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Abstract—In this article, we initiate and explore the idea of 

intuitionistic L-Fuzzy Z-Subalgebras and intuitionistic L-Fuzzy 

Z-ideals in Z-algebras. We further explore some of their 

properties of intuitionistic L-Fuzzy Z-Subalgebras and 

intuitionistic L-Fuzzy Z-ideals under Z-homomorphism and 

cartesian product in Z-algebras.  
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I.  INTRODUCTION  

Atanassov and Stoeva [1] introduced the notion of 

intuitionistic L-fuzzy sets in 1984 as an extension of Goguen’s 

[3] notion of L-fuzzy set. Here they have defined both 

membership and non-membership functions from the 

Universe of discourse X to the set L, where (L, ≤, ∧, ∨) is a 

complete lattice. Motivated by this, many mathematicians 

started to review various concepts and theorems in 

intuitionistic L-fuzzy structures. Currently, in the year 2017, 

Chandramouleeswaran et al.[2] introduced a new class of 

algebra called Z-algebra that arise from the notion of 

propositional calculi. In our previous articles [4, 5, 6, 7, 8, 9, 

10, 11] we have introduced fuzzy Z-Subalgebras, fuzzy Z-

ideals, fuzzy H-ideals, fuzzy p-ideals, fuzzy implicative ideals, 

intuitionistic fuzzy Z-Subalgebras and intuitionistic fuzzy Z-

ideals in Z-algebras. In this article, we have initiated 

intuitionistic L-fuzzy Z-Subalgebras and intuitionistic L-fuzzy 

Z-Ideals in Z-algebras.  

II. PRELIMINARIES 

In this section, we recall some basic definitions that are 

required for our work 

Definition 2.1[2]  A Z-algebra ( )0,,X 
 
is a nonempty set X 

with a constant 0 and a binary operation   satisfying the 

following conditions: 

00x)1Z( =  

xx0)2Z( =  

xxx)3Z( =  

xyyx)4Z( =  when 0x   and 0y     x, y  X. 

Definition 2.2[2]  Let )0,,X(   and )0,,Y(  be two                

Z-algebras. A mapping  )0,,Y()0,,X(:h →  is said to  

be a Z-homomorphism of Z-algebras if 

)y(h)x(h)yx(h =  for all Xy,x  . 

Definition 2.3:[12] Let X be a nonempty set. A fuzzy set A 

in X is characterized by a membership function µA which 

associates with each point x in X, a real number in the 

interval [0,1] with the value )x(A representing the “grade 

of membership” of x in A. That is, a fuzzy set A in X is 

characterized by a membership function )x(A  : X → [0, 1]. 

Definition 2.4:[1] Let (L, ≤, ∧, ∨) be a complete lattice 

with least element 0 and greatest element 1 and an involutive 

order reversing operation N : L → L . Then Intuitionistic L-

Fuzzy Set  Xx|)x(),x(,xA AA =  in a nonempty set 

X is an object having the form where LX:A →  is the 

degree of membership function and LX:A →  is the degree 

of non-membership function of the element Xx satisfying 

))x((N)x( AA  .  

Definition 2.5:[1] Let ( )AA ,A =  and ( )BB ,B =  be 

any two intuitionistic L-fuzzy set of a set X. Then we have  

1. ( ) ( ) Xxx,x,xA AA
c =

 
2. ( ) ( ) ( ) ( ) Xxxx,xx,xBA BABA =   

3. ( )( ) ( ) ( ) Xxx1,x,x,A AA
c

AA −==
 

4. ( )( ) ( ) ( ) Xxx,x1,x,A AAA
c

A −==   

5. For any subset T of X ∃ Tx0   such that 

( ) ( )tsupx A
Tt

0A =


  and  ( ) ( )tinfx A
Tt

0A =


. 

is called sup-inf property of A.  

6. The Cartesian product ( )BABA ,BA  =  whose 

membership function LXX:BA →   and non-

membership function LXX:BA →  are defined by 

( ) ( ) ( )yxy,x BABA =   and 

( ) ( ) ( )yxy,x BABA =  for all Xy,x  . 
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Definition 2.6:[1] Let h be a mapping from a set X into 

a set Y. 

