Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 5 Issue 03, March-2016

Integrating HBase with Berkeley DB (BDB) to
Improve the Performance of Write Intensive
Workload

Anusha A C; Neha H; Madhuri M; Keerthi P
Department of Information Science and Engineering
East West Institute of Technology
Bangalore, India

Abstract— Hbase is a non-relational distributed data-base or
NOSQL database that is modeled to deal with big data and is
written in Java. It is a layered system that is made of a lower
level HDFS (Hadoop distributed file system) and a higher lever
layer responsible for managing the data. However this system
suffers from overhead due to isolation between the layers.

To overcome this problem the paper proposes to replace the
HDFS layer with a layer called the Berkeley Database (BDB).
BDB is made of log-structured binary B+ trees. This paper also
puts forth a re-usable plug-in that will save migration time and
efforts required when switching to BDB.

The Hbase integrated with BDB is compared with Hbase with
HDFS using an inventory database and it is seen that Hbase
with BDB outperforms Hbase with HDFS.

Keywords-NoSQL ; BDB; HBase; HDFS

l. INTRODUCTION
Large-scale, data-intensive ~ computing requires a
sophisticated technology to be integrated with distributed file
systems to provide clients with efficient and scalable high-
performance accesses to stored data. The domain Bigdata is a
data analytic which is a huge amount of data used to analyze,
process and also gives the technology to access it in the
efficient manner. Hadoop is the platform to implement the
Bigdata. Hadoop mainly gives us with the two basic
components. 1] HDFS is the storage space provided by the
hadoop, where all the data will be stored in form of log files.
2] Map Reduce is the special technique provided by the
hadoop to process the data stored HDFS. In the current era
there are many technologies to process the data. Well known
is the RDBMS(Relational database management system),
which stores the data in the format of rows and columns. As
it stores the data in the form of table, we cannot dynamically
add new data . In other words it fails to store data in the form
of elastic model. Hence this approach is only suitable for
small scale data. Another technology implemented using the
hadoop is the Hbase, where the data is stored in the form of
log files. Here the data is stored in the distributed form.
Hence to retrieve the data it causes a high network load
impact and also this technique results in complexity as it
stores in the form of log files. Hence this is only suitable for
small scale & medium scale data, but not for processing large
set of data. In this paper we are going to introduce a new
technique by integrating Hbase and Berkeley database where
the records are stored in the form of elastic key-value pair.
This also uses B+tree implementation for storing the data.

IJERTV5IS030734

Vidhya K
Assistant Professor, B.E, M.tech(PhD)
Department of Information Science and Engineering
East West Institute of Technology
Bangalore, India

This can be used to process the large set of data in the
efficient manner.

Il. LITERATURE REVIEW ON HADOOP HBASE AND
BERKELEY DB

. A Performance-Effective and High-Scalable Grid File
System paper describes the distributed model and evaluation
of buffer size applied for distributed data grid environments.
This model is one of the feasible approaches to improve the
overall performance in grid communities. Data Consistency
Protocol for Distributed File Systems paper presents a
distributed locking protocol with which several nodes can
simultaneously write to the distinct data portions of a file,
while guaranteeing a consistent view of client cached data.
The Design & Evaluation of a Distributed Reliable File
System DRFS provides high data availability through
replication of data and higher fault tolerance through
decentralization. Different technique to transfer big data
suggests the use the Nice model to handle transfer the data
over the network. But this algorithm failed to handle the
issues like security and routing problems which occurs when
using network to transfer the data. Big data solution for
RDBMS problem illustrates the hadoop architecture
consisting of name node, data node, edge node, HDFS to
handle big data systems. But it also has the issues of data
privacy. Mining big data in real time has the capability of
extracting useful information from large set of data due to its
volume and velocity. Even this approach has issues with data
compression and visualization.

. EXISTING SYSTEM

In a network data is shared among machines using distributed
and parallel file systems. The different distributed file
systems are NFS (Network File System) , AFS (Andrew File
System) and DFS (Distributed File System) . To access
remote data through POSIX interfaces these, provide a
uniform interface. These file systems are not scalable over a
wide area network. NFS requires specific mount points in a
logical directory hierarchy. They do not have the concept of
virtual organizations Data Grid middleware provides
functionality for accessing data on the grid. Dependable,
efficient and transparent file sharing is enabled in the Grid
file system architecture. The key difference between
traditional distributed file systems and Data Grid middleware
is that the scientific researcher analysis data require complete

456

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://www.ijert.org

abstraction of the logical hierarchy and the physical files. The
Grid File System Group of Global Grid Forum specifies the
hierarchical structure to share virtualized data by providing
the virtual namespace. Rich set of tools available are closest
to providing file system services.

