
Intelligent Transportation System By Parallelizing The Shortest Path Algorithm In

Multi-Core Systems

M. S. Abirami, Dr. S. Andrews

#1
 Asst. Professor, Department of Computer Applications, SRM University

#2
 Professor, Department of Information Technology, Mahendra Engineering College

Abstract

In this paper, we examine the possible ways of

quickly finding the shortest paths over real-road

networks in an intelligent transportation system.

This paper analyzes the performance of the shortest

path program execution in serial and parallel way

in multi-core systems. This research enables faster

computation of optimal path planning in complex

road networks. In this paper, we design a parallel

Dijkstra’s algorithm which is a challenging

paradigm to test the efficiency in a multi-core

architecture. Finally based on this study we

conclude that the parallel programming is the most

appropriate for multi-core systems which improves

performance and simplicity of programming.

Keywords: parallel shortest path algorithm,

intelligent transportation, parallel computing,

multi-core systems, performance measures.

1. Introduction

The classic problem of finding single source

shortest path (SSSP) over a network plays a

significant role in many transportation related

analyses [1]. In this paper we focus on satisfying the

actual demands of quickly locating the most

effective shortest paths over real-road networks in

an intelligent transportation system [4]. We propose

and implement a parallel shortest path algorithm.

We also evaluate our parallel algorithm’s

performance using different multi-core systems.

And from the experiments, it can be concluded that

the parallel algorithm has good speed-up ratio and

efficiency.

In this paper we face the challenges of

parallelizing Dijkstra’s algorithm for a multi-core

architecture. The main objectives of this paper are,

(i) to find the shortest path, (ii) to take the minimum

execution time and (iii) to minimize the cost. The

Dijkstra’s algorithm maintains a set of visited

nodes(S) for which the shortest path is already

calculated. The set of unvisited nodes is

implemented as a priority queue. It grows this set by

selecting the unvisited node closest to s and

distances of its neighbours are updated. This

serializes a large part of the algorithm’s operations,

thus making Dijkstra’s algorithm a hard to

parallelize graph algorithm.

Path finding is an important concept for a

variety of real world applications such as route

guidance systems, robot navigation, traffic

planning, optimal pipelining of VLSI chip, routing

of telecommunication messages and decision-

making. As the size of a graph increases, the

computation time required to find the best traversal

path increases exponentially. In a realistically

modeled environment, this could mean extremely

long wait times for shortest path finding. Parallel

execution could split this job between multiple

processors and help to overcome the inefficiencies

arising from complex input data.

The implementation of these large scale

problems on a single-core processor cannot satisfy

the current computational requirements. For this

reason, the high performance multi-core platform is

used to deploy computationally intensive

applications. To decompose a larger problem into

several sub-problems and to map them to cores

with the goal of the increasing performance is key

fundamental factor of multi-core platform.

The rest of this paper is organized as follows.

Section 2 presents the basics of SSSP and related

work. Section 3 discusses the issues of SSSP.

Section 4 details our parallel algorithm. In Section

5 we evaluate the algorithm’s performance for large

networks using multi-core platform. Finally, section

5 presents our conclusion and future work.

2. Background and Related Works

The Intelligent Transportation System (ITS) has

been rapidly developed, and path optimization

problems have been concerned by experts and

2247

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

scholars [2]. LU Fen evaluates the serial shortest

path algorithm; Ye Qing gets a pre-pruning

algorithm based on Dijkstra algorithm. DEON,

Pangcy classifies the algorithms according to

solving shortest path problems. Zhan FB, Noon CE

introduces the classic shortest path algorithms.

With the expansion of more complex solving

large scale transportation networks, traditional

serial computing has been unable to meet the

demand of large-scale network to optimize the

shortest path efficiently. Ji-Zhou Sun and Jin-Yan

Chen give a method of predicting the maximum

parallel execution time of n constituent tasks. Gwo-

Jen Hwang et al propose to composite parallel test

sheets efficiently to solve the practical application.

A. K. Ziliaskopoulos et al have applied the shortest

path algorithm in the label on PVM environment.

