
Investigation and Analysis of Efficient Firewall Packet Filtering and Matching Algorithms

Dr. Prof.P.K.Deshmukh Dr. Prof. A.B.Bagwan, Ms.P.Kinage Ms. S.A.Jadhav

pkdeshmukh9@gmail.com Aliakbar.bagwan@gmail.com pragatikinage@yahoo.com Jadhav.shriys36@gmial.com

I. ABSTRACT

For the network devices like firewall or IPSec, packet
filtering is plays very critical role in high speed networks.
Thus it is important that firewall policies should be
optimized in order to provide the efficient security for high
speed networks. There are many techniques presented by
researchers for exploiting the characteristics of the filtering
policies, however they do not consider the traffic behavior
in optimizing their search data structures. In this paper we
are discussing the recent new optimized packet filter and
packet matching techniques for both stateless and statfull
firewall. Algorithm first is presented with an objective of
reduction in packet matching cost in all cases where as
algorithm second is presented with an objective of less cost
and less packet matching time.

We are discussing the algorithm first which is basically
presented in order to produce efficient performance in terms
of lower cost of packet matching of the firewall. The
performance of the algorithm is related to complexity of the
firewall rule set and is compared to an alternative algorithm
demonstrating that the algorithm here has improved the
packet matching cost in all cases. Thus in short we present
an algorithm which orders the rules in a firewall rule set to
best suit the trends in the network traffic (as given by a
recent network trace file) and therefore reduce the potential
number of packet-rule matches. Whereas in second
investigated algorithm we consider a classical algorithm
that we adapted to the firewall domain. We call the resulting
algorithm “Geometric Efficient Matching” (GEM). The
GEM algorithm enjoys a logarithmic matching time
performance.

Index Terms—GEM, network security, firewall, firewall
queries, firewall testing, firewall correctness.

II. INTRODUCTION

Firewalls and IPSec gateways have become major
components in the current high speed Internet infrastructure
to filter out undesired traffic and protect the integrity and
confidentiality of critical traffic. In these devises, the
filtering decision is based on a security policy defined
according to predefined high level security requirements and
is composed of a set of ordered filtering rules against which
the net work traffic is sequentially matched in order to
determine the appropriate filtering action. Therefore, packet
filtering is a critical component that determines the

performance of these networking devices. With the dramatic
advances in the current network speeds, firewall packet
filtering must be constantly optimized to cope with the
network traffic demands and attacks. This requires reducing
the packet matching time needed to \allow" or \deny"
packets in order to minimize the end-to-end delay. This
problem is even more critical for application-level filtering,
where a wide variety of packet filtering fields is used. Thus,
efficient yet easy to implement filtering policy optimization
is highly crucial to enable high speed packet filtering for
effective deployment of traffic filtering technologies in the
Internet.

In this paper we have to present the solution to this
well studied problem of firewall packet matching. Apart
from this, there are some other issues which make such
problem bit complex. 1. Unlike firewalls, routers use
“longest prefix match” semantics. 2. Firewall matching
problem is 4D or 5D, whereas router matching is usually 1D
or 2D: A router typically matches only on IP addresses, and
does not look deeper, into the TCP or UDP packet headers.
3. Major firewall vendors support rules that utilize IP
address ranges, in addition to subnets or CIDR blocks: this
is the case for Check Point and Juniper—the main exception
is Cisco that only supports individual IP addresses or
subnets. Thus in these cases it becomes crucial that firewall
needs their own efficient packet filtering and matching
algorithm with objective of cost and time effective
processing.

General efficient packet matching techniques exist; a
review of some is presented by Gupta and McKeown [1].
However, these techniques do not make use of information
about the relative frequency of the packets that are to be
matched. Hence it will just increase the overall cost of
matching and computation time.

In this paper, we are investigating the two new methods
for packet matching which are efficient as compared to
existing algorithms. Below Section III is presenting the
literature overview over firewall types and rules
optimization techniques. Section IV discussing both
algorithms investigated, and section V discuss the work
done over this algorithms.

