Internet Traffic Monitoring to Prevent DDoS Attack using Traceback

1Dr. A. Rajiv Kannan M.E., Ph.D.,  
2Professor and Head of the Department  
Department of Computer Science and Engineering  
K.S.R.College of Engineering  
Tiruchengode, India  

2M. Aashifa Aafrin, 3S. Anitha, 4B. Deepikaa, 5S. Gowri  
Department of Computer Science and Engineering  
K.S.R. College of Engineering  

Abstract—This paper proposes an online Internet traffic monitoring system based on Spark Streaming. The system comprises three parts, namely, the collector, messaging system, and stream processor. We considered the TCP performance monitoring as a special usecase of showing how network monitoring can be performed with the proposed system. Typical experiments showed that the system performs well for large Internet traffic measurement and monitoring. In addition, Distributed Denial-of-Service (DDoS) attacks are a critical threat to the Internet. However, the memory less feature of the Internet routing mechanisms makes it extremely hard to traceback to the source of these attacks. As a result, there is no effective and efficient method to deal with this issue so far. In this paper, a novel traceback method for DDoS attacks is proposed that is based on entropy variations between normal and DDoS attack traffic, which is fundamentally different from commonly used packet marking techniques. The proposed strategy is fundamentally different from the existing PPM (probabilistic packet Marking) or DPM (deterministic packet Marking) traceback mechanisms, and it outperforms the available PPM and DPM methods.

Keywords—Traceback, Internet Traffic, Local Flow Monitoring algorithm.

I. INTRODUCTION (Heading 1)

It is an extraordinary challenge to traceback the source of Distributed Denial-of-Service (DDoS) attacks in the Internet. In DDoS attacks, attackers generate a huge amount of requests to victims through compromised computers (zombies), with the aim of denying normal service or degrading of the quality of services. Furthermore, the survey also found that the peak of 40 gigabit DDoS attacks nearly doubled in 2008 compared with the previous year. The key reason behind this phenomenon is that the network security community does not have effective and efficient traceback methods to locate attackers as it is easy for attackers to disguise themselves by taking advantages of the vulnerabilities of the World Wide Web, such as the dynamic, stateless, and anonymous nature of the Internet.

IP traceback means the capability of identifying the actual source of any packet sent across the Internet. Because of the vulnerability of the original design of the Internet, we may not be able to find the actual hackers at present. In fact, IP traceback schemes are considered successful if they can identify the zombies from which the DDoS attack packets entered the Internet. Research on DDoS detection, mitigation and filtering has been conducted pervasively. However, the efforts on IP traceback are limited.

A number of IP traceback approaches have been suggested to identify attackers and there are two major methods for IP traceback, the probabilistic packet marking (PPM) and the deterministic packet marking (DPM). Both of these strategies require routers to inject marks into individual packets. Moreover, the PPM strategy can only operate in a local range of the Internet (ISP network), where the defender has the authority to manage. However, this kind of ISP networks is generally quite small, and we cannot traceback to the attack sources located out of the ISP network. The DPM strategy requires all the Internet routers to be updated for packet marking.

IP traceback methods should be independent of packet pollution and various attack patterns. The new approach compares the packet number distributions of packet flows, which are out of the control of attackers once the attack is launched, and it is found that the similarity of attack flows is much higher than the similarity among legitimate flows, e.g., flash crowds. Entropy rate, the entropy growth rate as the length of a stochastic sequence increases, was employed to find the similarity between two flows on the entropy growth pattern, and relative entropy, an abstract distance between two probabilistic mass distributions, was taken to measure the instant difference between two flows. This paper proposes a novel mechanism for IP trace back using information theoretical parameters, and there is no packet marking in the proposed strategy; therefore, can avoid the inherited shortcomings of the packet marking mechanisms.

