distance left to cover
between this node (n) and goal node (g) correctly. This
distance is the shortest distance between two points in a plane
and given by the Euclidean formula. Thus, for a 2D plane, the
formula to calculate the shortest distance becomes as given by
(2):

h(n) =SQRT ((n. — gJ* + (ny — gy)?))

If the Heuristic function does not calculate this correctly, it
is said to either underestimate or overestimate the distance and
the calculated distance is not optimal. Such values which are
not optimal are said to be not admissible.

This process continues till goal node is found (i.e., nodes
cannot be expanded any further). The least expensive cost
path from the starting node till the goal node is then found by
tying back the indexes from the goal node to the starting node.

If C* is the expense incurred to arrive at the solution and
one which is optimal and n be the given node, then it follows
that: -

« if f(n) < C*, it implies that Node n will be expanded by

A*, and

« if f(n) > C*, it implies that Node n will not be expanded

by A*.

. A* ALGORITHM: STRENGTHS AND
WEAKNESSES

Assuming h(n) is admissible, it can be safely concluded
that A* will always find the most optimal solution. That is, A*
will always calculate the lower bound on the path to the Goal
state. But this also means that A* relies on the effectiveness of
the heuristic function for its efficiency. When faced with
situations where heuristics plateau, A*’s performance relies

IJERTV111S050239

www.ijert.org 353

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

on the efficiency of its tiebreaker to identify the nodes which
are least expensive to expand (i.e., least h-value). In almost
every type of A* logic implemented; the challenge faced by
planners has been with its performance-especially in universes
which undergo noticeable change frequently. Specifically,
considering the processing time of the A* algorithm, the count
of nodes identified for the next move, and the length of their
paths etc.

IV. GREEDY BEST FIRST SEARCH: DEFINITION,
EXPLANATION

The simplest of algorithms falling in the category of
satisficing search is the Greedy Best-First Search (GBFS). It is
also the algorithm that is most considered by the planners.

Instead of finding a solution which is assured and optimal,
A Greedy based search will try to identify the required search
path in shortest possible time. If GBFS finds the solution, it
stops search process at that node returning the solution. Else it
will calculate the heuristic value and expand the child node
whose heuristic value is lowest. That is, GBFS supposes that
states that have lower values of Heuristics lie on a path that is
least expensive to reach the nearest goal state. Thus, in every
step, heuristic value is calculated and then compared to all the
states generated till that point (but not expanded yet). This
trade-off ensures that a possible search path gets identified
quickly proving extremely beneficial sometimes.

GBFS's evaluation function(f(n)) is usually determined by
the heuristic function(h(n)) and expressed as (3):

f(n) = h(n) ®)

In other words, state which will be identified for expansion
will be determined by the Evaluation function. The state
giving the lowest such value is expanded. This process
continues till the goal state is finally generated.

V. GBFSSTRENGTHS, WEAKNESSES, AND WAY'S
TO IMPROVE ITS EFFICIENCY

Due to its search behavior (i.e., greedy), GBFS will never
be able to ensure that the generated search plan is cost-
optimal. Due to this inaccuracy GBFS may end up having
states with same heuristic value.

For complex search problems, GBFS tends to generate a
huge number of heuristic plateaus (i.e., heuristics with same
values). This makes task of identifying the least expensive
state to expand next difficult or accurate. In such scenarios,
GBFS fails. For example, in Fig. 1 [3], let node S be the
starting node. Let, G be the target node or the goal node.
Assume the subtree of nodes be ST. Then, D shown in the
figure correspond to the depth of ST. Let all nodes of ST have
a Heuristic value of 6. Since GBFS considers only Heuristic
value in its evaluation, it will search the entire ST before it
decides to expand node N to reach G-even though all nodes in
ST have the same Heuristic value of 6 (i.e., heuristic plateau).
The greater the value of D, the more time GBFS will take to
reach G. For instance, when D is 10, 1024 nodes would need
to be expanded and when D’s value increases to, say, 20,
10,00,000 nodes would have been expanded in ST as the
search reaches N.