(i) Let  Xx|)x(),x(,xA AA =   be an intuitionistic     

L-fuzzy set in X. Then the image of A under h, denoted by   

}Yy)y(),y(,y{)A(h )A(h)A(h =  is an intuitionistic            

L-fuzzy set in Y, defined by:  






 ==
=

−

 −

otherwise0

}y)x(h|x{)y(hif)z(sup
)y(

1
A

)y(hz
)A(h

1 an

d 






 ==
=

−

 −

otherwise1

}y)x(h|x{)y(hif)z(inf
)y(

1
A

)y(hz
)A(h

1

  
is   

(ii) Let  Yy|)y(),y(,yB AA =  be an intuitionistic 

fuzzy set in Y. The pre-image of B under h, symbolized by 

}Xx)x(),x(,x{)B(h
)B(h)B(h

1
11 = −−

−
 defined by: 

))x(h()x( B)B(h 1 = −  and  ))x(h()x( B)B(h 1 = −  for all 

Xx  is an intuitionistic L-fuzzy set of X. 

 

III. INTUITIONISTIC L-FUZZY Z-SUBALGEBRAS IN                

Z-ALGEBRAS 

 

              In this section we introduce the notion of 

Intuitionistic L-Fuzzy Z-Subalgebra of a Z-algebra. Also we 

prove some interesting results. 

Definition 3.1 : An Intuitionistic L-fuzzy Set 

( )AA ,A =  in a Z-algebra ( )0,,X   is called an 

Intuitionistic L-fuzzy             Z-Subalgebra of X if  it 

satisfies the following conditions: 

(i) )y()x()yx( AAA   

(ii) )y()x()yx( AAA    for all Xy,x  . 

Example 3.2: Consider a Z-algebra X= {0,1,2,3} with 

the following Cayley table as in [8]: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 3 2 

2 0 3 2 1 

3 0 2 1 3 

An intuitionistic L-fuzzy set ( )AA ,A =  in X defined by 









=

=

=

=

3,2xif3.0

1xif4.0

0xif6.0

)x(A        and         









=

=

=

=

3,2xif6.0

1xif5.0

0xif4.0

)x(A  

is an intuitionistic L-fuzzy Z-Subalgebra of X. 

By applying the definition of intuitionistic L-fuzzy set, we 

can prove easily the following result. 

Theorem 3.3: Let 1A  and 2A  be two intuitionistic L-fuzzy 

Z- Subalgebras of a Z-algebra X. Then 21 AA   is an 

intuitionistic L-fuzzy Z-Subalgebra of X. 

We can generalize the above theorem as follows. 

Corollary 3.4:   Let  i|Ai  be a family of intuitionistic 

L-fuzzy Z-Subalgebras of a Z-algebra X. Then 
i

iA  is an 

intuitionistic L-fuzzy Z-Subalgebra of X. 

By using the definition of cA , we can prove the following 

result. 

Theorem 3.5: An intuitionistic L-fuzzy set ( )AA ,A =  is 

an intuitionistic L-fuzzy Z-Subalgebra of a Z-algebra X  if 

and only if the L-fuzzy sets A  and 
c

A )(  are L-fuzzy                        

Z-Subalgebras of X. 

Theorem 3.6: ( )AA ,A =  is an intuitionistic L-fuzzy              

Z-Subalgebra of a Z-algebra X  if and only if  

(i) ( )c
AA )(,A =  and   (ii) ( )A

c
A ,)(A = , both are 

intuitionistic L-fuzzy Z-Subalgebras of X. 

Proof: Let ( )AA ,A =  be  an intuitionistic L-fuzzy                      

Z-Subalgebra  of  a Z-algebra X. 

Let  .Xy,x  Then, 

(i) )y()x()yx( AAA   

(ii) )y()x()yx( AAA   

(iii) )yx(1)yx()( A
c

A −= )y()()x()( c
A

c
A =  

(iv)   

)yx(1)yx()( A
c

A −=

)y()()x()( c
A

c
A =  

From (i) and (iii), we get A is an intuitionistic L-fuzzy                 

Z-Subalgebra of X. 

And, from (ii) and (iv), we get A is an intuitionistic                    

L-fuzzy Z-Subalgebra of X. 