The proposed strategy is fundamentally different from the existing PPM or DPM traceback mechanisms, and it outperforms the available PPM and DPM methods. Because of this essential change, the proposed strategy overcomes the
inherited drawbacks of packet marking methods, such as limited scalability, huge demands on storage space, and vulnerability to packet pollutions. The main objectives of the papers are

- Minimize the packet loss rate.
- Assist in regulation of malicious packet sending nodes.
- Alert sending to affecting router.
- The proposed strategy can traceback fast in larger scale attack networks.
- To monitor the packet flows using local flow monitoring algorithm.
- To listen the attackers and the victim using IP traceback algorithm.
- To collect the packets from outside routers.

II. RELATED WORKS

Youngseok Lee and Wonchul Kang et al [1] describe an Internet flow analysis method on the cloud computing platform. Specifically, a MapReduce-based flow analysis is presented scheme that could easily process tera or peta-byte flow files collected from many routers or monitoring servers. From experiments on our testbed with four Hadoop data nodes, we achieved that flow statistics computation time for large flow files could dramatically decrease when compared with a popular flow analysis tool run on a single host. In addition, we showed that the MapReduce based flow analysis program finishes successfully against a single-machine failure.

Daniela Brauckhoff, Bernhard and Anukool Lakhina at [2] empirically evaluate the impact of sampling on anomaly detection metrics. Starting with un-sampled flow records collected during the Blaster worm outbreak, we reconstruct the underlying packet trace and simulate packet sampling at increasing rates. We then use our knowledge of the Blaster anomaly to build a baseline of normal traffic (without Blaster), against which we can measure the anomaly size at various sampling rates. This approach allows us to evaluate the impact of packet sampling on anomaly detection without being restricted to (or biased by) a particular anomaly detection method. They are finding that packet sampling does not disturb the anomaly size when measured in volume metrics such as the number of bytes and number of packets, but grossly biases the number of flows.

Karthik Kambatla, Giorgos Kollias, et al [3] describe emerging landscape of cloud-based environments with distributed data-centers hosting large data repositories, while also providing the processing resources for analytics strongly motivates need for effective parallel/distributed algorithms. The underlying socio-economic benefits of big-data analytics and the diversity of application characteristics pose significant challenges. In the rest of this article, they are highlight the scale and scope of data analytics problems. Author describes commonly used hardware platforms for executing analytics applications, and associated considerations of storage, processing, networking, and energy. The proposed system is focus on the software substrates for applications, namely virtualization technologies, runtime systems/execution environments, and programming models. They are concluding with a brief discussion of the diverse applications of data analytics, ranging from health and human welfare to computational al modeling and simulation.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin et al [4] describe a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms, as well as interactive data analysis tools. They are proposing a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs).

Jun Liu, Feng Liu, and Nirwan Ansari [5] describe a Hadoop-based scalable network traffic monitoring and analysis system for big traffic data. The system is designed and implemented following a multi-layer architecture with functional components including high-speed traffic monitors, traffic collectors, data store, Map-Reduce analysis programs, result presentation interfaces, and a cluster manager. To prove the viability of the proposed system, we deploy the system into the core network of a large scale second/third generation (2G/3G) cellular network. The results demonstrate that Hadoop is a promising enabler for building an efficient, effective, and cost-efficient large-scale network traffic monitoring and analysis system.

Yoonhee Lee and Youngseok Lee [6] describe a Internet traffic measurement and analysis of characterize network usage and user behaviors, but faces the problem of scalability under the explosive growth of Internet traffic and high-speed access. Scalable Internet traffic measurement and analysis is difficult because a large data set requires matching computing and storage resources. Hadoop, an open-source computing platform of MapReduce and a distributed file system, has become a popular infrastructure for massive data analytics because it facilitates scalable data processing and storage services on a distributed computing system consisting of commodity hardware. In this paper, we present a Hadoop-based traffic monitoring system that performs IP, TCP, HTTP, and NetFlow analysis of multi-terabytes of Internet traffic in a scalable manner.

Arpit Gupta, Rudiger Birkner, Marco Canini et al [7] describe a network operators must typically perform network management tasks while coping with fixed-function network monitoring capabilities, such as IPIFIX and SNMP. The advent of programmable hardware makes it possible not only to customize packet formats and protocols, but also to install custom monitoring capabilities in network devices that output data in formats that are amenable to the emerging body of scalable, distributed stream processing systems.

