Intelligent Buildings: Considerations for its Design using Multiagent Systems

Carlos Rizo Maestre*
*Instituto del Agua y Ciencias Ambientales.
Universidad de Alicante.
Spain

Francisco J. Mora Lizán**
**Departamento de Ciencia de la Computación e IA.
Universidad de Alicante.
Spain

Abstract - In the design phase of Intelligent Buildings, it is essential to manage many services and facilities, to do this, multi-agent systems are a good tool to manage them. This article addresses fundamental aspects of multi-agent systems, oriented to their integration into the design and construction of intelligent buildings. Sensors, control and actuators must be integrated in the initial stages of the construction design to harmonize the different functionalities that are required of an Intelligent Building. In the article, once the concept of Intelligent Building was established, the complexity of its architectural design, makes it convenient to have a structure of procedures that serves as a guide for its integrated design, this has been the central objective of the article, multiagent systems are instrument of design and implementation that allow to compose the different subsystems of control that characterize the Intelligent Buildings. The article provides a review of different approaches to multiagent systems applied to building construction, the basic elements of multiagent systems and the set of their systems to be considered in the early stages of designing an Intelligent Building.

Keywords – Architecture, Intelligent Building, Multiagent Systems

I. INTRODUCTION

The multiagent systems (MAS) constitute a field of research that compose a wide set of applications within Intelligent Buildings, their construction [1], sensor and control of buildings [2], [3], maintenance of Intelligent Buildings [4]. A modern approach to Architectural Construction involves considering MAS as elements linked to the architectural design of buildings [5]. In this sense, a multidisciplinary approach to architectural design is essential [6], the Building Information Models [7] supplemented with the MASs constitute powerful systems of holistic design of buildings.

This article addresses the fundamental aspects of multiagent systems, oriented to their integration into the design and construction of Intelligent Buildings. Sensors, actuators and control systems must be integrated in the initial stages of the design, in order to harmonize the different functionalities that are required of an Intelligent Building [8].

I. INTELLIGENT BUILDINGS

The Intelligent Building Index (IBI) manual has been developed by the Asian Institute of Intelligent Buildings (AIIB). The definition of Intelligent Building adopted by this association is: "An Intelligent Building is designed and constructed based on an appropriate selection of Quality Environment Modules to meet the User's requirements by mapping with the appropriate building facilities to achieve the Long-Term Building Value”

The provisions that influence the condition of Intelligent Building: (H Chow & T Leung, 2005) are established from the following slopes:

• Green Building, this integrates the friendly use of environmentally components in a building, such as energy consumption by ventilation, lighting, air conditioning, etc.

• Layout of the Space, includes groups of elements of Architectural Design, Parking and Transportation, Interior Architectural Design Flexibility.

• Efficiency of Work (own office buildings and services), includes several groups of Architectural Design elements, Lifts and Stairs, Appliances and Restrooms, Thermal Comfort, Lighting, High Technology, Signage and Directory, Parking and Transportation, Installations for Buildings, etc.

• Cultural Elements. It is considered as the "soft" side of an intelligent building. They include Entertainment Facilities, Privacy Requirements, Colors, Interior Decorating, Food and Beverage Control, Exterior Landscape and View, Interior Plants, Religious Facilitation, Culture Based Interior Design, Promotion Activity, etc.

• High Technology Image. It has been interpreted for many years as the only provision and/or criterion of an intelligent building. The groups of elements are Broadband Internet, Electrical Services, Office Automation, Electronic Installations, Intelligent Artificial Control, Web Page, Direct Lines, Telephone Arrangements, Fiber Optic Network, Building Services Automation, Mobile Phone Coverage, Installations Advanced Parking, etc.
agents are active [9]. Each of these agents is dedicated to

In a multi-agent system, several independent autonomous

offer a method to avoid the problematic situations described.

their own objectives and only contacts the other agents to

useful solution. Even when the individual agent can solve a

problem can be so complex that an agent cannot find a

knowledge to solve complex problems. In the worst case, the

problem using an individual agent causes major constraints.

and to coordinate different tasks is necessary.

moment that a group of elements, in this case agents, assume

interdependent elements that act individually. From the

MultiAgent Systems (MAS) form a community of

automatic control systems and information capture.

In the field of intelligent building design, we must have

mechanisms to integrate sensors, actuators, different

automatic control systems and information capture. MultiAgent Systems (MAS) form a community of

interdependent elements that act individually. From the

moment that a group of elements, in this case agents, assume

to act in group forming systems, the capacity to negotiate

and to coordinate different tasks is necessary.