Conversely, assume that ( )c
AA )(,A =  and  

( )A
c

A ,)(A =  are intuitionistic L-fuzzy Z-Subalgebras 

of a Z-algebra X. For any Ay,x  ,  

)y()x()yx( AAA  and )y()x()yx( AAA   

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020227
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

498

www.ijert.org
www.ijert.org
www.ijert.org


Hence ( )AA ,A =  is an intuitionistic L-fuzzy Z-Subalgebra 

of X. 

Analogously, we can prove the following result. 

Theorem 3.7: An intuitionistic L-fuzzy set ( )AA ,A =  in 

a Z-algebra X is an intuitionistic L-fuzzy Z-Subalgebra of X 

if and only if  ( )s;U A  and ( )t;L A  are Z-Subalgebras of 

X for all ]1,0[t,s  . 

As a consequence, we have the following corollary. 
Corollary 3.8: Any Z-Subalgebra of a Z-algebra X can be 

realized as both the upper s-level and lower t-level                          

Z-Subalgebras of some intuitionistic L-fuzzy Z-Subalgebras 

of X. 

Analogously, the following theorems can be proved. 

Theorem 3.9: Let X be a Z-algebra. Then any given chain of 

Z-Subalgebras XQ...QQ r10 = , there exists an 

intuitionistic L-fuzzy Z-Subalgebra A of X whose upper                  

s-level and lower t-level Z-Subalgebras are exactly the                    

Z-Subalgebras of this chain. 

Theorem 3.10: Let A be an intuitionistic L-fuzzy                         

Z-Subalgebra of a Z-algebra X. Then 

(i)    two upper s-level Z- Subalgebras ( )1A s;U   and 

( )2A s;U   (with 21 ss  ) of A are equal if  and only if  there 

is no Xx  such that ( ) 2A1 sxs  . 

(ii)   two lower t-level Z- Subalgebras  ( )1A t;L   and  

( )2A t;L   ( with 21 tt  ) of A are equal if and only if  there 

is no Xx  such that ( ) 2A1 txt   

Theorem 3.11: Let X be a finite Z-algebra and A be an 

intuitionistic L-fuzzy Z-Subalgebra of X. 

(i)   If  n1A s,...,s)Im( = , then the family of                            

Z-Subalgebras ( )iA s;U  , n,,2,1i =  constitutes all the 

upper s-level Z-Subalgebras of A. 

(ii)  If  r1A t,...,t)Im( = , then the family of                             

Z-Subalgebras ( )iA t;L   , n,,2,1i =  constitutes   

 all the lower t-level Z-Subalgebras of A. 

Theorem 3.12: Let A be an intuitionistic L-fuzzy                        

Z-Subalgebra of a Z-algebra X. Then 

(i) If  )Im( A  is finite, say  n1 s,...,s , then for any 

( ) ( )jAiAAji s;Us;U),Im(s,s =  implies ji ss = . 

(ii) If  )Im( A  is finite, say  n1 t,...,t , then for any 

( ) ( )jAiAAji t;Lt;L),Im(t,t =  implies ji tt = . 

Theorems 3.13: Let A and B be any two intuitionistic               

L-fuzzy Z-Subalgebras of a Z-algebra X. Then BA  is an 

intuitionistic L-fuzzy Z-Subalgebra of XX . 

Theorem 3.14: Let h be a Z-homomorphism from a                    

Z-algebra ( )0,,X   onto a Z-algebra ( )0,,Y   and 

( )AA ,A =  be an intuitionistic L-fuzzy Z-Subalgebra of X 

with sup-inf property. Then the image 

( ) ( )( ) ( )( ) Yyy,y,yAh AhAh =  of A under h is an 

intuitionistic L-fuzzy Z-Subalgebra of Y. 

Theorem 3.15 : Let )0,,Y()0,,X(:h →  be a                            

Z-homomorphism of Z-algebras and B be an intuitionistic               

L-fuzzy Z-Subalgebra of Y. Then the inverse image of B,  

( ) ( )( ) ( )( ) Xxx,x,xBh
BhBh

1
11 = −−

−  is an intuitionistic  

L-fuzzy Z-Subalgebra of X. Converse is true if h is an                  

Z-epimorphism. 