Vern Paxson [8] describe a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder’s traffic transits. We give an overview of the system’s design, which emphasizes high-speed (FDDI-rate) monitoring, real-time notification, clear separation between mechanism and policy, and extensibility. To achieve these ends, Bro is divided into an “event engine” that reduces a kernel-filtered network traffic stream into a series of higher level events, and a “policy script
interpreter” that interprets event handlers written in a specialized language used to express a site’s security policy. Event handlers can update state information, synthesize new events, record information to disk, and generate real-time notifications via sys log. Author also discuss a number of attacks that attempt to subvert passive monitoring systems and defenses against these, and give particulars of how Bro analyzes the four applications integrated into it so far: Finger, FTP, Portmapper and Telnet. The system is publicly available in source code form.

First, confirm that you have the correct template for your paper size. This template has been tailored for output on the A4 paper size. If you are using US letter-sized paper, please close this file and download the file “MSW_USltr_format”.

### III. DDoS ATTACK MODEL

In the existing system, input Data is a list of segments that have the same source and destination IP/port. The result is the number of retransmission and out-of-order. First, the existing system maps the tuples in input Stream to a key-value pair, whose key is (source IP, source port, destination IP, destination port) and value is (boolean (SYN/FIN or contains data?), sequence number, payload, next expected sequence number, time stamp).

It groups the key-value pairs according to the key and obtains the lists of segments that share the same source and destination IP addresses/ports. Then we can calculate the number of retransmission and out-of-order segments for each list. Here, the packet types are not taken for loss rate analysis and study. In addition for alerting the applications is not possible. There is no concept with the feature to alert the senders. So, this paper identifies that, and helps for analyzing loss rates through end to end measurements in an efficient manner.

The proposed system is required to analyze the loss rate and change queue priority. Hence a system with efficient algorithm is required to minimize the loss rate by normal nodes. An effective and efficient IP traceback scheme against DDoS attacks based on entropy variations. It is a fundamentally different traceback mechanism from the currently adopted packet marking strategies.

Many of the available work on IP traceback depend on packet marking, either probabilistic packet marking or deterministic packet marking. Because of the vulnerability of the Internet, the packet marking mechanism suffers a number of serious drawbacks: lack of scalability; vulnerability to packet pollution from hackers and extraordinary challenge on storage space at victims or intermediate routers.

The proposed system keeps log the packet queues and drop details. The continuous packet drops are easily notified and alerting procedure is invoked to reduce the loss rate. The new approach helps in efficient packet forwarding in the router. The new system uses maximum throughput scheduling algorithm so as to serve high speed as well as normal TCP packets to flow efficiently.

On the other hand, the proposed method can work independently as an additional module on routers for monitoring and recording flow information, and communicating with its upstream and downstream routers when the pushback procedure is carried out.

### IV. METHODOLOGY

#### A. Retransmission and Out-Of-Order Statistics

This section calculates the retransmission and out-of-order number. First, we map the tuples in input Stream to a key-value pair, whose key is (source IP, source port, destination IP, destination port) and value is (boolean (SYN/FIN or contains data?), sequence number, payload, next expected sequence number, time stamp). It groups the key-value pairs according to the key and obtains the lists of segments that share the same source and destination IP addresses/ports. Then it calculates the number of retransmission and out-of-order segments for each list. It only counts retransmission and out-of-order of segments or for segments carrying data.

#### B. RTT Calculation

According to the relationship of the TCP and ACK pair, if we use the tuple of (source IP address, source port, destination IP address, destination port, next expected sequence number) as a key for the TCP segment and (destination IP address, source IP address, source port, acknowledgment number) as a key for the ACK segment, then a TCP segment and its corresponding ACK segment should share the same key. Therefore, we can group all TCP segments and their corresponding ACK segment. Then it generates a set of key-value pairs for each sender and receiver IP/port pair, whose key is (sender IP, receiver IP), value is (RTT, 1). Then, it uses reduceByKey() to sum up the values by key, obtain (total RTT, total count) for each IP pair, and use mapValues to calculate the average RTT, stored in data Stream.