But in the realization, multi-core multi-threaded

parallel algorithms are not much implemented.

Multi-core architectures have been evolving as

a means to increase processing power. They have

quickly spread to all computing domains, from

embedded systems to personal computers to high

performance supercomputers. Multi-core

architectures require parallel computation and

explicit management of the memory hierarchy, both

of which add programming complexity. So

programmer or compiler explicitly parallelize the

software is the key for enhance the performance on

multi-core chip. A multi-core processor is a

semiconductor chip on which multiple processor

cores are implemented, with each processor core

capable of executing an independent task. Parallel

Programming is a form of computation in which

program instructions are divided among multiple

processors (cores, computers) in combination to

solve a single problem, thus running a program in

less time.

3. Issues and Solution using Graph Partitioning

Method

In this section we present the problem

definitions for Shortest Path Problems and we also

discuss the general graph partitioning method [1]

which is used for parallelizing the shortest path

computations.

If Dijkstra’s algorithm is used on a network

containing an edge that has a negative value it does

not work. We can use Dijkstra’s algorithm to find

the length of the shortest route between two

vertices in a network. However, if we want to find

the corresponding route, we need to record more

information as we apply the algorithm. That is we

find the route by backtracking through the network

from the finishing point. Tracing a route through a

network can be easily found if careful labeling of

Dijkstra’s algorithm is used.

The parallelized algorithm for shortest path

computation mainly solves the problem by solving

the same problem on smaller instances of the input.

The graph partitioning is the major factor in

determining the efficiency of the parallel algorithm

and therefore it defines the number of necessary

computation and communication operations. In

other words, the more balanced the vertices are

partitioned and the algorithm is parallelized, the

better is the performance and efficiency of the

resulting algorithm. In order to have a good

efficiency each thread works concurrently on multi-

cores.

4. Parallelizing Dijkstra’s algorithm

Dijkstra’s algorithm is a graph search algorithm

that solves single-source shortest path for a graph

with nonnegative weights. The single source

shortest path (SSSP) problem is that of computing,

for a given source vertex s and a destination vertex

t, the weight of a path that obtains the minimum

weight among all the possible paths [5].
For a weighted directed graph G=(V,E,w), |V| =

n, |E| = m, and w be the non-negative value to the

weight of each edge, the SSSP problem is to find

the shortest path from a vertex v € to all other

vertices in V. It maintains a set of nodes for which

the shortest paths are known. It grows this set based

on the node closest to source using one of the nodes

in the current shortest path set. In order to obtain

the routing table, we need O(V) rounds iterations

(until all the vertices are included in the cluster). In

each round, we will update the value for O(V)

vertices and select the closest vertex, so the running

time in each round is O(V). So, for the sequential

Dijkstra’s algorithm the total running time is O(𝑉2
).

For the parallel Dijkstra’s algorithm the total

running time is O(V
2
/P + V. log P), where P is the

number of cores used. In order to obtain the routing

table, we need O(V) rounds iteration (until all the

vertices are included in the cluster). In each round,

2248

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

we will update the value for O(V) vertices using P

cores running independently, and use the parallel

prefix to select the global closest vertex, so the

running time in each round is O(V/P)+O(log(P)).

So, the total running time is O(V
2
/P + V. log P).

Pseudo-code for parallel Dijkstra’s algorithm

V = set of all vertices in partition

S = empty set

for each v in V:

d[v] = infinity

previous[v] = undefined

d[s] = 0

Q = V

while Q is not an empty set:

q = extract-min(Q)

u = global-min(q)

if u is a member of set of V:

S = S union {u}

for each edge (u,v) incident with u:

if d[v] > d[u] + w[u,v]:

d[v] = d[u] + w[u,v]

previous[v] = u

 In parallel formulation of Dijkstra’s algorithm,

the weighted adjacency matrix is partitioned. Each

process selects, locally, the node closest to the

source, followed by a global reduction to select

next node.