5

0
] oi\e
D N oy
{lil¥ofololo)

Fig. 1 Nodes and sub tree being evaluated in a path search

GBFS may not be considered a clearly stated algorithm
but instead a collection of such algorithms (A* for instance)
where the tie-breaking policy decides how to get
differentiated.

If a planner based on GBFS fails to come up with an
effective guided search, the problem could be usually with its
tiebreaker or the implemented Heuristic. In such scenarios, the
performance of GBFS degrades. As a solution, many times the
standard search algorithm is enhanced by two methodologies
namely “preferred operators” and “multi-heuristic best-first
search” [4]. These methodologies make the algorithm better
informed and as a result, the state space is searched more
effectively. This process introduces variation in the original
search by imparting knowledge to the standard algorithm and
is also known to be “knowledge-based” [5]. The other way to
make the GBFS more effective is by selecting the nodes at
random and not the ones the Heuristic has identified. This is
also known as “random exploration” [5].

VI. DELETE-RELAXATION: ANALYSIS, EXAMPLES,
PROS AND CONS

A classical planning problem in STRIPS framework is
represented as (4):

‘IT = (Po, Ac, Is, Go) (@)
where,

[N=tuple representing the planning problem (or task)

Po=set of facts or conditions (i.e., propositional variables)

Ac=set of actions or operations which is a triple of
precondition (e.g., pre(ac)), add list (e.g., add(ac)), delete list
(e.g., del(ac)), each a subset of Po

Is=Initial State (Is < Po)

Go=Goal (Go < Po)’ [6], [7].

Conjunctive conditions on action, precondition and goal
can consist of both positive and negative literals. However, in
classical planning, delete-relaxation [8], [9] mentions action
precondition and the goal will constitute only positive
conjunctions. In the formula shown above, Conjunctive
conditions can be represented as fact sets.

Delete relaxation considers delete lists as empty.
Therefore, plans which follow such consideration are termed
as relaxed plans. This means, negative “delete” literals [8],
[9], e.g., logical not, will not be processed by a planner
implementing delete-relaxation heuristic if they are present in
either action precondition or problem goal description. The
delete-relaxation heuristic function is usually denoted by “h+”
[10]. It returns the cost calculated for an optimized relaxed

IJERTV111S050239

www.ijert.org

354

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

plan. It is considered as well-informed heuristic for classical
planning.

To illustrate this, let us consider the car-driving example
[7]. Let there be three locations the car can move to. Let these
locations be A, B, C. Let us assume, to reach C from A, a car
can only move on one-way in a line i.e., from A->B->C. Any
car that moves on this path will consume one unit worth of
fuel. The car has a tank that can only hold one unit of fuel-
therefore refueling must happen in B. We know from (4), IT =
(Po, Ac, Is, Go)

Therefore,

Po = {carA, carB, carC, fuel}

Is = {carA, fuel}

Go = {carZ}

Ac=aas{pre{CarA fuel},add{CarB},del{carA,fuel}}asc{
pre{CarB,fuel},add{CarC},del{carB,fuel}},arerueL {pre{carB
}.add{fuel},del{}}. To be considered as a delete relaxation
problem, del{carA, fuel} and del{carB, fuel} will have to be
empty, i.e., del{}.

An example from PDDL planner’s problem strips-gripper
[11] is given below where it is seen that logical not
conjunctions are not processed in delete-relaxation:-

reffect (and (carry ?obj ?gripper) (not
(at ?0bj ?room)) (not (free ?gripper))) —
without delete-relaxation

ceffect (and
with delete-relaxation

Two major drawbacks of delete relaxation stem from the
fact that it does not consider negative conjunctions i.e.,
ignores delete lists (as seen above). In many domains heuristic
output does not change (i.e., its value remains the same)
across states. For example, let us consider the logistics domain
problem [4]. Under this example, the delete relaxation fails to
account for the “moving back” action of the transportation
vehicle. Once the vehicle starts charting the required course, it
does not need to perform "moving back" action because it is in
all the regions of the course at the same time.