All these elements have different influence in the

building depending on its use, offices of work, residential,

commercial, etc. In any of them, the increasing weight and

set of these elements contribute to the consideration of

Intelligent Building. At the design level, we can consider

two types of elements, those that make up the classic

architectural design and those that make up the architectural

design based on the information management that is

generated in the building.

In the following of the article we are going to see the

multiagent systems to use them for the architectural design

based on the information management that is generated in

the building.

II. MULTIAGENT SYSTEMS

In the field of intelligent building design, we must have

mechanisms to integrate sensors, actuators, different

automatic control systems and information capture. MultiAgent Systems (MAS) form a community of

interdependent elements that act individually. From the

moment that a group of elements, in this case agents, assume

to act in group forming systems, the capacity to negotiate

and to coordinate different tasks is necessary.

In many cases the use of individual agents is not just as

suitable for all situations that occur in practice. Solving a

problem using an individual agent causes major constraints.

An individual agent requires an enormous amount of

knowledge to solve complex problems. In the worst case, the

problem can be so complex that an agent cannot find a

useful solution. Even when the individual agent can solve a

problem, it always presents a bottleneck in terms of speed,

reliability, flexibility and modularity. Multi-agent systems

offer a method to avoid the problematic situations described.

In a multi-agent system, several independent autonomous

agents are active [9]. Each of these agents is dedicated to

their own objectives and only contacts the other agents to

obtain information, or to contribute to a coordinated solution

of a general problem. In both situations, each individual

agent has a specific task for which it is adequate and whose

solution does not exceed its capabilities. This allows for the

processing of complex problems.

Multi-agent systems provide a great advantage: they

allow the integration of existing agents into a large system.

Therefore, solving a problem does not require the design and

development of a new specialized agent, instead, the

knowledge of existing agents can be used by combining

them into a multi-agent system and allowing them to work

together to solve the problem.

III. INTERACTION BETWEEN AGENTS

In a multi-agent system, an agent must anticipate the

actions of the other agents in their own planning task and

how it can influence the actions of other agents in benefit of

their own objectives. The effects of the actions of other

agents on our agent may be favorable, neutral or detrimental

to our agent's objectives. To influence what another agent

will do we will need methods for an agent to communicate

with another agent.

The simplest kind of agent interaction would be the one

in which our agent reacts to the effects of the environment
generated by other agents as they occur and perceive them.

These are reactive agents. In this case, there would be no

explicit communication between them, nor would we need

models of the other agents. If our agent has to take into

account the activity of the other agents, you will need to

have models that you can use to predict how these will

behave and use them when building your own plans. The

model of the agent, along with the mechanism to use it and

select the actions, is called cognitive structure. Often, the

cognitive structure also includes the agent's goals and

intentions [10]. All this we will deal with in more detail in

section 3 when talking about the architectures of agents.

Some basic characteristics of multi-agent systems are:

(1) Each agent has a limited view of the state of the world,

ie, has incomplete information. (2) There is no global

control, the control of the system is distributed. (3) The

information is decentralized. (4) The computation is

asynchronous.

In a multi-agent system, we can find in situations of

cooperation or competition. In the first case, the agents will

to have to be able to combine their efforts, usually to obtain

solutions of problems that the agent itself is not able to find

(CMAS Cooperative Multiagent Systems). On the other

hand, from the moment we have agents who fulfill our

orders, other people will have agents who will fulfill theirs.

And while our agents want the best for us, those of others

will also try their best for their owners (SMAS Self-

Interested Multiagent Systems). In the latter type of systems

negotiation strategies play a preponderant role that allow

to resolve conflicts, assign tasks and take.

Interaction protocols (AIP, "Agent Interaction

Protocols") are often quite complex. An inter-agent

interaction protocol describes a communication pattern as an
allowed sequence of messages between agents and restrictions on the content of such messages. To help us we can represent them through AUML (Agent UML - "Agent Unified Modeling Language") [11]. It is an extension of UML to deal with agents.

There are different methods of communication. The invocation of the procedure of an agent by another agent represents the simplest case. However, only simple communication methods can be implemented using procedure calls. For this reason, procedure calls are not considered a method of communication.

Communication methods can be differentiated into blackboard systems and message dialog systems, shown in Fig. 1, Fig. 2 and Fig. 3.

Figure 1. Structure of a Blackboard Communication System

Figure 2. Extended Blackboard structure

Figure 3. Transmission of a message principle

IV. DISTRIBUTED ARTIFICIAL INTELLIGENCE AND PROBLEM SOLVING

Many problems have a distributed nature, so they require a distributed solution. Specialized knowledge is often not available in an individual agent but may be distributed among different agents. As we have said in the previous section, in the interaction between agents it may be the case that various agents coordinate their tasks to reach a common goal. This aspect is treated in Distributed Artificial Intelligence (IAD), which we could define as [12]: “Distributed artificial intelligence is the study, construction and application of multi-agent systems, that is, systems in which several intelligent agents, interacting, pursue a set of objectives or perform a set of tasks”.

