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Abstract—In this article, we initiate and explore the idea of
intuitionistic L-Fuzzy Z-Subalgebras and intuitionistic L-Fuzzy
Z-ideals in Z-algebras. We further explore some of their
properties of intuitionistic L-Fuzzy Z-Subalgebras and
intuitionistic L-Fuzzy Z-ideals under Z-homomorphism and
cartesian product in Z-algebras.
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I INTRODUCTION

Atanassov and Stoeva [1] introduced the notion of
intuitionistic L-fuzzy sets in 1984 as an extension of Goguen’s
[3] notion of L-fuzzy set. Here they have defined both
membership and non-membership functions from the
Universe of discourse X to the set L, where (L, <, A, V) is a
complete lattice. Motivated by this, many mathematicians
started to review various concepts and theorems in
intuitionistic L-fuzzy structures. Currently, in the year 2017,
Chandramouleeswaran et al.[2] introduced a new class of
algebra called Z-algebra that arise from the notion of
propositional calculi. In our previous articles [4, 5, 6, 7, 8, 9,
10, 11] we have introduced fuzzy Z-Subalgebras, fuzzy Z-
ideals, fuzzy H-ideals, fuzzy p-ideals, fuzzy implicative ideals,
intuitionistic fuzzy Z-Subalgebras and intuitionistic fuzzy Z-
ideals in Z-algebras. In this article, we have initiated
intuitionistic L-fuzzy Z-Subalgebras and intuitionistic L-fuzzy
Z-ldeals in Z-algebras.

Il.  PRELIMINARIES
In this section, we recall some basic definitions that are
required for our work
Definition 2.1[2] A Z-algebra (X,x,0) is a nonempty set X
with a constant 0 and a binary operation * satisfying the
following conditions:

(Z) x*0=0
(Z2) 0xx =X
(Z3) x*xx=X
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(Z4) x*xy=y=*x when X0 and y=0 V x,y € X.
Definition 2.2[2] Let (X,x0) and (Y,*,0") be two
Z-algebras. A mapping h:(X,x0) — (Y,*,0") issaid to
be a Z-homomorphism of Z-algebras if

h(x*y) = h(x) * h(y) forallx,y e X.

Definition 2.3:[12] Let X be a nonempty set. A fuzzy set A
in X is characterized by a membership function pA which
associates with each point x in X, a real number in the

interval [0,1] with the value p , (X) representing the “grade
of membership” of x in A. That is, a fuzzy set A in X is
characterized by a membership function p, (X) : X — [0, 1].

Definition 2.4:[1] Let (L, <, A, V) be a complete lattice
with least element 0 and greatest element 1 and an involutive
order reversing operation N : L — L . Then Intuitionistic L-

Fuzzy Set A= {(x,uA(x),vA(x)> [x e X} in a nonempty set
X is an object having the form where p, : X — L isthe
degree of membership function and v, : X — L is the degree
of non-membership function of the element x e X satisfying
HA(X) < N(VA(X)) -

Definition 2.5:[1] Let A=(uu,va) and B=(ug,vg) be
any two intuitionistic L-fuzzy set of a set X. Then we have

- A ={x,va(X) pa ()X € X}

CANB={x,1a () ARg(X)va(X)v vg(x))x e X}

- OA= (HA:(HA)C)z {<X: INCINEITINGY)E X}

C@A=(val.va)={xd-va(X)vaX)x eX]
5. For any subset T of X 3 x,€T

malXo)= StUE ua(t) and valxe)= 'tg valt).