III. LITERATURE REVIEW

A. Firewall Types

This research is focusing on the processing mode
type of firewalls as they relate to Network Layer packet
filtering. We however give a summary of firewall
classifications here following.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

1. Packet Filter Firewall: These are based on first
generation firewall technology. They analyze network
traffic at the transport layer. They examine each IP network
packet to see if it matches one of the rules defined for
allowing or denying data flows.

The decision is based on the information they get
from the packet's transport layer headers and the direction
the packet is going into. They are therefore configured to
check:

Transport layer type (TCP, ICMP, UDP)
Source port
Destination IP address
Source IP address
Network interface the packet arrives on
Destination port

Packet filters do the above by applying a rule set residing in
the TCP/IP kernel that defines what action goes with which
rule. They come under three sub categories: 1.1 Static
Filtering, 1.2 Dynamic Filtering, and 1.3 Stateful Filtering.

2. Circuit Level Firewalls: These are based on second
generation firewall technology. They work based on the fact
that a packet is either a data packet or a connection request
belonging to a connection or circuit between two peer
transport layers. These firewalls work by:
Checking that each connection setup follows a handshake

system for the transport layer protocol being used.
Storing a session identifier for the connection
Connection state: handshake, established, or closing
Only forwarding packets after the handshake is complete
Maintaining a table of valid connections and removing it
once the connection is terminated
Closing the virtual circuit after transmission

3. Application Layer Firewall: Also called third generation
firewall. These firewalls evaluate packets for valid data at
the application layer before allowing a connection.
Examines data in network packets at the application layer
Maintains connection state and sequencing information
Can validate passwords and service requests
Most of them include proxy services for specific services
such as HTTP or FTP which provide more checks and
generate audit records about the traffic they transfer.

4. Dynamic Firewalls [Stateful Firewall]: A fourth
generation firewall type allowing modification of the rule
base. A virtual connection is established and the packet is
allowed to travel the firewall server. These provide support
for UDP packets by associating them with a virtual
connection. The connection information is kept for a short
period and the connection is terminated if no response
packet is received within that short time. They are good for
not allowing unwanted UDP packets into a network because
the response packet must contain a destination address that
matches the original source address.

5. Hybrid Firewall: Because of the need to do more than
packet inspection, firewalls are being implemented as hybrid
systems. These are mostly implemented by adding packet
filtering to an application gateway. Cisco PIX firewalls are
an example of such hybrid firewalls.

B. Firewall Rule Set and Optimzation Techniques

A rule set is a group of rules programmed to allow or deny
packets. The decision to allow or deny is based on the
values contained in the packet. The firewall rule set
processes both the packets arriving from the public Internet,
as well as the packets originating from the internal network.
Every service based on TC/IPA i.e.: telnet, www, mail, etc.
is predefined by its protocol i.e. SSH, HTTP, SMTP etc. and
privileged (listening) port. Packets destined for a specific
service, originate from the source address using an
unprivileged (high order) port and target the specific service
port on the destination address. All the above parameters
(i.e. ports and addresses) are used as traditional selection
criteria to create rules which will pass or block services.
Optimization Techniques:
1. Rule set clean up: This approach analyzes the rule set to
identify inconsistencies and redundancy in the rule set and
removes them. Rules that make no unique contribution to
the firewall behavior are removed. These are either
Redundant or Shadowed rules. Redundant rules never match
packets because there are more preceding rules matched
first. Unused rules that have the log option but have no logs
showing that they have matched packets. They are therefore
candidates for removal when optimizing though their
removal may affect firewall behavior later. Remove rules
for unused Network groups E.g. if the organization does not
have a mail server, SMTP rules can be taken out of the
configuration.
2. Rule set re-ordering: This technique relies on the network
statistics logged on the firewall or written to file in a
network database. It lists most used rules in decreasing order
of usage by hit count and percentage hit count. These rules
can then be moved towards the beginning of the rule set to
improve performance. Optimize the rule set by ordering
rules based on the rule usage data and rule order
dependencies that does not alter the firewall behavior. This
moves the most used rules toward the beginning of the rule
set until they are very close to the source of an order
dependency. The complexity with this method is the
dependencies problem.
3. Rule Grouping: It is evident that a major part of the
network traffic matches a small subset of the firewall rules.
This therefore calls for selecting these rules and calling
them by groups depending on their usage. This scheme
divides the filtering policy into two layers of rules, (a) most
active rules-those performing the most packet matching and
(b) inactive rules-perform much less matching. Rules are
checked and if two or more rules are found to have the same
matching action, they are merged. This reduces the rule set
size and consequently the search time for the filtering