Proof: If h is an Z-epimorphism and ( )Bh 1−
 is an 

intuitionistic L-fuzzy Z-Subalgebra of a Z-algebra X and  

for y1, y2   Y there exists x1, x2 X such that  h(x1) = y1 and 

h(x2) = y2. 

This implies x1=h -1(y1) and  x2= h -1(y2). 

Now, ))x(h)x(h()yy( 21B21B = ))xx(h( 21B =
  

                                                             ( )( )21Bh
xx1 = −

 

                                                        ( )( ) ( )( )2Bh1Bh
xx 11 −−   

                                                     
))x(h())x(h( 2B1B =  

                                                     
)y()y( 2B1B =

 
Analogously, we can prove that 

 
)y()y()yy( 2B1B21B 

 
Thus B is an intuitionistic L-fuzzy Z-Subalgebra of a                       

Z-algebra Y. 

IV  INTUITIONISTIC L-FUZZY Z-IDEALS IN                                

Z-ALGEBRAS 

 In this section we introduce the notion of Intuitionistic                  

L-fuzzy Z-ideal of a  Z-algebra and some interesting results 

are obtained. 

Definition 4.1: An intuitionistic L-fuzzy set  ( )AA ,A =   

in a Z-algebra ( )0,,X   is called an intuitionistic L-fuzzy Z-

ideal of X if it satisfies the following conditions: 

(i) )x()0( AA   and  )x()0( AA   

(ii) A (x)   A (x y)  A (y) 

 (iii) A (x)   A (x  y)   A (y) , for all  Xy,x  . 

Example 4.2: Let X={0,1,2,3} be a set with the 

following Cayley table as in [8]: 

  0 1 2 3 

0 0 1 2 3 

1 0 1 1 3 

2 0 1 2 2 

3 0 3 2 3 
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Then ( )0,,X 
 
 is a Z-algebra. Define an intuitionistic L-fuzzy 

set ( )AA ,A =  in X as follows: A (x)=0.8 for all                     

x = 0,1,2,3   and   A (x)=0.1 for all x = 0,1,2,3 . 

Then,  ( )AA ,A =  is an intuitionistic L-fuzzy Z-ideal of a 

Z-algebra X. 

 

By applying the definition of an intuitionistic L-fuzzy set, we 

can easily prove the following result. 

Theorem 4.3: Intersection of any two intuitionistic L-fuzzy    

Z-ideals of a Z-algebra X is again an intuitionistic L-fuzzy           

Z-ideal of X. 

We generalize the above theorem as follows. 

Theorem 4.4:   Let  i|Ai  be a family of intuitionistic            

L-fuzzy Z-ideals of a Z-algebra X. Then 
i

iA  is an 

intuitionistic L-fuzzy Z-Ideal of X. 

Lemma 4.5:   An intuitionistic L-fuzzy set ( )AA ,A =  is 

an  intuitionistic L-fuzzy Z-ideal of a Z-algebra X if and only 

if the L-fuzzy sets  A  and  c
A )(  are L-fuzzy Z-ideals of 

X. 

Theorem 4.6:  Let ( )AA ,A =  be an intuitionistic                  

L-fuzzy set in a Z-algebra X. Then ( )AA ,A =  is an 

intuitionistic L-fuzzy Z-ideal of X if and only if 

( )c
AA )(,A =   and ( )A

c
A ,)(A =  are intuitionistic 

L-fuzzy  Z-ideals of X. 

Theorem 4.7: An intuitionistic L-fuzzy set ( )AA ,A =  is 

an intuitionistic L-fuzzy Z-ideal of a Z-algebra X  if and only 

if for all Lt,s  , the sets ( )s;U A  and ( )t;L A  are  either 

empty or  Z-ideals of X. 

Theorem 4.8: Let h be a homomorphism from a Z-algebra 

( )0,,X   onto a Z-algebra ( )0,,Y   and A be an intuitionistic  

L-fuzzy Z-ideal of X with sup-inf property. Then image of A, 

( ) ( )( ) ( )( ) Yyy,y,yAh AhAh =   is an intuitionistic                  

L-fuzzy Z-ideal of Y. 