Two parallel strategies are proposed. One to

execute each of the n shortest path problems on a

different processor (source partitioned), and the

other to use a parallel formulation of the shortest

path problem to increase concurrency (source

parallel).

Source Partitioned Formulation uses n

processors, each processor pi finds the shortest

paths from vertex vi to all other vertices by

executing Dijkstra’s sequential single-source

shortest paths algorithm. It requires no inter-process

communication provided that the adjacency matrix

is replicated at all processes. The parallel runtime

of this formulation is θ(n
2
). While the algorithm is

cost optimal, it can only use n processors.

In Source Parallel Formulation each of the

shortest path problems is further executed in

parallel. We can therefore use up to n
2
 processors.

Given p processors (p > n), each single source

shortest path problem is executed by p/n

processors. Using previous results, this takes time:

Tp = θ(n
3
/p) + θ(n log p) that is the time for

computation and communication. For cost

optimality, we have used p=O(n
2
/log n).

5. Experiment and Evaluation

5.1 Performance analysis

The parallel speedup and efficiency are defined

as Sp=Ts/Tp and Ep= Sp/P x 100% respectively. Ts

is the serial execution time, Tp is the parallel

execution time and Sp is the speedup ratio and P is

the number of processors.

5.2 Experimental setup

In this section, we discuss the performance

evaluation of the sequential and parallel

implementations of Dijkstra’s algorithm with a

network of large number of nodes using multi-core

systems. Network with large data sets are taken for

this experiment.

To evaluate our design, we use three hardware

platforms. The first hardware platform consists of

dual-core Opteron processor (4-cores) with 4GB

main memory. The second platform is dual-core

Intel Xeon processor (4-cores) which has 12GB of

main memory. The third platform is Intel Core i7

processor has 8GB of main memory. Our parallel

algorithm was implemented in Java programming

language. This suggests that Parallel Dijkstra’s

algorithm outperforms on network graphs for any

number of processors.

We analyse the sequential and parallel

implementations with their execution time.

Number

of Nodes

Quad

Core

Dual

Core

Single Core

100 0.0172 0.0266 0.0165

200 0.0350 0.0710 0.0632

300 0.0568 0.0980 0.1238

400 0.0691 0.1210 0.2630

500 0.0830 0.1560 0.4111

Table 1: Parallel Execution

No. of

Nodes/

Cores

1 2 4 8 16 32

2500 0.075 0.053 0.044 0.051 0.084 0.241

10000 1.052 0.564 0.308 0.246 0.278 0.443

22500 5.241 2.692 1.4449 0.840 0.785 1.130

2249

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

 Table 2: Running time vs Number of cores

No. of

Nodes/

Cores

1 2 4 8 16 32

2500 1 1.588 2.017 1.565 0.912 0.294

10000 1 1.883 3.403 4.405 3.886 2.372

22500 1 1.955 3.650 6.302 6.766 4.662

 Table 3: Speed up vs Number of cores

No. of

Nodes/

Cores

1 2 4 8 16 32

2500 0.074 0.091 0.141 0.342

1.173 7.380

10000 1.053

1.121

1.231

1.891

4.293

14.095

22500 5.241

5.390

5.766

6.651

12.411

36.055

 Table 4: Cost vs Number of cores

The data in Table 1 and Table 2 represents the

execution times taken by Dijkstra’s sequential and

parallel implementations for the networks of

different sizes. The result shows that the parallel

algorithm is efficient than their corresponding

sequential algorithm. There is an improvement in

parallel Dijkstra’s code running in 2-cores, 4-cores

etc., with large number of nodes.

We plot the graph using the data in Table 1 to

analyse the performance of parallel algorithm

which is presented in figure 1. Then we plot the

graphs using the data in Table 2, Table 3 and Table

4 to analyse the performance measures such as

execution time, speedup and cost with different

multi-core architectures. The result obtained shows

a vast difference in time required to execute the

parallel algorithm and time taken by sequential

algorithm. The parallel algorithm is approximately

twice faster than the sequential.