N -

A~ W

such that

is called sup-inf property of A.
6. The Cartesian product Ax B = (a5, Va,g) Whose

membership function p,, g : XxX — L and non-
membership function v g : Xx X — L are defined by
Haxe (X, Y)=pa(X) A pg(y) and

Vg (X, Y)=va(X)v vg(y)forall x,yeX.
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Definition 2.6:[1] Let h be a mapping from a set X into
asety.
(i) Let A= {(x,pA(x),vA(x)> |x e X} be an intuitionistic
L-fuzzy set in X. Then the image of A under h, denoted by
N(A) ={(Y:Hay (V) Vi () € Y} s an intuitionistic
L-fuzzy setin Y, defined by:

sup pa(@) if hHy)={x|h()=y}=¢

Hh(a) (y) = zeh™(y) an
0 otherwise

d

inf va(z) if

1l h(y) ={x[h(x) =y}= ¢
Vha)(Y) =12

1 otherwise
iS
(i) Let B={(y,ua(y),va())lyeY} be an intuitionistic
fuzzy set in Y. The pre-image of B under h, symbolized by

h71(B) :{<x, Hyiey (x), Vi) (X)>|X eX}  defined by:

uh_l(B)(x)zuB(h(x)) and vh-l(B)(x)sz(h(x)) for all

x € X is an intuitionistic L-fuzzy set of X.

I1. INTUITIONISTIC L-FUZZY Z-SUBALGEBRAS IN
Z-ALGEBRAS

In this section we introduce the notion of
Intuitionistic L-Fuzzy Z-Subalgebra of a Z-algebra. Also we
prove some interesting results.

Definition 3.1 : An Intuitionistic L-fuzzy Set
A=(ua,va) in a Z-algebra (Xx0) is called an
Intuitionistic L-fuzzy Z-Subalgebra of X if it

satisfies the following conditions:

(i) La(X*Y) 2 pa(X) Apa(y)

(il) va(X*xy) <va(X)vva(y) forall x,yeX.

Example 3.2: Consider a Z-algebra X= {0,1,2,3} with
the following Cayley table as in [8]:

* 10 1 2 3
0 0 1 2 3
1 0 1 3 2
2 0 3 2 1
3 0 2 1 3

An intuitionistic L-fuzzy set A=(p,,v, ) in X defined by

0.6if x=0
0.4if x=1 and
0.3if x=2,3

Ha(X)=

0.4if x=0
0.5if x=1
06if x=2,3

va(x)=

is an intuitionistic L-fuzzy Z-Subalgebra of X.

By applying the definition of intuitionistic L-fuzzy set, we
can prove easily the following result.

Theorem 3.3: Let A; and A, be two intuitionistic L-fuzzy
Z- Subalgebras of a Z-algebra X. Then A; A, is an

intuitionistic L-fuzzy Z-Subalgebra of X.

We can generalize the above theorem as follows.

Corollary 3.4: Let {A; |i eQ} be a family of intuitionistic

L-fuzzy Z-Subalgebras of a Z-algebra X. Then ﬂAi is an
ieQ

intuitionistic L-fuzzy Z-Subalgebra of X.

By using the definition of A°, we can prove the following
result.
Theorem 3.5: An intuitionistic L-fuzzy set A=(up,v4) is

an intuitionistic L-fuzzy Z-Subalgebra of a Z-algebra X if
and only if the L-fuzzy sets p, and (vp)° are L-fuzzy

Z-Subalgebras of X.
Theorem 3.6: A=(ua,v,) is an intuitionistic L-fuzzy

Z-Subalgebra of a Z-algebra X if and only if

@A =(ua (1a)°) and (ii) ®A=((va)®,va), both are
intuitionistic L-fuzzy Z-Subalgebras of X.

Proof: Let A=(us,va) be an intuitionistic L-fuzzy

Z-Subalgebra of a Z-algebra X.
Let x,yeX Then,

() palx*y)Zpa(X) Apaly)
(ii) va(x*y)<va(x)vva(y)
(i) (ma) (x*y) =1-pa(x*y) = (1a) (X) v (1a)°(¥)
(iv)
(VA) (x*y)=1-va(x*y)
= (Va) () A (V) (Y)
From (i) and (iii), we get @A is an intuitionistic L-fuzzy
Z-Subalgebra of X.
And, from (ii) and (iv), we get ® A is an intuitionistic
L-fuzzy Z-Subalgebra of X.
Conversely, assume that ® A = (HA! (uA)C) and
®A= ((VA)C,VA) are intuitionistic L-fuzzy Z-Subalgebras
of a Z-algebra X. Forany x,yeA,
Ha(X*Y) Zpa(X) Apa(y) and va(X*y) <va(X) v va(y)
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Hence A =(un,v,) isan intuitionistic L-fuzzy Z-Subalgebra
of X.