Traditionally, two basic types of systems are distinguished: multiagent systems and distributed problem solving systems. While in multi-agent systems the emphasis is placed on coordination, in systems of distributed problem solving is the task of decomposition and synthesis of solutions. At present, there is no such differentiation and when talking about multi-agent systems we include both types.

V. MULTIAGENT SYSTEMS AND INTELLIGENT BUILDINGS

According to the characteristics that influence the condition of Intelligent Building: [13], the elements we must consider the following subsystems of agents:

- Green Building:
 - Control multiagent subsystem for energy saving.
 - Energy production multiagent subsystem.
 - Water consumption control multiagent subsystem.
 - Gas emission control multiagent subsystem.
 - Wastewater emission control multiagent subsystem.

- Comfort:
 - Thermal Comfort control multiagent subsystem.
 - Control subsystem Ventilation and Air Conditioning Control multiagent subsystem.
 - Control multiagent subsystem Lighting.
 - Control multiagent subsystem Access.
 - Noise control multiagent subsystem.
 - Lifts control multiagent subsystem.

- Efficiency for Work (own office buildings and services):
 - Signaling control multiagent subsystem.
 - Directory control multiagent subsystem.
 - Parking control multiagent subsystem.

- Cultural Elements:
 - Activities advertising facilitator multiagent subsystem.

- High Technology Image. It has been interpreted for many years as the only provision and / or criterion of an intelligent building. Element groups are:
 - Broadband Internet facilitator multiagent subsystem.
 - Multiagent Subsystem of Control of Electrical Services.. Facilitator multiagent subsystem
 - Automation of Offices.
 - Intelligent Control multiagent Subsystem.
 - Automation multiagent subsystem.
Multiagent subsystem for the control of Mobile Phone Coverage.
- Advanced Parking Facilities multiagent Subsystem.

- Security and Structure:
 - Fire protection multiagent subsystem.
 - Electrical safety multiagent subsystem.
 - Lift reliability multiagent subsystem.
 - Multiagent subsystem of public notices.
 - Exhaust plan multiagent subsystem.
 - Essential electrical energy multiagent subsystem.
 - Indoor air quality multiagent subsystem.
 - Security management multiagent subsystem.
 - Earthquake monitoring multiagent subsystem.
 - Structural monitoring multiagent subsystem.
 - Terrorist attack precaution multiagent subsystem.

- Building Management:
 - Security and Surveillance multiagent Subsystem.

- Healthy Buildings:
 - Drinking water control multiagent subsystem.
 - Elevator ventilation control multiagent subsystem.
 - Cleaning control multiagent subsystem.
 - Waste management control multiagent subsystem.
 - Pest control multiagent subsystem.
 - Pool filtration control multiagent subsystem.

The set of multiagent subsystems constitutes the multiagent system associated to the building. For all subsystems, we must have mechanisms that allow the integration of sensors, actuators and different automatic control systems.

The typologies of sensors are very varied, for example we have sensors to control accesses, temperature sensors, sensors of luminosity, security cameras, etc. Likewise, the types of actuators are very varied: door opening actuator, blind opening / closing actuator, air conditioning actuator, display screens, etc.

The multi-agent system associated to the intelligent building is composed of subsystems of agents in such a way that each subsystem acts autonomously, except when it needs information of any other, then by means of a slate structure or by passage of messages the request and reception takes place Information needed to act.

Basic conditions of a general nature must be taken into account: availability, security, and privacy. The three conditions must be propagated by all subsystems of agents for the purpose of their constant prevalence. In the physical installation, priority should be given to installations with structured wired cables, since wiring simplifies anti-intrusion measures in communications.

VI. CONCLUSION

Having established the concept of Intelligent Building, the complexity of its architectural design makes it convenient to have a structure of procedures that serves as a guide for its integrated design, this has been the objective of the article, multi-agent systems are an instrument of design and implementation. That allow to integrate the different control subsystems that characterize the Intelligent Buildings. The article provides a review of different approaches to multi-agent systems applied to building construction, the basic elements of multi-agent systems and the set of their systems to be considered in the early stages of the design of an Intelligent Building.

ACKNOWLEDGEMENTS

This work has been supported by the Ministerio de Economía y Competitividad (Spain), project TIN2013-40982-R. Project co-financed with FEDER funds.

REFERENCES