 Figure 1: Parallel Execution

 Figure 2: Running time vs Number of cores

 Figure 3: Speed up vs Number of cores

2250

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

 Figure 4: Cost vs Number of cores

5.3 Results
 For 500 nodes, Average Speedup Ratio (Sp) =

Average Serial Execution Time / Average Parallel

Execution Time

Sp = 0.4111 / 0.156

Sp = 2.6353 (Dual Core)

Sp = 0.4111 / 0.083

Sp = 4.9530 (Quad Core)

Efficiency Ep = Speedup Ratio (Sp) / Number of

Processors (p)

 Ep= 2.6353 / 2

 Ep = 1.3177 (Dual Core)

 Ep = 4.9530 / 4

 Ep = 1.2383 (Quad Core)

Therefore, average operating efficiency is

131.7% for Dual Core and 123.8% for Quad Core

machines.

A closer look at the results reveals that for the

large size network (22500), the running time is

decreasing as the number of cores increases until it

reaches the smallest value, then the running time

will increase because of the communication

latency.

For middle size network (10000), the

phenomenon of a reducing running time is not that

obvious. For a small size network (2500), the

running time is even increasing as the number of

cores increases, because the communication latency

outperforms the benefit from using more cores. The

speed up is increasing as the number of cores

increases until it reaches the maximum value, then

the speed up is decreasing. The speed up is

increasing because of using more cores. The speed

up is decreasing because the communication

latency outperforms the benefit from using more

cores. As the network size increases, the number of

cores used to get the maximum speed up increases.

(As shown in the figure, 2500-4 cores, 100000-8

cores, 22500-16 cores). The cost is increasing

because the speed up (or the benefit of a reduced

running time) cannot outperform the cost of using

more cores.

6. Conclusion and Future Work

The results of the experiments lead us to several

conclusions. First, this work proposes the parallel

implementation of Dijkstra’s algorithm. It is found

that the execution time of parallel Dijkstra’s

algorithm increases as the number of nodes

increases significantly and the execution time

decreases as the number of processor increases. So,

it is concluded that as the number of cores

increased, parallel computing efficiency improved

significantly. The parallel efficiency rapidly

increased to above 90%. Second, the results reveals

that for the large size network (22500 nodes), the

running time decreases as the number of cores

increases until it reaches the smallest value, then

the running time will increase because of the

communication latency. And the other performance

measures speedup and cost are increasing until it

reaches the maximum value, then they are

decreasing because of using more cores.

We are going to run our test on a larger cluster

real road-network environment and make a

comparison with other parallel shortest path

algorithms in the future. We also plan to implement

our parallel algorithm in OpenMP parallel

programming model by increasing number of

threads to improve the performance on multi-core

systems, and will be applied to the actual

transportation network to achieve the expected

results.

REFERENCES

[1] Y. Tang, Y. Zhang, H. Chen, “A Parallel Shortest Path Algorithm Based

on Graph-Partitioning and Iterative Correcting”, in Proc. of IEEE HPCC, pp.
155-161, 2008.

[2] Xin Fang, Han Cao, Zhao Lu, “Three ITS Path Algorithms OpenMP

Parallel Optimization on Multi-core Systems”, in Sixth International
Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2009

[3] H. Chen, Y. Tang, and Y. Zhang, “Implementation and Evaluation of

Graph-partitioning based Parallel Shortest Paths Algorithms”, in Journal of
Computer Research and Development(Chinese), 2008.

[4] Chu-Hsing, Jui-Ling Yu, Jung-Chun Liu, Wei-Shen Lai, Chia-Han Ho,

“Genetic Algorithm for Shortest Driving Time in Intelligent Transportation

2251

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

Systems”, in International Journal of Hybrid Information Technology, Vol. 2,
No. 1,2009.

[5] Guruprasad Nagraj, Y.S. Kumaraswamy, “Serial and Parallel

Implementation of Shortest Path Algorithm in the Optimization of Public
Transport Travel”, in International Journal of Computer Science

Engineering and Information Technology Research, Vol. 1, 72-87, 2011.