#### C. Server Process

In this section, packet type addition, router metric information such as packet type, incoming bit rate, max packet time to live, packet resend times. During the incoming packets listening, the incoming packets log, packets sending out normally are displayed using list box controls. The packet arrival details are also displayed in chart control.

#### D. Client Application for LAN

In this section, the IP address of the running node is found out and used throughout the coding. The packets are generated and sent out so that the information is stored in a table directly from that node. A new record is ‘PacketsInFlow’ table is added during application load and packet count is updated each time the packets are sent. The record type is saved as LAN. These packets need not checked since they are filtered out inside the network.

#### E. Client Application for Incoming Routers

In this section, the IP address of the running node is found out and used throughout the coding. The packets are generated
and sent out so that the information is stored in a. A new record is 'PacketsInFlow' table is added during application load and packet count is updated each time the packets are sent. The record type is saved as Router. These packets need to be checked using Entropy variation so that the identity flows may attack the one of the routers inside the network.

F. Entropy Variation

This section is a part of server (router) application. In this module, if there is no extraordinary change of network traffic in a very short time interval (e.g., at the level of seconds) for non-DDoS attack cases. It is true that the network traffic for a router may dynamically change a lot from peak to off-peak service times. However, this kind of change lasts for a relatively long time interval, e.g., at least at the level of minutes. If these changes are break down into seconds, the change of traffic is quite smooth in the context. The number of attack packets is at least an order of magnitude higher than that of normal flows. During a flooding attack, the number of attack packets increases dramatically. Only one DDoS attack is ongoing at a given time. It could be true that a number of attacks are ongoing concurrently in the Internet, the attack paths may overlap as well, but it only considers the one attack scenario to make it simple and clear. The local flow monitoring algorithm and IP trace back algorithm is implemented using this module.

V. EXPERIMENTAL RESULTS

The following Table 4.1 describes experimental result for Local Flow Monitoring algorithm (LFM-A). The table contains sources node id, Neighbor node id, packet size, speed and average of performances rate details are shown. The O(N) best case analysis (Performances rate) for existing LFM system is,

Performance (Local Monitoring) Rate= [(Packet Size/Speed) *60] /100

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Sources Node ID</th>
<th>Packet Size (Byte)</th>
<th>Speed (Minutes)</th>
<th>Performance Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N1</td>
<td>1635</td>
<td>25</td>
<td>39.24</td>
</tr>
<tr>
<td>2</td>
<td>N2</td>
<td>593</td>
<td>10</td>
<td>35.58</td>
</tr>
<tr>
<td>3</td>
<td>N3</td>
<td>1365</td>
<td>8</td>
<td>44.47</td>
</tr>
<tr>
<td>4</td>
<td>N4</td>
<td>531</td>
<td>12</td>
<td>45.5</td>
</tr>
<tr>
<td>5</td>
<td>N5</td>
<td>658</td>
<td>10</td>
<td>31.86</td>
</tr>
<tr>
<td>6</td>
<td>N6</td>
<td>1677</td>
<td>9</td>
<td>34.30</td>
</tr>
<tr>
<td>7</td>
<td>N7</td>
<td>539</td>
<td>23</td>
<td>43.74</td>
</tr>
<tr>
<td>8</td>
<td>N8</td>
<td>1206</td>
<td>12</td>
<td>42.56</td>
</tr>
<tr>
<td>9</td>
<td>N9</td>
<td>1405</td>
<td>17</td>
<td>42.15</td>
</tr>
<tr>
<td>10</td>
<td>N10</td>
<td>649</td>
<td>9</td>
<td>43.26</td>
</tr>
</tbody>
</table>

The following Figure 4.1 describes experimental result for Local flow Monitoring algorithms. The figure contains sources node id, Neighbor node id, packet size, speed and average of performances rate details are shown.