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

algorithm because fewer rules are inspected when deny or
allow decision is to be made by the firewall.
4. Rule Frequency re-ordering: The number of times a rule
is triggered is recorded and used to determine matching
patterns and arrangement of the whole rule set. Ehab Al-
Shaer et.al. propose an adaptive way of dynamically
optimizing firewall rule sets using actively calculated
statistics.
5. Rule Editing: Firewalls have thousands of rules and
hundreds of IP addresses to take care of. The typical
approach is to scan through all these rules in a linear method
until a match is found for the packet being inspected.
6. Go To Function: Modern Firewalls come with a feature
allowing skipping from one rule or rule set to another rule in
a rule set. The go to function is used to switch the search
and match flow from the default one (next rule in the list) to
the one specified in the go to command.

IV. INVESTIGATED ALGORITHMS

1. Stateless Firewall Optimization Algorithm

As in the problem statement, the optimization problem of
firewall is nothing but the placing rules in way that most
commonly used rules are behind the top of the rule set and
hence it results into the less searching time. Thus to provide
the optimization to this problem, generally the rules those
are associated with weight is equals to total number of
maches of this particular rules in traffic flow. A naive
approach would be to rank order the rules according to the
weightings; but this would not take into account rule
dependencies and would probably change the security
policy. This is prompt for new more efficient and complex
approach for rule optimization.
Thus the new algorithm is presented in [1], which is recent
research in this area for stateless firewall. Here below
algorithm 1 is added from [1] as investigation algorithm for
this research paper.
Algorithm 1 OptimiseAllRules(start_rules)
1: H ← BuildHeap(H, start_rules)
2: rule_list ← CreateList(rule_list, nil)
3: while H _= ∅ do
4: Rb ← HeapGet(H)
5: S ← {all rules preceding Rb}
6: for all Rc ∈ {S then Rb} do
7: if Rc /∈
rule_list then
8: current ← ListTail(rule_list)
9: best_cost ← Cost(rule_list)
10: best_pos ← current
11: ListRemove(rule_list, Rc)
12: while current _= ListHead(rule_list)
do
13: current ← ListPrevious(current)
14: Rt ← ListGet(current)
15: if Rt is not preceding Rc then

16: ListInsertAfter(current, Rc)
17: if Cost(rule_list) < best_cost
then
18: best_cost ← Cost(rule_list)
19: best_pos ← current
20: end if
21: ListRemove(rule_list, Rc)
22: else
23: break
24: end if
25: end while
26: ListInsertAfter(best_pos, Rc)
27: HeapRemove(H, Rc)
28: end if
29: end for
30: end while
31: return rule_list

This algorithm is showing the more improved results as
compared to previous algorithm for all the performance
metrics [1]. This algorithm is evaluated using the SCADIA
Dataset which is collected from various intonations internet
flows.

2. Stateful Firewall Optimization Algorithm

 Recently many firewalls are generally statefull, which
having the two advatanges such as 1. administrator does not
need to write explicit rules for returntraffic—and such
return-traffic rules are inherently insecure since they rely on
source-port filtering. And hence such firewalls are more
secure as compared to simple stateless packet filters. 2. One
more advantage is that this kind of firewalls are more faster
and simpler than the rule match algorithms. Hence the
statefulness is provided great perforamnce advantages [2].

 There are basically two different search mechanisms
from which the firewall statfulness is implemented like the
first one is the slow algorithm which implements the “first
match” semantics and compares a packet to all the rules and
the second method is the fast state lookup mechanism which
checking that whether this particular packet is belongs to an
existing open flow [2].