Putting it in another way, let us say there is a vehicle
which needs to move over a line of path twice - first to pick up
items for delivery and then to traverse the same path back to
deliver the items. Here, we can see that the value of the
heuristic remains the same (i.e., line of path) until the vehicle
reaches the point of actual pick up.

This means within states there are heuristic values that
remain constant. The other drawback is “resource persistence”
[12]. That is, planners implementing delete relaxation cannot
track and control the consumption of resources that are limited
and will not last forever. Frequently, planning activity
involves identifying ways to make consumption of non-
replenishable resources, such as energy and money, more
economical. The planner should therefore find prudent ways
to use such resources otherwise the quantity of resources it
started with will not be sufficient to reach the desired goal. It
thus becomes one of the important tasks of the planner to
manage agents working with limited or non-replenishable
resources. Relaxed plans (e.g., delete-relaxation) consider any
resource to last (persist) for infinity. They are, therefore, not
suitable for planning for agents which have limited resources
(e.g., memory, power etc.).

(carry ?20bj ?gripper)) —

VII. GBFS AND A*: ACOMPARISON
A* algorithm ensures that the solution is optimal (assuming
admissible heuristic), whereas GBFS favours conserving time
over optimality and hence fails to guarantee an assured
solution. This core difference between the two extend even
when they are used with delete-relaxation heuristic as shown
below:-

1. A* algorithm, unlike GBFS, requires the Heuristic
to be both admissible and consistent. A* also assures
optimality. But computing delete-heuristic (h+),
which is optimal, is hard [10]. We also know that
GBFS tends to expand the state with shortest path to
the goal-and it does so without considering historical
knowledge or any other criteria such as consistency
and admissibility of the heuristic. Thus, h+ works
much better with GBFS than with A*.

2. Since delete-relaxation works well for satisficing
planning [10] and because GBFS is used in
satisficing planning where A* isn’t, delete-
relaxation works better for GBFS than for A*.

3. When GBFS and A* both are used with delete-
relaxation heuristic, GBFS may overapproximate the
overall effort to reach the goal in comparison to A*
and by a large margin [10].

4. GBFS requires lesser computer memory than A* for
computing the search path. Because delete-
relaxation heuristic does not factor in resource
consumption while performing its calculations, it
may consume more resources when working with
A* algorithm. This may slow down A* even more
than GBFS when either use delete relaxation
heuristic.

5. When both algorithms are used with delete-
relaxation heuristic, the quality of solution given by
GBFS is inferior to given by A*.

VIIl. CONCLUSION

An analysis of two common best-first search algorithms i.e.,
Greedy best-first search (GBFS) and A* was conducted. We
identified that GBFS’s focus is on finding the solution fast
rather than guaranteeing it or making the solution optimal.
We found out that there is high likelihood of GBFS failing to
determine an effective search whenever the heuristics
plateau-especially when the number of states to transition is
high. Some recent techniques such as “preferred operators”
and “multi-heuristic best-first search” were highlighted which
tend to impart additional knowledge making GBFS better
informed and more effective. The trade-offs to the optimality
of A* were identified to be its relatively slower performance
and higher resource requirements when compared to GBFS.
The main drawbacks of delete-relaxation heuristics i.e.,
ignoring empty delete lists and an inherent inability to
consider resources as finite, were showcased with car-driving
and logistics-domain examples. The impact of delete-
relaxation heuristic on GBFS and A* was analyzed while
comparing characteristics of GBFS and A*. In general,
delete-relaxation heuristic was found to work better with
GBFS than with A*.

