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Abstract 

In this paper, we examine the possible ways of 

quickly finding the shortest paths over real-road 

networks in an intelligent transportation system. 

This paper analyzes the performance of the shortest 

path program execution in serial and parallel way 

in multi-core systems. This research enables   faster 

computation of optimal path planning in complex 

road networks. In this paper, we design a parallel 

Dijkstra’s algorithm which is a challenging 

paradigm to test the efficiency in a multi-core 

architecture. Finally based on this study we 

conclude that the parallel programming is the most 

appropriate for multi-core systems which improves 

performance and simplicity of programming. 

Keywords: parallel shortest path algorithm, 

intelligent transportation, parallel computing, 

multi-core systems, performance measures. 

1. Introduction 

The classic problem of finding single source 

shortest path (SSSP) over a network plays a 

significant role in many transportation related 

analyses [1]. In this paper we focus on satisfying the 

actual demands of quickly locating the most 

effective shortest paths over real-road networks in 

an intelligent transportation system [4]. We propose 

and implement a parallel shortest path algorithm. 

We also evaluate our parallel algorithm’s 

performance using different multi-core systems. 

And from the experiments, it can be concluded that 

the parallel algorithm has good speed-up ratio and 

efficiency. 

In this paper we face the challenges of 

parallelizing Dijkstra’s algorithm for a multi-core 

architecture. The main objectives of this paper are, 

(i) to find the shortest path, (ii) to take the minimum 

execution time and (iii) to minimize the cost. The 

Dijkstra’s algorithm maintains a set of visited 

nodes(S) for which the shortest path is already 

calculated. The set of unvisited nodes is 

implemented as a priority queue. It grows this set by 

selecting the unvisited node closest to s and 

distances of its neighbours are updated. This 

serializes a large part of the algorithm’s operations, 

thus making Dijkstra’s algorithm a hard to 

parallelize graph algorithm. 

Path finding is an important concept for a 

variety of real world applications such as route 

guidance systems, robot navigation, traffic 

planning, optimal pipelining of VLSI chip, routing 

of telecommunication messages and decision-

making. As the size of a graph increases, the 

computation time required to find the best traversal 

path increases exponentially. In a realistically 

modeled environment, this could mean extremely 

long wait times for shortest path finding. Parallel 

execution could split this job between multiple 

processors and help to overcome the inefficiencies 

arising from complex input data. 

The implementation of these large scale 

problems on a single-core processor cannot satisfy 

the current computational requirements. For this 

reason, the high performance multi-core platform is 

used to deploy computationally intensive 

applications. To decompose a larger problem into 

several sub-problems and to map them to cores 

with the goal of the increasing performance is key 

fundamental factor of multi-core platform.  

The rest of this paper is organized as follows. 

Section 2 presents the basics of SSSP and related 

work. Section 3 discusses the issues of SSSP. 

Section 4 details our parallel algorithm. In Section 

5 we evaluate the algorithm’s performance for large 

networks using multi-core platform. Finally, section 

5 presents our conclusion and future work. 

  

2. Background and Related Works 

The Intelligent Transportation System (ITS) has 

been rapidly developed, and path optimization 

problems have been concerned by experts and 
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scholars [2]. LU Fen evaluates the serial shortest 

path algorithm; Ye Qing gets a pre-pruning 

algorithm based on Dijkstra algorithm. DEON, 

Pangcy classifies the algorithms according to 

solving shortest path problems. Zhan FB, Noon CE 

introduces the classic shortest path algorithms. 

With the expansion of more complex solving 

large scale transportation networks, traditional 

serial computing has been unable to meet the 

demand of large-scale network to optimize the 

shortest path efficiently. Ji-Zhou Sun and Jin-Yan 

Chen give a method of predicting the maximum 

parallel execution time of n constituent tasks. Gwo-

Jen Hwang et al propose to composite parallel test 

sheets efficiently to solve the practical application. 

