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I. ABSTRACT

For the network devices like firewall or IPSec, packet 
filtering is plays very critical role in high speed networks. 
Thus it is important that firewall policies should be 
optimized in order to provide the efficient security for high 
speed networks.  There are many techniques presented by 
researchers for exploiting the characteristics of the filtering 
policies, however they do not consider the traffic behavior 
in optimizing their search data structures. In this paper we 
are discussing the recent new optimized packet filter and 
packet matching techniques for both stateless and statfull 
firewall. Algorithm first is presented with an objective of 
reduction in packet matching cost in all cases where as 
algorithm second is presented with an objective of less cost 
and less packet matching time. 

We are discussing the algorithm first which is basically 
presented in order to produce efficient performance in terms 
of lower cost of packet matching of the firewall. The 
performance of the algorithm is related to complexity of the 
firewall rule set and is compared to an alternative algorithm 
demonstrating that the algorithm here has improved the 
packet matching cost in all cases. Thus in short we present 
an algorithm which orders the rules in a firewall rule set to 
best suit the trends in the network traffic (as given by a 
recent network trace file) and therefore reduce the potential 
number of packet-rule matches. Whereas in second 
investigated algorithm we consider a classical algorithm 
that we adapted to the firewall domain. We call the resulting 
algorithm “Geometric Efficient Matching” (GEM). The 
GEM algorithm enjoys a logarithmic matching time 
performance.

Index Terms—GEM, network security, firewall, firewall 
queries, firewall testing, firewall correctness.

II. INTRODUCTION

Firewalls and IPSec gateways have become major 
components in the current high speed Internet infrastructure 
to filter out undesired traffic and protect the integrity and 
confidentiality of critical traffic. In these devises, the 
filtering decision is based on a security policy defined 
according to predefined high level security requirements and 
is composed of a set of ordered filtering rules against which 
the net work traffic is sequentially matched in order to 
determine the appropriate filtering action. Therefore, packet 
filtering is a critical component that determines the 

performance of these networking devices. With the dramatic 
advances in the current network speeds, firewall packet 
filtering must be constantly optimized to cope with the 
network traffic demands and attacks. This requires reducing 
the packet matching time needed to \allow" or \deny" 
packets in order to minimize the end-to-end delay. This 
problem is even more critical for application-level filtering, 
where a wide variety of packet filtering fields is used. Thus, 
efficient yet easy to implement filtering policy optimization 
is highly crucial to enable high speed packet filtering for 
effective deployment of traffic filtering technologies in the 
Internet.

In this paper we have to present the solution to this 
well studied problem of firewall packet matching. Apart 
from this, there are some other issues which make such 
problem bit complex. 1. Unlike firewalls, routers use 
“longest prefix match” semantics. 2. Firewall matching 
problem is 4D or 5D, whereas router matching is usually 1D 
or 2D: A router typically matches only on IP addresses, and 
does not look deeper, into the TCP or UDP packet headers. 
3. Major firewall vendors support rules that utilize IP 
address ranges, in addition to subnets or CIDR blocks: this 
is the case for Check Point and Juniper—the main exception 
is Cisco that only supports individual IP addresses or 
subnets. Thus in these cases it becomes crucial that firewall 
needs their own efficient packet filtering and matching 
algorithm with objective of cost and time effective 
processing. 

General efficient packet matching techniques exist; a 
review of some is presented by Gupta and McKeown [1]. 
However, these techniques do not make use of information 
about the relative frequency of the packets that are to be 
matched. Hence it will just increase the overall cost of 
matching and computation time. 

In this paper, we are investigating the two new methods 
for packet matching which are efficient as compared to 
existing algorithms. Below Section III is presenting the 
literature overview over firewall types and rules 
optimization techniques. Section IV discussing both 
algorithms investigated, and section V discuss the work 
done over this algorithms. 

III. LITERATURE REVIEW 

A. Firewall Types

This research is focusing on the processing mode 
type of firewalls as they relate to Network Layer packet 
filtering. We however give a summary of firewall 
classifications here following.
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1. Packet Filter Firewall: These are based on first 
generation firewall technology. They analyze network 
traffic at the transport layer. They examine each IP network 
packet to see if it matches one of the rules defined for 
allowing or denying data flows.

The decision is based on the information they get 
from the packet's transport layer headers and the direction 
the packet is going into. They are therefore configured to 
check:

Transport layer type (TCP, ICMP, UDP)
Source port
Destination IP address
Source IP address
Network interface the packet arrives on
Destination port

Packet filters do the above by applying a rule set residing in 
the TCP/IP kernel that defines what action goes with which 
rule. They come under three sub categories: 1.1 Static 
Filtering, 1.2 Dynamic Filtering, and 1.3 Stateful Filtering. 