When compared to client server systems Peer-to-peer (P2P)
systems are fault-tolerant, robust, and scalable. While C/S
distributed file systems, such as NFS (Network File System)
or SMB (Server Message Block), do not scale with respect to
the number of clients and exhibit a single point of failure,
P2P file systems have the potential to cope with an increasing
number of participants. Thus,we can move to the DRFS
(Distributed Reliable File System), a P2P file system.
DRFS maintains high performance and low overhead with
many read and write operations. DRFS uses random, content-
independent identifiers for data storage. Data availability is
high due to the dynamic replication mechanism. DRFS has
been implemented using the Filesystem in Userspace (FUSE)
interface which provides users with transparent read and
write operations.

P2P systems

CFS(Cooperative File System)

The Cooperative File System (CFS) is a publisher-based P2P
storage system. Data is stored as blocks and spread evenly
among the peers. The system contains three layers: a file
system client, a distributed hash table (DHT) layer, DHash,
and a Chord layer, used for lookup and routing. When the
files are accessed by clients blocks are converted to files.
CFS allows anyone to publish and update their own file
system, and provides read-only access to others. Data expires
and is lost after an agreed-upon time interval.

PAST

PAST is a large-scale P2P persistent storage system. It
operates on top of the Pastry lookup system. PAST semantics
are different from general purpose file system. Because of
lack of facilities provided like searching, directory lookup
and traversal. The operations provided are insertion, lookup,
and reclaim. In PAST, files are not split into fragments. The
file is stored along with an unique id which cannot be
updated further.

vy

IVY is a log-based, distributed, and decentralized read/write
P2P file system. It supports multiple users concurrently.
IVY’s main goal is to provide integrity even when
participants do not fully trust each other, or the underlying
storage system. The changes made to the file systems by each
individuals are stored in a log. These logs are stored in the
DHash DHT. When a peer issues a lookup, it scans all the
logs associated with the item. At this time the state of file
system would be composite of all logs. Since every
modification can be identified, actions of misbehaving peers
can be discarded. Multiple peers are allowed to write
simultaneously to a resource since they write in own, separate
logs.

IJERTV5IS030734

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 5 Issue 03, March-2016

IgorFS

IgorFS is a distributed P2P file system built on top of a
Chord-like overlay. IgorFS allows transparent access to
remotely stored data through FUSE interface. Files stored are
split in blocks of a given size. After the splitting, the blocks
are processed for encryption. The block data is initially
hashed once, with value k as the result of the hash. This value
is then used as a key to encrypt the data of the block. Once
the block is encrypted, it is hashed again and the result is
used as the id, under which the encrypted block will be stored
in the DHT. A file is represented as a collection of (offset,
ID, k) - tuples, and directories as a collection of file names
and their attributes.

DRFS uses a layered architecture. At the network level, UDP
is used for messages that fit in a single packet and are not
critical if lost, otherwise TCP is used.

Dynamic Ring Online Partitioning (DROP), is a highly
scalable and available key-value store, and it provides a
simple interface called lookup(key) under put(write) and
get(read) operations.

To keep excellent metadata consistency it provides a
linearizable consistency mechanism using ZooKeeper .

DROP DESIGN

DROP uses hashing to distribute the metadata across the
MDS cluster. However, it still maintains hierarchical
directories to support common directory hierarchy.

Goals

1. high scalability of MDS cluster, 2. excellent namespace
locality, 3. dynamic load balancing, 4. metadata consistency.
DROP is designed to scale to a large-scale distributed
metadata server cluster for EB-scale file systems within a
single global namespace.

Hash-Based Mapping

Hash-based mapping applies hash function to a pathname or
filename of a file to locate the file’s metadata. It helps clients
to locate and contact directly to the right metadata server.
Client requests can be distributed evenly among a metadata
servercluster, eliminating hot-spots consisting of popular
directories. Hashing provides a better load balancing across
metadata servers and gets rid of hot-spots e.g., popular
directories. However, hashing is a random distribution, in
which metadata updates may incur huge network overhead.

Subtree Partitioning

Static subtree partitioning provides a simple approach of
distributing metadata operations among MDS cluster, which
statically partitions the directory hierarchy and assigns each
subtree to a particular MDS. It provides better locality of
reference and greater MDS independence than hash-based
mapping. Its major drawback is that the workload may not be
evenly partitioned among MDS cluster, suffering from a
system performance bottleneck. Static partitions fail to adapt
to the growth or contraction of individual subtrees over time,
often requiring intervention of system administrators to
repartition or manually rebalance metadata storage load
across MDSs. Dynamic subtree partitioning uses dynamic
load balancing mechanism to redistribute metadata
dynamically among MDS cluster to handle the changing
workload.