A. K. Ziliaskopoulos et al have applied the shortest 

path algorithm in the label on PVM environment. 

But in the realization, multi-core multi-threaded 

parallel algorithms are not much implemented. 

Multi-core architectures have been evolving as 

a means to increase processing power. They have 

quickly spread to all computing domains, from 

embedded systems to personal computers to high 

performance supercomputers. Multi-core 

architectures require parallel computation and 

explicit management of the memory hierarchy, both 

of which add programming complexity. So 

programmer or compiler explicitly parallelize the 

software is the key for enhance the performance on 

multi-core chip. A multi-core processor is a 

semiconductor chip on which multiple processor 

cores are implemented, with each processor core 

capable of executing an independent task. Parallel 

Programming is a form of computation in which 

program instructions are divided among multiple 

processors (cores, computers) in combination to 

solve a single problem, thus running a program in 

less time.  

3. Issues and Solution using Graph Partitioning 

Method 

In this section we present the problem 

definitions for Shortest Path Problems and we also 

discuss the general graph partitioning method [1] 

which is used for parallelizing the shortest path 

computations. 

If Dijkstra’s algorithm is used on a network 

containing an edge that has a negative value it does 

not work. We can use Dijkstra’s algorithm to find 

the length of the shortest route between two 

vertices in a network. However, if we want to find 

the corresponding route, we need to record more 

information as we apply the algorithm. That is we 

find the route by backtracking through the network 

from the finishing point. Tracing a route through a 

network can be easily found if careful labeling of 

Dijkstra’s algorithm is used. 

The parallelized algorithm for shortest path 

computation mainly solves the problem by solving 

the same problem on smaller instances of the input. 

The graph partitioning is the major factor in 

determining the efficiency of the parallel algorithm 

and therefore it defines the number of necessary 

computation and communication operations. In 

other words, the more balanced the vertices are 

partitioned and the algorithm is parallelized, the 

better is the performance and efficiency of the 

resulting algorithm. In order to have a good 

efficiency each thread works concurrently on multi-

cores. 

4. Parallelizing Dijkstra’s algorithm 

Dijkstra’s algorithm is a graph search algorithm 

that solves single-source shortest path for a graph 

with nonnegative weights. The single source 

shortest path (SSSP) problem is that of computing, 

for a given source vertex s and a destination vertex 

t, the weight of a path that obtains the minimum 

weight among all the possible paths [5].  
For a weighted directed graph G=(V,E,w), |V| = 

n, |E| = m, and w be the non-negative value to the 

weight  of each edge, the SSSP problem is to find 

the shortest path from a vertex v € to all other 

vertices in V. It maintains a set of nodes for which 

the shortest paths are known. It grows this set based 

on the node closest to source using one of the nodes 

in the current shortest path set. In order to obtain 

the routing table, we need O(V) rounds iterations 

(until all the vertices are included in the cluster). In 

each round, we will update the value for O(V) 

vertices and select the closest vertex, so the running 

time in each round is O(V). So, for the sequential 

Dijkstra’s algorithm the total running time is O(𝑉2
). 

For the parallel Dijkstra’s algorithm the total 

running time is O(V
2
/P + V. log P), where P  is the 

number of cores used. In order to obtain the routing 

table, we need O(V) rounds iteration (until all the 

vertices are included in the cluster). In each round, 
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we will update the value for O(V) vertices using P 

cores running independently, and use the parallel 

prefix to select the global closest vertex, so the 

running time in each round is O(V/P)+O(log(P)). 

So, the total running time is O(V
2
/P + V. log P).  

