
Integrating HBase with Berkeley DB (BDB) to

Improve the Performance of Write Intensive

Workload

Anusha A C; Neha H; Madhuri M; Keerthi P
Department of Information Science and Engineering

East West Institute of Technology

Bangalore, India

Vidhya K
Assistant Professor, B.E, M.tech(PhD)

Department of Information Science and Engineering

East West Institute of Technology

Bangalore, India

Abstract— Hbase is a non-relational distributed data-base or

NOSQL database that is modeled to deal with big data and is

written in Java. It is a layered system that is made of a lower

level HDFS (Hadoop distributed file system) and a higher lever

layer responsible for managing the data. However this system

suffers from overhead due to isolation between the layers.

To overcome this problem the paper proposes to replace the

HDFS layer with a layer called the Berkeley Database (BDB).

BDB is made of log-structured binary B+ trees. This paper also

puts forth a re-usable plug-in that will save migration time and

efforts required when switching to BDB.

The Hbase integrated with BDB is compared with Hbase with

HDFS using an inventory database and it is seen that Hbase

with BDB outperforms Hbase with HDFS.

Keywords-NoSQL; BDB; HBase; HDFS

I. INTRODUCTION

Large-scale, data-intensive computing requires a

sophisticated technology to be integrated with distributed file

systems to provide clients with efficient and scalable high-

performance accesses to stored data. The domain Bigdata is a

data analytic which is a huge amount of data used to analyze,

process and also gives the technology to access it in the

efficient manner. Hadoop is the platform to implement the

Bigdata. Hadoop mainly gives us with the two basic

components. 1] HDFS is the storage space provided by the

hadoop, where all the data will be stored in form of log files.

2] Map Reduce is the special technique provided by the

hadoop to process the data stored HDFS. In the current era

there are many technologies to process the data. Well known

is the RDBMS(Relational database management system),

which stores the data in the format of rows and columns. As

it stores the data in the form of table, we cannot dynamically

add new data . In other words it fails to store data in the form

of elastic model. Hence this approach is only suitable for

small scale data. Another technology implemented using the

hadoop is the Hbase, where the data is stored in the form of

log files. Here the data is stored in the distributed form.

Hence to retrieve the data it causes a high network load

impact and also this technique results in complexity as it

stores in the form of log files. Hence this is only suitable for

small scale & medium scale data, but not for processing large

set of data. In this paper we are going to introduce a new

technique by integrating Hbase and Berkeley database where

the records are stored in the form of elastic key-value pair.

This also uses B+tree implementation for storing the data.

This can be used to process the large set of data in the

efficient manner.

II. LITERATURE REVIEW ON HADOOP HBASE AND

BERKELEY DB

. A Performance-Effective and High-Scalable Grid File

System paper describes the distributed model and evaluation

of buffer size applied for distributed data grid environments.

This model is one of the feasible approaches to improve the

overall performance in grid communities. Data Consistency

Protocol for Distributed File Systems paper presents a

distributed locking protocol with which several nodes can

simultaneously write to the distinct data portions of a file,

while guaranteeing a consistent view of client cached data.

The Design & Evaluation of a Distributed Reliable File

System DRFS provides high data availability through

replication of data and higher fault tolerance through

decentralization. Different technique to transfer big data

suggests the use the Nice model to handle transfer the data

over the network. But this algorithm failed to handle the

issues like security and routing problems which occurs when

using network to transfer the data. Big data solution for

RDBMS problem illustrates the hadoop architecture

consisting of name node, data node, edge node, HDFS to

handle big data systems. But it also has the issues of data

privacy. Mining big data in real time has the capability of

extracting useful information from large set of data due to its

volume and velocity. Even this approach has issues with data

compression and visualization.

III. EXISTING SYSTEM

In a network data is shared among machines using distributed

and parallel file systems. The different distributed file

systems are NFS (Network File System) , AFS (Andrew File

System) and DFS (Distributed File System) . To access

remote data through POSIX interfaces these, provide a

uniform interface. These file systems are not scalable over a

wide area network. NFS requires specific mount points in a

logical directory hierarchy. They do not have the concept of

virtual organizations Data Grid middleware provides

functionality for accessing data on the grid. Dependable,

efficient and transparent file sharing is enabled in the Grid

file system architecture. The key difference between

traditional distributed file systems and Data Grid middleware

is that the scientific researcher analysis data require complete

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030734

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

456

abstraction of the logical hierarchy and the physical files. The

Grid File System Group of Global Grid Forum specifies the

hierarchical structure to share virtualized data by providing

the virtual namespace. Rich set of tools available are closest

to providing file system services.