As per stated in investigated paper [2], for the TCP
connections, stateful firewalls delivering the more
performance in which the fast lookup method is handling
many of packets. But for the connectionless ICMP or UDP,
only the “slow” algorithm is active and hence this makes
real bottleneck. Hence as per stated in [2], “slow” algorithm
doesn’t need to be slow, and its showing that the GEM
algorithm has a matching speed that is comparable to that of
the state lookups: In isolation, the algorithm required under
1 usec per packet, and our Linux GEMiptables
implementation sustained a matching rate of over 30,000
packets-per-second (pps), with 10,000 rules, without losing
packets, on a standard PC workstation [2].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

Thus according to the stated problem, it becomes essential
to present the complex algorithm for stateful firewalls which
is most efficient and practical algorithm for firewall packets.
In this paper we have to investigate the efficient packet
matching algorithm for firewall networks that adopted in
[2]. They consider a classical algorithm that we adapted to
the firewall domain. We call the resulting algorithm
“Geometric Efficient Matching” (GEM) [2]. The GEM
algorithm enjoys a logarithmic matching time performance.
However, the algorithm’s theoretical worst-case space
complexity is O(n4) for a rule-base with n rules. Because of
this perceived high space complexity, GEM-like algorithms
were rejected as impractical by earlier works. Contrary to
this conclusion, this paper shows that GEM is actually an
excellent choice. Based on statistics from real firewall rule-
bases, we created a Perimeter rules model that generates
random, but no uniform, rule-bases. We evaluated GEM via
extensive simulation using the Perimeter rules model.

Proposed GEM:
The firewall packet matching problem finds the first rule
that matches a given packet on one or more fields from its
header. Every rule consists of set of ranges [li; ri] for i = 1; :
: : ; d, where each range corresponds to the i-th field in a
packet header. The field values are in 0 · li; ri · Ui, where Ui
= 232 ¡ 1 for IP addresses, Ui = 65535 for port numbers, and
Ui = 255 for ICMP message type or code. Table 1 lists the
header fields we use (the port fields can double as the
message type and code for ICMP packets) [3].

The Data Structure:
The GEM search data structure consists of two parts. The
first part is an array of pointers, one for each protocol
number, along with a cell for the ‘¤’—all protocols and
small header for every cell in array. Header contains
information about the order of data structure levels and
pointer to the first level and the number of simple ranges in
that level. The second part represents the levels of data
structure. Every level is a set of nodes, where each node is
an array. Each array cell specifies a simple range, and
contains a pointer to the next level node. In the last level the
simple range information contains the number of the winner
rule instead of the pointer to the next level.
The Search Algorithm:
The packet header contains the protocol number, source and
destination address and port numbers fields. First, we check
the protocol field and go to the protocol array of the search
data structure, to select the corresponding protocol database
header. From this point, we apply a binary search with the
corresponding field value on every level, in order to find the
matching simple range and continue to the next level. The
last level will supply us with the desired result—the
matching rule number [2].
Search time:
In each level we execute a binary search on an array of at
most 2n entries, where n is the maximal number of active

rules. We process two searches: one with the packet’s
protocol and one in the ‘¤’ data structure. Thus, for d levels,
the search time is O(d log n). For a constant d = 4, we get an
O(log n) search time. Note that the ‘¤’search data structure
only has 2 levels (for IP addresses), thus the search time is
dominated by the time to search the 4 levels of the TCP
search data structure [3].
The Build Algorithm:
The build algorithm is executed once for each protocol. The
input to the build algorithm consists of the rule-base, plus
the field order to use. The order dictates the contents of each
data structure level, and also, the order in which the header
fields will be tested by the search algorithm [2]. Thus using
this build algorithm we evaluated the performance metrics
such as build time and space complexity.

V. EVALUTION

Both the above algorithms are evaluated using the
different online datasets in order to shows their
effectiveness. Their particular results are presented in our
investigation papers. In this our investigation work,
prepared the following architectural overview of this two
approaches one for stateless firewall filters and other for
stateful firewall filters and hence both are efficient in their
own cases still to the date [Figure 1 and Figure 2].

However, in the same papers we found that this
approaches still having some disadvantages which we can
put for further research optimization work for both stateful
and stateless firewalls.

In case of algorithm 1 for stateless firewall, some
studies show that this algorithm is about 11 times slower
than the Hamed and Al-Shaer algorithm. With the
optimization of a static rule set this performance
disadvantage is of little consequence as the optimization of a
typical rule set using Algorithm 1 is performed in the order
of 10 seconds and this task would only need to be performed
infrequently when new rules are inserted or when a
significant change in traffic performance is noted [1].