Analogously, we can prove the following result.

Theorem 3.7: An intuitionistic L-fuzzy set A=(ua,va) in
a Z-algebra X is an intuitionistic L-fuzzy Z-Subalgebra of X
ifand only if U(ua;s) and L(v,;t) are Z-Subalgebras of

X forall s,te[0]].

As a consequence, we have the following corollary.
Corollary 3.8: Any Z-Subalgebra of a Z-algebra X can be
realized as both the upper s-level and lower t-level
Z-Subalgebras of some intuitionistic L-fuzzy Z-Subalgebras
of X.

Analogously, the following theorems can be proved.
Theorem 3.9: Let X be a Z-algebra. Then any given chain of
Z-Subalgebras Qu,c Q; —..cQ, =X, there exists an
intuitionistic L-fuzzy Z-Subalgebra A of X whose upper
s-level and lower t-level Z-Subalgebras are exactly the
Z-Subalgebras of this chain.

Theorem 3.10: Let A be an intuitionistic L-fuzzy
Z-Subalgebra of a Z-algebra X. Then

(i) two upper s-level Z- Subalgebras U(u,;s;) and

U(ua;s,) (with s; <s,) of A are equal if and only if there
isno x e X such that s; < (x)<s,.

(i) two lower t-level Z- Subalgebras L(v,;t;) and
L(va;t,) (with t; > t,) of A are equal if and only if there
isno x e X such that t; > v, (x)>1,

Theorem 3.11: Let X be a finite Z-algebra and A be an
intuitionistic L-fuzzy Z-Subalgebra of X.

(i) If Im(ua) = 1{1,-,S, | , then the family of
Z-Subalgebras U(un;s;),i=12,...,n constitutes all the
upper s-level Z-Subalgebras of A.

(i) If Im(vp)={t;,... t,}, then the family of
Z-Subalgebras L(va;t;), i=1,2,...,n constitutes

all the lower t-level Z-Subalgebras of A.

Theorem 3.12: Let A be an intuitionistic L-fuzzy
Z-Subalgebra of a Z-algebra X. Then

(i) If Im(u,) is finite, say {s,,...,s, }, then for any

si.5; € Im(up), Ulka;si) = Uluass;) implies s; =s;.
(ii) If Im(v,) is finite, say {t;,...,t,}, then for any

ti'tj EIm(VA), L(VA,tl):L(VA,tj) |mp||es ti :tj

Theorems 3.13: Let A and B be any two intuitionistic
L-fuzzy Z-Subalgebras of a Z-algebra X. Then AxB isan
intuitionistic L-fuzzy Z-Subalgebra of XxX.

Theorem 3.14: Let h be a Z-homomorphism from a
Z-algebra (X,%,0) onto a Z-algebra (Y,*,0') and
A=(ua,v,a) be an intuitionistic L-fuzzy Z-Subalgebra of X

with sup-inf property. Then the image

h(A)= {<y, M) W Vrea V)l € Y} of A under h is an
intuitionistic L-fuzzy Z-Subalgebra of Y.
Theorem 3.15 : Let h:(X,*0) — (Y,*,0) bea
Z-homomorphism of Z-algebras and B be an intuitionistic
L-fuzzy Z-Subalgebra of Y. Then the inverse image of B,
h™*(B)= {<x, ph,l(B)(x),vh,l(B)(x)>|x € X} is an intuitionistic
L-fuzzy Z-Subalgebra of X. Converse is true if h isan
Z-epimorphism.
Proof: If h is an Z-epimorphism and h™*(B) is an
intuitionistic L-fuzzy Z-Subalgebra of a Z-algebra X and
for yi1, y2 € Y there exists X1, X2 € X such that h(x;) =y; and
h(Xz) =Y.
This implies x;=h (y1) and x2= h "(y>).
Now, pg(y1*Y2) =ng(h(Xy) * h(X;)) =pg(h(x; *X5))