2. Circuit Level Firewalls: These are based on second 
generation firewall technology. They work based on the fact 
that a packet is either a data packet or a connection request 
belonging to a connection or circuit between two peer 
transport layers. These firewalls work by:
Checking that each connection setup follows a handshake 

system for the transport layer protocol being used.
Storing a session identifier for the connection
Connection state: handshake, established, or closing
Only forwarding packets after the handshake is complete
Maintaining a table of valid connections and removing it 
once the connection is terminated
Closing the virtual circuit after transmission

3. Application Layer Firewall: Also called third generation 
firewall. These firewalls evaluate packets for valid data at 
the application layer before allowing a connection. 
Examines data in network packets at the application layer
Maintains connection state and sequencing information
Can validate passwords and service requests
Most of them include proxy services for specific services 
such as HTTP or FTP which provide more checks and 
generate audit records about the traffic they transfer.

4. Dynamic Firewalls [Stateful Firewall]: A fourth 
generation firewall type allowing modification of the rule 
base. A virtual connection is established and the packet is 
allowed to travel the firewall server. These provide support 
for UDP packets by associating them with a virtual 
connection. The connection information is kept for a short 
period and the connection is terminated if no response 
packet is received within that short time. They are good for 
not allowing unwanted UDP packets into a network because 
the response packet must contain a destination address that 
matches the original source address.

5. Hybrid Firewall: Because of the need to do more than 
packet inspection, firewalls are being implemented as hybrid 
systems. These are mostly implemented by adding packet 
filtering to an application gateway. Cisco PIX firewalls are 
an example of such hybrid firewalls.

B. Firewall Rule Set and Optimzation Techniques

A rule set is a group of rules programmed to allow or deny 
packets. The decision to allow or deny is based on the 
values contained in the packet. The firewall rule set 
processes both the packets arriving from the public Internet, 
as well as the packets originating from the internal network. 
Every service based on TC/IPA i.e.: telnet, www, mail, etc. 
is predefined by its protocol i.e. SSH, HTTP, SMTP etc. and 
privileged (listening) port. Packets destined for a specific 
service, originate from the source address using an 
unprivileged (high order) port and target the specific service 
port on the destination address. All the above parameters 
(i.e. ports and addresses) are used as traditional selection 
criteria to create rules which will pass or block services.
Optimization Techniques:
1. Rule set clean up: This approach analyzes the rule set to 
identify inconsistencies and redundancy in the rule set and 
removes them. Rules that make no unique contribution to 
the firewall behavior are removed. These are either 
Redundant or Shadowed rules. Redundant rules never match 
packets because there are more preceding rules matched 
first. Unused rules that have the log option but have no logs 
showing that they have matched packets. They are therefore 
candidates for removal when optimizing though their 
removal may affect firewall behavior later. Remove rules 
for unused Network groups E.g. if the organization does not 
have a mail server, SMTP rules can be taken out of the 
configuration.
2. Rule set re-ordering: This technique relies on the network 
statistics logged on the firewall or written to file in a 
network database. It lists most used rules in decreasing order 
of usage by hit count and percentage hit count. These rules 
can then be moved towards the beginning of the rule set to 
improve performance. Optimize the rule set by ordering 
rules based on the rule usage data and rule order 
dependencies that does not alter the firewall behavior. This 
moves the most used rules toward the beginning of the rule 
set until they are very close to the source of an order 
dependency. The complexity with this method is the 
dependencies problem.
3. Rule Grouping: It is evident that a major part of the 
network traffic matches a small subset of the firewall rules. 
This therefore calls for selecting these rules and calling 
them by groups depending on their usage. This scheme 
divides the filtering policy into two layers of rules, (a) most 
active rules-those performing the most packet matching and 
(b) inactive rules-perform much less matching. Rules are 
checked and if two or more rules are found to have the same 
matching action, they are merged. This reduces the rule set 
size and consequently the search time for the filtering 
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algorithm because fewer rules are inspected when deny or 
allow decision is to be made by the firewall.
4. Rule Frequency re-ordering: The number of times a rule 
is triggered is recorded and used to determine matching 
patterns and arrangement of the whole rule set. Ehab Al-
Shaer et.al. propose an adaptive way of dynamically 
optimizing firewall rule sets using actively calculated 
statistics. 
5. Rule Editing: Firewalls have thousands of rules and 
hundreds of IP addresses to take care of. The typical 
approach is to scan through all these rules in a linear method 
until a match is found for the packet being inspected. 
6. Go To Function: Modern Firewalls come with a feature 
allowing skipping from one rule or rule set to another rule in 
a rule set. The go to function is used to switch the search 
and match flow from the default one (next rule in the list) to 
the one specified in the go to command.