 

Pseudo-code for parallel Dijkstra’s algorithm 

V = set of all vertices in partition 

S = empty set 

for each v in V: 

d[v] = infinity 

previous[v] = undefined 

d[s] = 0 

Q = V 

while Q is not an empty set: 

q = extract-min(Q) 

u = global-min(q) 

if u is a member of set of V: 

S = S union {u} 

for each edge (u,v) incident with u: 

if d[v] > d[u] + w[u,v]: 

d[v] = d[u] + w[u,v] 

previous[v] = u 

 

      In parallel formulation of Dijkstra’s algorithm, 

the weighted adjacency matrix is partitioned. Each 

process selects, locally, the node closest to the 

source, followed by a global reduction to select 

next node.  

Two parallel strategies are proposed. One to 

execute each of the n shortest path problems on a 

different processor (source partitioned), and the 

other to use a parallel formulation of the shortest 

path problem to increase concurrency (source 

parallel). 

Source Partitioned Formulation uses n 

processors, each processor pi finds the shortest 

paths from vertex vi to all other vertices by 

executing Dijkstra’s sequential single-source 

shortest paths algorithm. It requires no inter-process 

communication provided that the adjacency matrix 

is replicated at all processes. The parallel runtime 

of this formulation is θ(n
2
). While the algorithm is 

cost optimal, it can only use n processors.  

In Source Parallel Formulation each of the 

shortest path problems is further executed in 

parallel. We can therefore use up to n
2
 processors. 

Given p processors (p > n), each single source 

shortest path problem is executed by p/n 

processors. Using previous results, this takes time: 

Tp = θ(n
3
/p) + θ(n log p) that is the time for 

computation and communication. For cost 

optimality, we have used p=O(n
2
/log n).  

 

5. Experiment and Evaluation 

5.1 Performance analysis 

The parallel speedup and efficiency are defined 

as Sp=Ts/Tp and Ep= Sp/P x 100% respectively. Ts 

is the serial execution time, Tp is the parallel 

execution time and Sp is the speedup ratio and P is 

the number of processors.  

 

5.2 Experimental setup 

In this section, we discuss the performance 

evaluation of the sequential and parallel 

implementations of Dijkstra’s algorithm with a 

network of large number of nodes using multi-core 

systems. Network with large data sets are taken for 

this experiment.   

To evaluate our design, we use three hardware 

platforms. The first hardware platform consists of 

dual-core Opteron processor (4-cores) with 4GB 

main memory. The second platform is dual-core 

Intel Xeon processor (4-cores) which has 12GB of 

main memory. The third platform is Intel Core i7 

processor has 8GB of main memory. Our parallel 

algorithm was implemented in Java programming 

language. This suggests that Parallel Dijkstra’s 

algorithm outperforms on network graphs for any 

number of processors. 

We analyse the sequential and parallel 

implementations with their execution time. 

    
Number 

of Nodes 
 

Quad 

Core 

Dual 

Core 

Single Core 

100 0.0172 0.0266 0.0165 

200 0.0350 0.0710 0.0632 

300 0.0568 0.0980 0.1238 

400 0.0691 0.1210 0.2630 

500 0.0830 0.1560 0.4111 

Table 1: Parallel Execution 

 
No. of 

Nodes/

Cores 

1 2 4 8 16 32 

2500 0.075 0.053 0.044 0.051 0.084 0.241 

10000 1.052 0.564 0.308 0.246 0.278 0.443 

22500 5.241 2.692 1.4449 0.840 0.785 1.130 
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     Table 2: Running time vs Number of cores 

 
No. of 

Nodes/ 

Cores 

1 2 4 8 16 32 

2500 1 1.588 2.017 1.565 0.912 0.294 

10000 1 1.883 3.403 4.405 3.886 2.372 

22500 1 1.955 3.650 6.302 6.766 4.662 

       Table 3: Speed up vs Number of cores 

 
No. of 

Nodes/ 

Cores 

1 2 4 8 16 32 

2500 0.074 0.091 0.141 0.342 

 

1.173 7.380 

10000 1.053 

 

1.121 

 

1.231 

 

1.891 

 

4.293 

 

14.095 

22500 5.241 

 

5.390 

 

5.766 

 

6.651 

 

12.411 

 

36.055 

 

          Table 4: Cost vs Number of cores 

 

The data in Table 1 and Table 2 represents the 

execution times taken by Dijkstra’s sequential and 

parallel implementations for the networks of 

different sizes. The result shows that the parallel 

algorithm is efficient than their corresponding 

sequential algorithm. There is an improvement in 

parallel Dijkstra’s code running in 2-cores, 4-cores 

etc., with large number of nodes. 