= Hh—l(B)(Xl *Xy)

2 Hh—l(B)(Xl)/\ Mh—l(B)(Xz)
=pg(h(xq)) Apg(h(Xy;))
=pg(y1) Ang(Y2)

Analogously, we can prove that

ve(Y1*Y2) <ve(Y1) v ve(Y2)
Thus B is an intuitionistic L-fuzzy Z-Subalgebra of a
Z-algebra Y.

IV INTUITIONISTIC L-FUZZY Z-IDEALS IN
Z-ALGEBRAS
In this section we introduce the notion of Intuitionistic
L-fuzzy Z-ideal of a Z-algebra and some interesting results
are obtained.
Definition 4.1: An intuitionistic L-fuzzy set A=(us,va)

in a Z-algebra (X,*,0) is called an intuitionistic L-fuzzy Z-
ideal of X if it satisfies the following conditions:

(1) na(0) 2 pa(x) and va(0) <va(X)

(i) pa () 2 pa (X*y) A pa(y)

@iy va(X) £ va(X*y) vV va(y),forall x,yeX.
Example 4.2: Let X={0,1,2,3} be a set with the
following Cayley table as in [8]:

* 10 1

(@) Nol Nol N
NN
WIN]|WlWl W

1
1
1
3

Wl O
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Then (X,%0) is a Z-algebra. Define an intuitionistic L-fuzzy
set A=(up,va)in Xas follows: p, (x)=0.8 for all

x=0123 and v, (x)=0.1forallx=0,1,2,3.

Then, A=(ua,v,) is an intuitionistic L-fuzzy Z-ideal of a
Z-algebra X.

By applying the definition of an intuitionistic L-fuzzy set, we
can easily prove the following result.
Theorem 4.3: Intersection of any two intuitionistic L-fuzzy
Z-ideals of a Z-algebra X is again an intuitionistic L-fuzzy
Z-ideal of X.
We generalize the above theorem as follows.
Theorem 4.4: Let {A; |i e Q} be a family of intuitionistic
L-fuzzy Z-ideals of a Z-algebra X. Then ﬂAi is an

ieQ
intuitionistic L-fuzzy Z-1deal of X.
Lemma 4.5: An intuitionistic L-fuzzy set A=(us,va) is
an intuitionistic L-fuzzy Z-ideal of a Z-algebra X if and only
if the L-fuzzy sets p, and (v4)¢ are L-fuzzy Z-ideals of
X.
Theorem 4.6: Let A=(uu,v,) be an intuitionistic
L-fuzzy set in a Z-algebra X. Then A= (uA,vA) is an
intuitionistic L-fuzzy Z-ideal of X if and only if
DA= (HA! (uA)C) and ® A= ((vA)C,vA) are intuitionistic
L-fuzzy Z-ideals of X.
Theorem 4.7: An intuitionistic L-fuzzy set A=(ua,v,p) is

an intuitionistic L-fuzzy Z-ideal of a Z-algebra X if and only
ifforall s,t e L, the sets U(u,;s) and L(va;t) are either
empty or Z-ideals of X.

Theorem 4.8: Let h be a homomorphism from a Z-algebra
(X,%,0) onto a Z-algebra (,*,0') and A be an intuitionistic
L-fuzzy Z-ideal of X with sup-inf property. Then image of A,
h(A)= {<y,ph(A)(y),vh(A)(y)>|y = Y} is an intuitionistic
L-fuzzy Z-ideal of .

Theorem 4.9: Let h:(X,*,0) — (Y,¥,0') bea
Z-homomorphism of Z-algebras and B be an intuitionistic
L-fuzzy Z-ideal of Y. Then the inverse image of B,

h(B)= {<x,uh,1(8)(x),vh,l(B)(x)>|x = X} is an intuitionistic
L-fuzzy Z-ideal of X.