IJERTV111S050239

www.ijert.org 355

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I ssue 05, M ay-2022

[1]

[2]

(3]

(4]

[5]

(6]

(7

(8]

[9]

[10]

[11]

[12]

[13]

REFERENCES
J. E. Doran, D. Michie, and D. G. Kendall, “Experiments with the
Graph Traverser program”, Proceedings of the Royal Society of
London. Series A, vol. 294, pp. 235-259, Sep. 1966.
P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”, IEEE Trans. Syst.
Sci. Cybern., vol. 4, pp. 100-107, 1968.
R. A. Valenzano, and F. Xie, “On the Completeness of Best-First
Search Variants That Use Random Exploration”, in Thirtieth AAAI
Conference on Atrtificial Intelligence, 2016.
C. Domshlak, J. Hoffmann, and M. Katz, “Red-black planning: A new
systematic approach to partial delete relaxation”, Artificial Intelligence,
vol. 221, pp. 73-114, Apr. 2015.
R. Valenzano, N. Sturtevant, J. Schaeffer, and F. Xie, “A Comparison
of Knowledge-Based GBFS Enhancements and Knowledge-Free
Exploration”, in Twenty-Fourth International Conference on
Automated Planning and Scheduling, 2014, pp. 375-379.
(2005) Stanford Research Institute Problem Solver.
Available:
https://en.wikipedia.org/wiki/Stanford_Research_Institute_Problem_So
Iver
M. Fickert, J. Hoffmann, and M. Steinmetz, “Combining the Delete
Relaxation with Critical-Path Heuristics: A Direct Characterization”,
Journal of Artificial Intelligence Research, vol. 56, pp. 269-327, May.
2016.
D. V. McDermott, “Using regression-match graphs to control search in
planning”, Artificial Intelligence, vol. 109, pp. 111-159, Apr. 1999.
B. Bonet, and H. Geffner, “Planning as heuristic search”, Artificial
Intelligence, vol. 129, pp. 5-33, Jun. 2001.
A. Torralba, and C. Croitoru, Al Planning 9. Delete Relaxation
Heuristics, Part 1l: Pretending Things Can Only Get Better, A.
Torralba, and C. Croitoru, Ed. Saarbriicken, Germany: Saarland
University, Computer Science, 2018-2019.
The PDDL Editor website.
http://editor.planning.domains/#
A. Coles, M. Fox, D. Long, and A. Smith, “A hybrid relaxed planning
graph-LP heuristic for numeric planning domains”, in Proceedings of
the 18th International Conference on Automated Planning and
Scheduling (ICAPS'08), 2008, pp. 52-59.
H. T. Dinh, A. Russell, and Y. Su, “On the Value of Good Advice: The
Complexity of A* Search with Accurate Heuristics”, in Proceedings of
the National Conference on Artificial Intelligence, 2007, pp. 1140-
1145.

[Online].

[Online]. Available:

[14]

[15]
[16]

[17]

[18]

[19]

[20]

M. Fickert, “A Novel Lookahead Strategy for Delete Relaxation
Heuristics in Greedy Best-First Search”, Proceedings of the
International Conference on Automated Planning and Scheduling, vol.
30, pp. 119-123, Oct. 2020.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning : Theory
and Practice, Elsevier Science, Elsevier Ltd., 2004.

E. Hansen, and R. Zhou, “Anytime Heuristic Search”, The Journal of
Artificial Intelligence Research, vol. 28, pp. 267-297, 2007.

P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, An
Introduction to the Planning Domain Definition Language, Morgan &
Claypool Publishers, 2019.

M. Heusner, T. Kellar, and M. Helmert, “Understanding the Search
Behaviour of Greedy Best-First Search”, Tenth Annual Symposium on
Combinatorial Search, vol. 8, pp. 47-55, Jun. 2017.

J. Hoffmann, “Local Search Topology in Planning Benchmarks: An
Empirical Analysis”, IJCAI International Joint Conference on Artificial
Intelligence, pp. 453-458, Jan. 2001.

V. Martell, and A. Sandberg, “Performance Evaluation of A*
Algorithms”, B. CS. thesis, Blekinge Institute of Technology,
Karlskrona, Sweden, 2016.

IJERTV111S050239

www.ijert.org

356

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