The following Table 4.2 describes experimental result for IP Tracking Algorithm performances analysis. The table contains sources node id, Neighbor node id, packet size, speed and average of performances rate details are shown. The O(N) best case analysis (Performances rate) for proposed IP tracking system is,

Performance (IP Tracking Algorithm) Rate= [(Packet Size/Speed) *60] /100

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Sources Node ID</th>
<th>Packet Size (Byte)</th>
<th>Speed (Minutes)</th>
<th>Performance Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N1</td>
<td>1635</td>
<td>19</td>
<td>51.63</td>
</tr>
<tr>
<td>2</td>
<td>N2</td>
<td>593</td>
<td>8</td>
<td>44.47</td>
</tr>
<tr>
<td>3</td>
<td>N3</td>
<td>1365</td>
<td>18</td>
<td>45.5</td>
</tr>
<tr>
<td>4</td>
<td>N4</td>
<td>531</td>
<td>10</td>
<td>31.86</td>
</tr>
<tr>
<td>5</td>
<td>N5</td>
<td>658</td>
<td>9</td>
<td>34.30</td>
</tr>
<tr>
<td>6</td>
<td>N6</td>
<td>1677</td>
<td>23</td>
<td>43.74</td>
</tr>
<tr>
<td>7</td>
<td>N7</td>
<td>539</td>
<td>12</td>
<td>26.95</td>
</tr>
<tr>
<td>8</td>
<td>N8</td>
<td>1206</td>
<td>17</td>
<td>42.56</td>
</tr>
<tr>
<td>9</td>
<td>N9</td>
<td>1405</td>
<td>20</td>
<td>42.15</td>
</tr>
<tr>
<td>10</td>
<td>N10</td>
<td>649</td>
<td>9</td>
<td>43.26</td>
</tr>
</tbody>
</table>

The following Figure 4.2 describes experimental result for IP Tracking Algorithm performances analysis. The figure contains sources node id, Neighbor node id, packet size, speed and average of error rate details are shown.

VI. CONCLUSION

In this paper, it proposed an effective and efficient IP traceback scheme against DDoS attacks based on entropy variations. It is a fundamentally different traceback mechanism from the currently adopted packet marking
strategies. Many of the available work on IP traceback depend on packet marking, either probabilistic packet marking or deterministic packet marking. Because of the vulnerability of the Internet, the packet marking mechanism suffers a number of serious drawbacks: lack of scalability; vulnerability to packet pollution from hackers and extraordinary challenge on storage space at victims or intermediate routers. On the other hand, the proposed method needs no marking on packets, and therefore, avoids the inherent shortcomings of packet marking mechanisms. It employs the features that are out of the control of hackers to conduct IP traceback. It observes and stores short-term information of flow entropy variations at routers. Once a DDoS attack has been identified by the victim via detection algorithms, the victim then initiates the pushback tracing procedure. The traceback algorithm first identifies its upstream routers where the attack flows came from, and then submits the traceback requests to the related upstream routers. This procedure continues until the most far away zombies are identified or when it reaches the discrimination limitation of DDoS attack flows. Extensive experiments and simulations have been conducted, and the results demonstrate that the proposed mechanism works very well in terms of effectiveness and efficiency. Compared with existing system, the proposed strategy can traceback fast in larger scale attack networks.

VII. FUTURE ENHANCEMENT

- The metric for DDoS attack flows could be further explored. The proposed method deals with the packet flooding type of attacks perfectly. However, for the attacks with small number attack packet rates, e.g., if the attack strength is less than seven times of the strength of non attack flows, then the current metric cannot discriminate it. Therefore, a metric of finer granularity is required to deal with such situations.
- Location estimation of attackers with partial information when the attack strength is less than seven times of the normal flow packet rate, the proposed method cannot succeed at the moment. However, it can detect the attack with the information that we have accumulated so far using traditional methods.
- Differentiation of the DDoS attacks and flash crowds
- In this paper, it did not consider this issue the proposed method may treat flash crowd as a DDoS attack, and therefore, resulting in false positive alarms

VIII. REFERENCES