IV. INVESTIGATED ALGORITHMS 

1. Stateless Firewall Optimization Algorithm 

As in the problem statement, the optimization problem of 
firewall is nothing but the placing rules in way that most 
commonly used rules are behind the top of the rule set and 
hence it results into the less searching time. Thus to provide 
the optimization to this problem, generally the rules those 
are associated with weight is equals to total number of 
maches of this particular rules in traffic flow. A naive 
approach would be to rank order the rules according to the 
weightings; but this would not take into account rule 
dependencies and would probably change the security 
policy. This is prompt for new more efficient and complex 
approach for rule optimization. 
Thus the new algorithm is presented in [1], which is recent 
research in this area for stateless firewall. Here below 
algorithm 1 is added from [1] as investigation algorithm for 
this research paper. 
Algorithm 1 OptimiseAllRules(start_rules)
1: H ← BuildHeap(H, start_rules)
2: rule_list ← CreateList(rule_list, nil)
3: while H _= ∅ do
4: Rb ← HeapGet(H)
5: S ← {all rules preceding Rb}
6: for all Rc ∈ {S then Rb} do
7: if Rc /∈
rule_list then
8: current ← ListTail(rule_list)
9: best_cost ← Cost(rule_list)
10: best_pos ← current
11: ListRemove(rule_list, Rc)
12: while current _= ListHead(rule_list)
do
13: current ← ListPrevious(current)
14: Rt ← ListGet(current)
15: if Rt is not preceding Rc then

16: ListInsertAfter(current, Rc)
17: if Cost(rule_list) < best_cost
then
18: best_cost ← Cost(rule_list)
19: best_pos ← current
20: end if
21: ListRemove(rule_list, Rc)
22: else
23: break
24: end if
25: end while
26: ListInsertAfter(best_pos, Rc)
27: HeapRemove(H, Rc)
28: end if
29: end for
30: end while
31: return rule_list

This algorithm is showing the more improved results as 
compared to previous algorithm for all the performance 
metrics [1].  This algorithm is evaluated using the SCADIA 
Dataset which is collected from various intonations internet 
flows. 

2. Stateful Firewall Optimization Algorithm 

     Recently many firewalls are generally statefull, which 
having the two advatanges such as 1. administrator does not 
need to write explicit rules for returntraffic—and such 
return-traffic rules are inherently insecure since they rely on 
source-port filtering. And hence such firewalls are more 
secure as compared to simple stateless packet filters. 2. One 
more advantage is that this kind of firewalls are more faster 
and simpler than the rule match algorithms. Hence the 
statefulness is provided great perforamnce advantages [2]. 
  
      There are basically two different search mechanisms 
from which the firewall statfulness is implemented like the 
first one is the slow algorithm which implements the “first 
match” semantics and compares a packet to all the rules and 
the second method is the fast state lookup mechanism which 
checking that whether this particular packet is belongs to an 
existing open flow [2]. 

As per stated in investigated paper [2], for the TCP 
connections, stateful firewalls delivering the more 
performance in which the fast lookup method is handling 
many of packets. But for the connectionless ICMP or UDP, 
only the “slow” algorithm is active and hence this makes 
real bottleneck. Hence as per stated in [2], “slow” algorithm 
doesn’t need to be slow, and its showing that the GEM 
algorithm has a matching speed that is comparable to that of 
the state lookups: In isolation, the algorithm required under 
1 usec per packet, and our Linux GEMiptables
implementation sustained a matching rate of over 30,000 
packets-per-second (pps), with 10,000 rules, without losing 
packets, on a standard PC workstation [2].
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Thus according to the stated problem, it becomes essential 
to present the complex algorithm for stateful firewalls which 
is most efficient and practical algorithm for firewall packets. 
In this paper we have to investigate the efficient packet 
matching algorithm for firewall networks that adopted in 
[2]. They consider a classical algorithm that we adapted to 
the firewall domain. We call the resulting algorithm 
“Geometric Efficient Matching” (GEM) [2]. The GEM 
algorithm enjoys a logarithmic matching time performance. 
However, the algorithm’s theoretical worst-case space 
complexity is O(n4) for a rule-base with n rules. Because of 
this perceived high space complexity, GEM-like algorithms 
were rejected as impractical by earlier works. Contrary to 
this conclusion, this paper shows that GEM is actually an 
excellent choice. Based on statistics from real firewall rule-
bases, we created a Perimeter rules model that generates 
random, but no uniform, rule-bases. We evaluated GEM via 
extensive simulation using the Perimeter rules model.

Proposed GEM:
The firewall packet matching problem finds the first rule
that matches a given packet on one or more fields from its 
header. Every rule consists of set of ranges [li; ri] for i = 1; : 
: : ; d, where each range corresponds to the i-th field in a 
packet header. The field values are in 0 · li; ri · Ui, where Ui 
= 232 ¡ 1 for IP addresses, Ui = 65535 for port numbers, and 
Ui = 255 for ICMP message type or code. Table 1 lists the 
header fields we use (the port fields can double as the 
message type and code for ICMP packets) [3].