Same in case of proposed new GEM algorithm,
when we are trying to apply it on the higher levels of our
data structure, it resulted into that this greatly increases the
preprocessing time, and only gives minor improvements to
the space complexity. It was basically proposed to overcome
this problem but still its showing the litter bad performances
in such cases.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

Figure 1: Stateless Algorithm 1 Implementation Design

VI. CONCLUSION AND FUTURE WORK

Thus in this research paper we investigated the two
packet matching and filtering methods for stateless and
statful firewalls. Here we discussed those approaches along
with their evaluation results. In case of stateless approach,
one is the motivation to optimize the rule order of firewalls
such that the performance of the firewall is improved by
reducing the potential number of packet-rule matches.
Hence we investigate this new algorithm 1 here. The
algorithm presented here is shown to have improved
performance compared to an earlier reported algorithm in all
cases, at the cost of higher runtime complexity. The
increased runtime complexity is unlikely to be significant
for the offline optimization of a firewall, which is the main
target of this algorithm.
In the other case means stateful firewall optimization GEM
is presented and investigated. We have seen that the GEM
algorithm is an efficient and practical algorithm for firewall
packet matching. We implemented it successfully in the
Linux kernel, and tested its packet-matching speeds on live
traffic with realistic large rule-bases. GEM’s matching
speed is far better than the naive linear search, and it is able
to increase the throughput of iptables by an order of
magnitude. On rule-bases generated according to realistic
statistics, GEM’s space complexity is well within the
capabilities of modern hardware. Thus, we believe that

GEM may be a good candidate for use in firewall matching
engines [2].

Apart from this investigation studies, still there are
downfalls for this algorithms which we need to present in
further work and proposed new approaches to overcome this
drawbacks.

Figure 2: Stateful Algorithm Design

VII. REFERENCE

[1] “Optimising Rule Order for a Packet Filtering Firewall”,
Ian Mothersole and Martin J. Reed, IEEE, 2011.

[2] “The Geometric Efficient Matching Algorithm for
Firewalls”, Dmitry Rovniagin and Avishai Wool, Senior
Member, IEEE, 2011.
[3] “Study of GEM”,
http://dc310.4shared.com/doc/fbIZsCX8/preview.html

[4] M.M. Buddhikot, S. Suri, and M. Waldvogel, “Space
Decomposition Techniques for Fast Layer-4 Switching,”
Proc. Conf. Protocols for High Speed Networks IV, pp. 25-
41, Aug. 1999.

[5] W.R. Cheswick, S.M. Bellovin, and A. Rubin, Firewalls
and Internet Security: Repelling the Wily Hacker, second ed.
Addison-Wesley, 2003.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

[6] M. Christiansen and E. Fleury, Using Interval Decision
Diagrams for Packet Filtering,
http://www.cs.auc.dk/fleury/publications. html, 2002.

[7] E. Cohen and C. Lund, “Packet Classification in Large
ISPs: Design and Evaluation of Decision Tree Classifiers,”
Proc. ACM SIGMETRICS, pp. 73-84, 2005.

[8] S. Crosby and D. Wallach, “Denial of Service via
Algorithmic Complexity Attacks,” Proc. 12th USENIX
Security Symp., pp. 29-44, Aug. 2003

[9] C. Shannon, E. Aben, k. claffy, and D. Andersen, “The
CAIDA anonymized 2008 internet traces.” [Online].
Available:
http://www.caida.org/data/passive/passive 2008 dataset.xml

[10] E. Cohen and C. Lund, “Packet classification in large
ISPs: Design and evaluation of decision tree classifiers,” in
Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’05. New York, NY, USA:
ACM, June 2005, pp. 73–84.

[11] E. L. Lawler, “Sequencing jobs to minimize total
weighted completion time subject to precedence constraints,”
in Algorithmic Aspects of Combinatorics, ser. Annals of
Discrete Mathematics, B. Alspach, P. Hell, and D. J. Miller,
Eds. Elsevier, 1978, vol. 2, pp. 75–90.

[12] E. W. Fulp, “Optimization of network firewall policies
using directed acyclic graphs,” in Proceedings of the IEEE
Internet Management Conference, 2005.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