Theorem 4.10: Let h: (X,*,0) — (Y,¥,0') be an
Z-epimorphism of Z-algebras. Let B be an intuitionistic
L-fuzzy set of Y. If h™*(B) is an intuitionistic L-fuzzy
Z-ideal of X then B is an intuitionistic L-fuzzy Z-ideal of Y.

Proof: Assume that If h~*(B) is an intuitionistic L-fuzzy

Z-ideal of X.

Lety e, there exists x € X such that h (x) =y. Then (i)
g (y) =g (N0)) =y 1) () < 1) (0) = 1g(h(0)

= 1g(0)
(i) v (y) =V () =V, 2(5)(X) 2 Vyr)(0)= Ve (h(0))
= vg(0)

Let X, y € Y. Then there exists a, b € X such that h(a) = x
and h (b) = . It follows that

(DT ESEITGIC) ESTRIPRICY
2 “hfl(B)(a * b)/\ Hh—l(B)(b)
= g (n@*b)) Apg(h(b)
= g (n(a) * (b)) A pg ((b))
= ua(x*'y) Aa(y)

) ve()=vE(h@) =V, @)
< Vh’l(B)(a *b)v vh’l(B)(b)
=vg(h(a*b) v vg(h(b))
=vg (n(a) ¥ h(b)) v vg (N(D))

=ve(X*'y)vvg(y)
Hence B is an intuitionistic L-fuzzy Z-ideal of Y.

Theorem 4.11: Let A and B be two intuitionistic L-fuzzy
Z-ideals in a Z-algebra X. Then A x B is an intuitionistic
L-fuzzy Z-ideal of XxX.

Proof: Take (x;,X,)eXxX .

Then pa,g(0.0)=1a(0)A1g(0) = pa (X)) Ang(x,)

= HAxB(lexz)

and vag(0.0)=va(0)v ve(0) < valx)vvs(xz)

=VA><B(X1'X2)

Now take (Xl,XZ), (yl, yz)e Xx X Then

Haxs (X1, X2) = 1A (X)) Apg (X2)
2 (HA(Xl *Y1) Alp (Y1))/\ (HB(Xz *Yo) A HB(yz))

=(ua (X * Y1) Apg (X2 *Y2)) A (na (Y1) Ang(Y2))
=paxe (X1 * Y1), (X2 *Y2)) Abae (Y1, Y2)
= paxg (X1, X2) * (Y1, Y2)) Aace (Y1, Y2)

Baxe (X1, X2) =Ba(X1) v Bg(X7)

SBa(X*y) VBa(YD) v Be (X2 *Y,2) vBg(Y2))
=(BaX*y1) VBe(X2 *Y2)) vV (Ba(yr) v Be(Y2))
=Baxg ((Xy * Y1), (X2 *Y2)) vV Baxg (Y1, Y2)
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=Baxs (X1, X2) * (Y1, Y2)) vV Bas (Y1, Y2)

Hence AxBis an intuitionistic L-fuzzy Z-ideal of XxX.
Theorem 4.12: Let A and B be two intuitionistic L-fuzzy sets
in a Z-algebra X. If Ax B is an intuitionistic L-fuzzy Z-ideal
of Xx X, the following are true.

() na(0)2 ug(y) and pg(0)2pa(x) forall x,yeX.

(i) va(0)<vg(y) and vg(0)<va(x) forall x,yeX.
Theorem 4.13: Let A and B be two intuitionistic L-fuzzy sets
in a Z-algebra X such that A x B is an intuitionistic L-fuzzy
Z-ideal of X x X . Then either A or B is an intuitionistic
L-fuzzy Z-Ideal of X.

V CONCLUSION
In this article, we have introduced intuitionistic L-fuzzy
Z-Subalgebras and intuitionistic L-fuzzy Z-ideals in
Z-algebras and discussed their properties. We extend this
concept in our research work.
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