[6]] K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “Parallel Shortest
Path Algorithms for Solving Large-Scale Instances”, 9th DIMACS

Implementation Challenge -- The Shortest Path Problem, DIMACS Center,

Rutgers University, Piscataway, NJ, Nov. 2006.
[7] L. Fu, D. Sun, L.R. Rilett, “Heuristic Shortest Path Algorithms for

Transportation Applications: State of the Art”, in Computers and Operations

Research 33, Elsevier, 3324-3343, 2006
[8] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine. Singlesource

shortest paths with the parallel boost graph library. In 9thDIMACS

Implementation Challenge, 2006.
[9] R. Kalpana, P.Thambidurai, “Combining Speedup Techniques based on

Landmarks and Containers with Parallelised Pre-processing in Random and

Planar Graphs, in International Journal of Computer Science and
Information Technology, Vol. 3, No. 1, 2011.

[10] Yongtaek LIM, Hyunmyung KIM, “A Shortest Path Algorithm for Real

Road Network based on Path Overlap”, in Journal of the Eastern Asia Society
for Transportation Studies, Vol 6, 1426-1438, 2005.

[11] U. Meyer, “Design and Analysis of Sequential and Parallel Single-

Source Shortest-Paths Algorithms”, PhD thesis, Universit¨at Saarlandes,
Saarbr¨ucken, Germany,October 2002

[12] Goldberg, A. 2001b. A simple shortest path algorithm with linear

average time. In 9th Ann. European Symp. on Algorithms(ESA 2001). Lecture
Notes in Computer Science, vol. 2161. Springer, Aachen, Germany, 230–241.

[13] Hribar, M. R., Taylor, V. E. and D. E. Boyce, Implementing parallel

shortest path for parallel transportation applications, Parallel Computing, Vol.
27, 1537-1568, 2001.

[14] I.Watson, C. Kirkham, andM. Lujan. A study of a transactional parallel

routing algorithm. In PACT, 2007.
[15] B. Hendrickson, J.W. Berry, “Graph Analysis with High-Performance

Computing”, Computing in Science and Engineering, vol.10, no. 2, pp.14-19,

Mar/Apr, 2008.
[16] Goldberg . A, “Shortest path algorithms: Engineering aspects”, in Proc.

of 12th International Symposium on Algorithms and Computation, Springer-

Verlag, London, UK, 502–513, 2001.

[17] A. Crauser, K. Mehlhorn, U. Meyer, P. Sanders, “A parallelization of

Dijkstra’s shortest path algorithm”, in Proc. of MFCS, pp. 722-731, 1998.
[18] G.S. Brodal, J. L. Traff, C.D. Zaroliagis, I. Stadtwald, “A Parallel

Priority Queue with Constant Time Operations”, in Journal of Parallel and

Distributed Computing, 49:4–21, 1998.
[19] F.B. Zhan, “Three Fastest Shortest Path Algorithms on Real Road

Networks: Data Structures and Procedures”, in Journal of Geographic

Information and Decision Analysis 1(1): 69-82, 1998.
[20] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. “A parallelization

of Dijkstra’s shortest path algorithm”, in Mathematical Foundations of

Computer Science (MFCS), Vol. 1450, Pg. 722–731, Springer, 1998.
[21] U. Meyer and P. Sanders, “Delta-stepping: A parallel single source

shortest path algorithm”, in Proceedings of the 6th Annual European

Symposium on Algorithms, pages 393–404, Springer-Verlag, 1998.
[22] Brodal G, Tr¨aff J, Zaroliagis C, “A parallel priority queue with constant

time operations”, in Journal of Parallel and Distributed Computing 49, Vol.

1, 4–21, 1998.

[23] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.

Shortest paths algorithms: Theory and experimental evaluation. Math.

Program., 73:129–174, 1996.
[24] G.C. Hunt, M.M. Michael, S. Parthasarathy, and M.L. Scott. An efficient

algorithm for concurrent priority queue heaps. Inf.Proc. Letters, 60:151–157,

1996.

2252

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70832