457

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://www.ijert.org

HBase with HDFS

The HBase plan takes after a layered engineering, in the soul
of past frameworks, stacked in two layers. In the base layer,
HBase utilizes HDFS(Hadoop Distributed File System) as a
capacity back-end. HDFS opens to its customer applications a
common namespace and actualizes versatility and adaptation
to internal failure systems at the document layer. Having
settled those issues in its stockpiling back-end, HBase centers
in the rationale and flexibility elements of the database.
Performing key worth rearrangements on top of an affix just
appropriated record framework results in high system load
and noteworthy compose intensification, affecting read
execution. HBase furthermore performs compose ahead
logging for strength which advance increases composes.
Layering is frequently in charge of execution punishments
because of the absence of joining intrinsic in such plans.
HBASE's energy clients have been implying at execution
issues under particular workloads .It is not ideal for an
extensive variety of workloads that are commanded by
arbitrary peruses. It results in high system load and
noteworthy compose intensification, affecting read execution.

(\VA PROPOSED SYSTEM
In this project, we propose an alternative architecture to
HBase, named HBase-BDB, to overcome the aforementioned
problems. We show that the replacement of HDFS with a
thinner layer of a local key-value store implemented over
local volumes benefits performance without requiring a major
re-engineering effort.

Since there are several local key value store engines with
different properties available, we decided to leverage one of
them (Berkeley DB (BDB) Java Edition2) that fits well our
design goals. BDB-JE is a robust, efficient, widely deployed
integrated database engine. It implements a B+ tree index,
known to perform well for random read workloads and
provide good support for range queries.

The entire database is implemented as a log avoiding the need
for a separate write-ahead (commit) log. Since BDB-JE is
available in a replicated high-availability edition we inherit
those properties in HBase-BDB. Removing HDFS from the
picture takes away several convenient mechanisms that
underlie HBase’s elasticity architecture. To make up for this
loss we design and implement new efficient elasticity
mechanisms suitable for HBase-BDB.

Overall, our key contributions in this project are

e Design and implementation of a distributed key-value
store architecture maintaining HBase’s front-end and
replacing HDFS with log-structured B+-trees over direct-
attached file systems, improving performance and
eliminating overheads due to HBase layering

o Novel, efficient elasticity mechanisms for splitting and
moving data regions over the direct-attached file systems

e HBase-BDB is designed to overcome HBase’s
performance bottlenecks (while retaining compatibility
with HBase applications) without losing on elasticity
features

o Berkeley DB provides a simple function-call API for a
number of programming languages, including C, C++,
Java, Perl, Tcl, Python, and PHP. All database operations

IJERTV5IS030734

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 5 Issue 03, March-2016

happen inside the library. Multiple processes, or multiple
threads in a single process, can all use the database at the
same time as each uses the Berkeley DB library.

o Low-level services like locking, transaction logging,
shared buffer management, memory management, and so
on are all handled transparently by the library.

Better performance is achieved due to replacement of HDFS
with a thinner layer of a local key-value store implemented
over local volumes.It also eliminates the overhead due to
HBase layering.It implements B+ tree index known to
perform well for random read workloads and provide good
support for range queries.

ARCHITECTURE OF PROPOSED SYSTEM

[putkeyvalue][getkey |
| Client layer
4
| Interactive Shell | Comp t 1, comp. tZ_ G
I Lock I I Eluﬁerpooll I Log I Service layer
) — ==
-By name -Byname
- By vendor name
Inventory Vendor
Accessors Accessors
DE Environment
Data accessor

Fig:1 Proposed System Architecture

The architecture of the BDB consists of mainly six modules:

Interactive Shell

This component is designed to provide an user interface for

the user to interact with the Berkeley database.

Inventory Database

The inventory database is developed to evaluate the

performance of the record accessing operations by the

normal Hbase system and the successfully integrated Hbase&

Berkeley database system. This system mainly consists of

four components as follows

e Lock: This component is designed in such a way that if a
user is modifying any record, it locks that particular
record so that no othe user can access it till the
modification completes.

e Buffer pool: This acts as a cache memory in the system
i.e, all the recently accessed record will be stored in this
buffer pool

e Log: It performs the role of database administrator,
where all recent activity performed are stored.

e Storage space: This component provides the storage
space for storing all the records in the form of elastic key
value pair.

Database Environment
The database environment provides with the authentication
measures where it consists of two components as follows

458

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://www.ijert.org

e Setup: This component is used to setup the connection
with the database. It expects the valid user ID and
password to setup the connection with the database.

e Close: It is used to terminate the connection with the
database.

Data Accessor

The data accessor is used to access the record from the

inventory database. It provides with the two major

components as follows

e Inventory Accessor: This provides the user with the
options to search any product based on its name and also
by its respective vendor name.

e Vendor Accessor: This accessor is only provided for the
vendors to search any of the records or the products only
by its name.