Theorem 4.9: Let )0,,Y()0,,X(:h →  be a                                  

Z-homomorphism of Z-algebras and B be an intuitionistic                 

L-fuzzy Z-ideal of Y. Then the inverse image of B, 

( ) ( )( ) ( )( ) Xxx,x,xBh
BhBh

1
11 = −−

−  is an intuitionistic  

L-fuzzy Z-ideal of X. 

Theorem 4.10: Let )0,,Y()0,,X(:h →  be an                            

Z-epimorphism of Z-algebras. Let B be an intuitionistic                  

L-fuzzy set of Y. If  ( )Bh 1−
 is an intuitionistic L-fuzzy             

Z-ideal of X then B is an intuitionistic L-fuzzy Z-ideal of Y. 

Proof: Assume that If  ( )Bh 1−
 is an intuitionistic L-fuzzy                

Z-ideal of X.  

Let y Y, there exists x X such that h (x) = y. Then (i) 

( )( )x))x(h()y(
BhBB 1−== ( )( )0

Bh 1−  = ))0(h(B   

                                                                 = )0(B 
 

(ii) ( )( )x))x(h()y(
BhBB 1−== ( )( )0

Bh 1− = ))0(h(B                    

                                                                          
= )0(B   

Let x, y   Y. Then there exists a, b   X such that h(a) = x 

and h (b) = y. It follows that 

( )( )a))a(h()x()iii(
BhBB 1−==

    

                                    ( )( ) ( )( )bba
BhBh 11 −− 

 

                                    
))b(h())ba(h( BB =                                                                                        

                                    ))b(h())b(h)a(h( BB =                                                                                         

                                    )y()yx( BB =  

( )( )a))a(h()x()iv(
BhBB 1−==

                    

                                    ( )( ) ( )( )bba
BhBh 11 −− 

 

                                    
))b(h())ba(h( BB =                                                                                       

 

                                    ))b(h())b(h)a(h( BB =  

                                    )y()yx( BB =  

Hence  B is an intuitionistic L-fuzzy Z-ideal of Y. 

 

Theorem 4.11: Let A and B be two intuitionistic L-fuzzy                

Z-ideals in a Z-algebra X. Then BA is an intuitionistic                   

L-fuzzy Z-ideal of  XX . 

Proof:  Take ( ) XXx,x 21  . 

Then ( ) ( ) ( )000,0 BABA =  ( ) ( )2B1A xx     

                                            ( )21BA x,x=    

  

and ( ) ( ) ( )000,0 BABA =  ( ) ( )2B1A xx     

                                           ( )21BA x,x=   

             

Now take ( ) ( ) XXy,y,x,x 2121  . Then 

)x()x()x,x( 2B1A21BA =   
                

( ) ( ))y()yx()y()yx( 2B22B1A11A                                                    

                

))y()y(())yx()yx(( 2B1A22B11A =
                                                   

                
)y,y())yx(),yx(( 21BA2211BA  =                                              

                 )y,y())y,y()x,x(( 21BA2121BA  =  

         )x()x()x,x( 2B1A21BA =   

                

))y()yx(())y()yx(( 2B22B1A11A   

               ))y()y(())yx()yx(( 2B1A22B11A =
 

                
)y,y())yx(),yx(( 21BA2211BA  =  
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                )y,y())y,y()x,x(( 21BA2121BA  =
 

                                            

Hence BA is an intuitionistic L-fuzzy Z-ideal of XX . 

Theorem 4.12: Let A and B be two intuitionistic L-fuzzy sets 

in a Z-algebra X. If BA  is an intuitionistic L-fuzzy Z-ideal 

of  XX , the following are true. 

(i) ( ) ( )y0 BA    and ( ) ( )x0 AB    for all Xy,x  . 

 (ii) ( ) ( )y0 BA    and  ( ) ( )x0 AB    for all Xy,x  . 

Theorem 4.13: Let A and B be two intuitionistic L-fuzzy sets 

in a Z-algebra X such that BA  is an intuitionistic L-fuzzy 

Z-ideal of XX  . Then either A or B is an intuitionistic               

L-fuzzy Z-Ideal of X. 

 

V  CONCLUSION 

In this article, we have introduced intuitionistic L-fuzzy             

Z-Subalgebras and intuitionistic L-fuzzy Z-ideals in                    

Z-algebras and discussed their properties. We extend this 

concept in our research work.  
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