We plot the graph using the data in Table 1 to 

analyse the performance of parallel algorithm 

which is presented in figure 1. Then we plot the 

graphs using the data in Table 2, Table 3 and Table 

4 to analyse the performance measures such as 

execution time, speedup and cost with different 

multi-core architectures. The result obtained shows 

a vast difference in time required to execute the 

parallel algorithm and time taken by sequential 

algorithm. The parallel algorithm is approximately 

twice faster than the sequential.  

 

 

                          Figure 1: Parallel Execution 

      

 
            Figure 2: Running time vs Number of cores 

 

 

              Figure 3: Speed up vs Number of cores 
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              Figure 4: Cost vs Number of cores 

 

5.3 Results 
   For 500 nodes, Average Speedup Ratio (Sp) = 

Average Serial Execution Time / Average Parallel 

Execution Time 

Sp = 0.4111 / 0.156 

Sp = 2.6353 (Dual Core) 

Sp = 0.4111 / 0.083 

Sp = 4.9530 (Quad Core)  

Efficiency Ep = Speedup Ratio (Sp) / Number of 

Processors (p) 

   Ep= 2.6353 / 2 

   Ep = 1.3177 (Dual Core)   

   Ep = 4.9530 / 4 

   Ep = 1.2383 (Quad Core)  

Therefore, average operating efficiency is 

131.7% for Dual Core and 123.8% for Quad Core 

machines. 

A closer look at the results reveals that for the 

large size network (22500), the running time is 

decreasing as the number of cores increases until it 

reaches the smallest value, then the running time 

will increase because of the communication 

latency.  

For middle size network (10000), the 

phenomenon of a reducing running time is not that 

obvious. For a small size network (2500), the 

running time is even increasing as the number of 

cores increases, because the communication latency 

outperforms the benefit from using more cores. The 

speed up is increasing as the number of cores 

increases until it reaches the maximum value, then 

the speed up is decreasing. The speed up is 

increasing because of using more cores. The speed 

up is decreasing because the communication 

latency outperforms the benefit from using more 

cores. As the network size increases, the number of 

cores used to get the maximum speed up increases. 

(As shown in the figure, 2500-4 cores, 100000-8 

cores, 22500-16 cores). The cost is increasing 

because the speed up (or the benefit of a reduced 

running time) cannot outperform the cost of using 

more cores. 

6. Conclusion and Future Work 

The results of the experiments lead us to several 

conclusions. First, this work proposes the parallel 

implementation of Dijkstra’s algorithm. It is found 

that the execution time of parallel Dijkstra’s 

algorithm increases as the number of nodes 

increases significantly and the execution time 

decreases as the number of processor increases. So, 

it is concluded that as the number of cores 

increased, parallel computing efficiency improved 

significantly. The parallel efficiency rapidly 

increased to above 90%. Second, the results reveals 

that for the large size network (22500 nodes), the 

running time  decreases as the number of cores 

increases until it reaches the smallest value, then 

the running time will increase because of the 

communication latency. And the other performance 

measures speedup and cost are increasing until it 

reaches the maximum value, then they are 

decreasing because of using more cores. 

We are going to run our test on a larger cluster 

real road-network environment and make a 

comparison with other parallel shortest path 

algorithms in the future. We also plan to implement 

our parallel algorithm in OpenMP parallel 

programming model by increasing number of 

threads to improve the performance on multi-core 

systems, and will be applied to the actual 

transportation network to achieve the expected 

results. 
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