Service Layer

The service layer is mainly composed of backend
implementation of Berkeley database which is done using
theprovisions such as Java, JEE (Servlet, JDBC, JSP),
HBASE, HADOOP, MySQL/Oracle, Wildfly server, Maven
as the building tool etc.

Client Layer

The client layer is mainly a front end support provided for the
user in the user interface which is implemented using
HTMLD5, CSS3, Skeleton, Foundation,Jquery, Ajax etc.

SOFTWARI PLICATIONS

o Initialize
Initialize DB ‘

Streams

-Inputstreams
DBUtil - Qutputstream

Assert input
stream Query Builder
Token

Input stream
Parser

BaliParser ‘

-Constants
- Token Operations

manager

Clean up [{Grammar)

Query Executer

Fig:2 Reusable plugin architecture

The re-usable plugin is mainly used to convert the basic SQL
query into BDB compatible commands. This re-usable plugin
majorly consists of 4 modules as shown in the fig2.

Modulel: The initial module provides the operations like
getting the connection with the re-usable plugin in the initial
stage and for getting the connection terminated.

e |Initialize DB: This component is used for getting the
connection with the re-usable plugin. It is built using the
tool known as DBUil.

e Clean up: This component is use for getting the
connection terminated from the re-usable plugin.

IJERTV5IS030734

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 5 Issue 03, March-2016

Module2: This module is used for initializing the particular
operation and also consists of a component for checking the
syntax of the given SQL queries.

e Initialize Streams: This component is used to select the
particular stream given such as input stream & output
stream. If the operation is to read the data from the
database then the output stream is going to be initialized.
If the operation is to write the data to the database then
the input stream is going to be initialized.

e Assert Input Stream: This component is used to check
the syntax of the given SQL query. If the given query is
syntactically correct then its parsed to the next module,
else it’s going to give the error message for the user.

Module3: This module is designed to collect the parsed SQL

query and it will break the query into the form of tokens.

e Input Stream Parser: This component is used to break the
SQL query into the form of tokens. All the keywords that
are used in the query is going to be stored in the token
manager.

e Token manager: This component is used store all the
keywords in the query which is tokenized by the input
stream parser.

Module4: This module consists of Bali parser which is used

to differentiate between the constants and the tokens. It also

consists of the query builder and the query executer
component.

e Query Builder: This component is designed for building
the BDB compatible command using the given
appropriate SQL query.

e Query Executer: This component is used for executing
the BDB command and to access the data stored the
Berkeley database.

e Bali Parser: Bali parser which is used to differentiate
between the constants and the tokens.

V. CONCLUSION

In this paper we exhibited HBase-BDB, a conveyed key value
store that shares HBase's information model and information
dissemination instruments yet leaves from it in the utilization
of a log structured B+-tree filed capacity back-end over
locally attached files frameworks. With the utilization of a log
organized key quality store consolidated with novel
versatility systems HBase-BDB can enhance over HBase in
irregular read. HBase-BDB lingers behind HBase just in
irregular sweeps; these however are just a little share of
general operations in well known workloads. Support for
flexibility in HBase-BDB is appeared to be viable in yielding
comparative accessibility and execution effect to what is
achievable with HBase-HDFS.

REFERENCES

[1] J. H. SALTZER, D. P. REED, AND D. D. CLARK, “END-TO-END
ARGUMENTS IN SYSTEM DESIGN,” ACM TRANSACTIONS ON
COMPUTERSYSTEMS (TOCS), VOL. 2, NO. 4, PP. 277-288, 1984.

[2] M. Welsh and D. Culler, “Virtualization considered harmful: OS design
directions for well-conditioned services,” in Proceedings of the 8th
Workshop on Hot Topics in Operating Systems, 2001, pp. 139-144.

[3] Apache HBase, http://www.hbase.org.

459

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://www.ijert.org

International Journal of Engineering Research & Technology (1JERT)

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[5] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in
ACM SIGPLAN Notices, vol. 31, no. 9, 1996, pp. 84-92.

IJERTV5IS030734

Anusha A C (BE)

Information Science and Engineering Department,
East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,
Bangalore 560091 Karnataka.

Madhuri M (BE)

Information Science and Engineering Department,
East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,
Bangalore 560091 Karnataka.

Neha H (BE)

Information Science and Engineering Department,
East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,
Bangalore 560091 Karnataka.

Keerthi Prabhashankar (BE)

Information Science and Engineering Department,
East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,
Bangalore 560091 Karnataka.

Vidhya K

Assistant Professor, B.E, M.tech(Computer Networks),
(Ph.D in Image Processing)

Department of Information Science and Engineering,
East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,
Bangalore 560091 Karnataka.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

ISSN: 2278-0181
Vol. 5 Issue 03, March-2016

460