The Data Structure: 
The GEM search data structure consists of two parts. The 
first part is an array of pointers, one for each protocol 
number, along with a cell for the ‘¤’—all protocols and 
small header for every cell in array. Header contains 
information about the order of data structure levels and 
pointer to the first level and the number of simple ranges in 
that level. The second part represents the levels of data 
structure. Every level is a set of nodes, where each node is 
an array. Each array cell specifies a simple range, and 
contains a pointer to the next level node. In the last level the 
simple range information contains the number of the winner 
rule instead of the pointer to the next level.
The Search Algorithm:
The packet header contains the protocol number, source and 
destination address and port numbers fields. First, we check 
the protocol field and go to the protocol array of the search 
data structure, to select the corresponding protocol database 
header. From this point, we apply a binary search with the 
corresponding field value on every level, in order to find the 
matching simple range and continue to the next level. The 
last level will supply us with the desired result—the 
matching rule number [2].
Search time:
In each level we execute a binary search on an array of at 
most 2n entries, where n is the maximal number of active 

rules. We process two searches: one with the packet’s 
protocol and one in the ‘¤’ data structure. Thus, for d levels, 
the search time is O(d log n). For a constant d = 4, we get an 
O(log n) search time. Note that the ‘¤’search data structure 
only has 2 levels (for IP addresses), thus the search time is 
dominated by the time to search the 4 levels of the TCP 
search data structure [3].
The Build Algorithm:
The build algorithm is executed once for each protocol. The 
input to the build algorithm consists of the rule-base, plus 
the field order to use. The order dictates the contents of each 
data structure level, and also, the order in which the header 
fields will be tested by the search algorithm [2]. Thus using 
this build algorithm we evaluated the performance metrics 
such as build time and space complexity. 

V. EVALUTION 

Both the above algorithms are evaluated using the 
different online datasets in order to shows their 
effectiveness. Their particular results are presented in our 
investigation papers. In this our investigation work, 
prepared the following architectural overview of this two 
approaches one for stateless firewall filters and other for 
stateful firewall filters and hence both are efficient in their 
own cases still to the date [Figure 1 and Figure 2]. 

However, in the same papers we found that this 
approaches still having some disadvantages which we can 
put for further research optimization work for both stateful 
and stateless firewalls. 

In case of algorithm 1 for stateless firewall, some 
studies show that this algorithm is about 11 times slower 
than the Hamed and Al-Shaer algorithm. With the
optimization of a static rule set this performance 
disadvantage is of little consequence as the optimization of a 
typical rule set using Algorithm 1 is performed in the order 
of 10 seconds and this task would only need to be performed 
infrequently when new rules are inserted or when a 
significant change in traffic performance is noted [1].

Same in case of proposed new GEM algorithm, 
when we are trying to apply it on the higher levels of our 
data structure, it resulted into that this greatly increases the 
preprocessing time, and only gives minor improvements to 
the space complexity. It was basically proposed to overcome 
this problem but still its showing the litter bad performances 
in such cases. 
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Figure 1: Stateless Algorithm 1 Implementation Design

VI. CONCLUSION AND FUTURE WORK 

Thus in this research paper we investigated the two 
packet matching and filtering methods for stateless and 
statful firewalls. Here we discussed those approaches along 
with their evaluation results. In case of stateless approach, 
one is the motivation to optimize the rule order of firewalls
such that the performance of the firewall is improved by
reducing the potential number of packet-rule matches. 
Hence we investigate this new algorithm 1 here. The 
algorithm presented here is shown to have improved 
performance compared to an earlier reported algorithm in all 
cases, at the cost of higher runtime complexity. The 
increased runtime complexity is unlikely to be significant
for the offline optimization of a firewall, which is the main
target of this algorithm.
In the other case means stateful firewall optimization GEM
is presented and investigated. We have seen that the GEM 
algorithm is an efficient and practical algorithm for firewall 
packet matching. We implemented it successfully in the 
Linux kernel, and tested its packet-matching speeds on live 
traffic with realistic large rule-bases. GEM’s matching 
speed is far better than the naive linear search, and it is able 
to increase the throughput of iptables by an order of 
magnitude. On rule-bases generated according to realistic 
statistics, GEM’s space complexity is well within the 
capabilities of modern hardware. Thus, we believe that 

GEM may be a good candidate for use in firewall matching 
engines [2].

Apart from this investigation studies, still there are 
downfalls for this algorithms which we need to present in 
further work and proposed new approaches to overcome this 
drawbacks. 

Figure 2: Stateful Algorithm Design
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