When compared to client server systems Peer-to-peer (P2P)

systems are fault-tolerant, robust, and scalable. While C/S

distributed file systems, such as NFS (Network File System)

or SMB (Server Message Block), do not scale with respect to

the number of clients and exhibit a single point of failure,

P2P file systems have the potential to cope with an increasing

number of participants. Thus,we can move to the DRFS

(Distributed Reliable File System), a P2P file system.

DRFS maintains high performance and low overhead with

many read and write operations. DRFS uses random, content-

independent identifiers for data storage. Data availability is

high due to the dynamic replication mechanism. DRFS has

been implemented using the Filesystem in Userspace (FUSE)

interface which provides users with transparent read and

write operations.

P2P systems

CFS(Cooperative File System)

The Cooperative File System (CFS) is a publisher-based P2P

storage system. Data is stored as blocks and spread evenly

among the peers. The system contains three layers: a file

system client, a distributed hash table (DHT) layer, DHash,

and a Chord layer, used for lookup and routing. When the

files are accessed by clients blocks are converted to files.

CFS allows anyone to publish and update their own file

system, and provides read-only access to others. Data expires

and is lost after an agreed-upon time interval.

PAST

PAST is a large-scale P2P persistent storage system. It

operates on top of the Pastry lookup system. PAST semantics

are different from general purpose file system. Because of

lack of facilities provided like searching, directory lookup

and traversal. The operations provided are insertion, lookup,

and reclaim. In PAST, files are not split into fragments. The

file is stored along with an unique id which cannot be

updated further.

IVY

IVY is a log-based, distributed, and decentralized read/write

P2P file system. It supports multiple users concurrently.

IVY’s main goal is to provide integrity even when

participants do not fully trust each other, or the underlying

storage system. The changes made to the file systems by each

individuals are stored in a log. These logs are stored in the

DHash DHT. When a peer issues a lookup, it scans all the

logs associated with the item. At this time the state of file

system would be composite of all logs. Since every

modification can be identified, actions of misbehaving peers

can be discarded. Multiple peers are allowed to write

simultaneously to a resource since they write in own, separate

logs.

IgorFS

IgorFS is a distributed P2P file system built on top of a

Chord-like overlay. IgorFS allows transparent access to

remotely stored data through FUSE interface. Files stored are

split in blocks of a given size. After the splitting, the blocks

are processed for encryption. The block data is initially

hashed once, with value k as the result of the hash. This value

is then used as a key to encrypt the data of the block. Once

the block is encrypted, it is hashed again and the result is

used as the id, under which the encrypted block will be stored

in the DHT. A file is represented as a collection of (offset,

ID, k) - tuples, and directories as a collection of file names

and their attributes.

DRFS uses a layered architecture. At the network level, UDP

is used for messages that fit in a single packet and are not

critical if lost, otherwise TCP is used.

Dynamic Ring Online Partitioning (DROP), is a highly

scalable and available key-value store, and it provides a

simple interface called lookup(key) under put(write) and

get(read) operations.

To keep excellent metadata consistency it provides a

linearizable consistency mechanism using ZooKeeper .

DROP DESIGN

 DROP uses hashing to distribute the metadata across the

MDS cluster. However, it still maintains hierarchical

directories to support common directory hierarchy.

Goals

1. high scalability of MDS cluster, 2. excellent namespace

locality, 3. dynamic load balancing, 4. metadata consistency.

DROP is designed to scale to a large-scale distributed

metadata server cluster for EB-scale file systems within a

single global namespace.

Hash-Based Mapping

Hash-based mapping applies hash function to a pathname or

filename of a file to locate the file’s metadata. It helps clients

to locate and contact directly to the right metadata server.

Client requests can be distributed evenly among a metadata

servercluster, eliminating hot-spots consisting of popular

directories. Hashing provides a better load balancing across

metadata servers and gets rid of hot-spots e.g., popular

directories. However, hashing is a random distribution, in

which metadata updates may incur huge network overhead.

Subtree Partitioning

 Static subtree partitioning provides a simple approach of

distributing metadata operations among MDS cluster, which

statically partitions the directory hierarchy and assigns each

subtree to a particular MDS. It provides better locality of

reference and greater MDS independence than hash-based

mapping. Its major drawback is that the workload may not be

evenly partitioned among MDS cluster, suffering from a

system performance bottleneck. Static partitions fail to adapt

to the growth or contraction of individual subtrees over time,

often requiring intervention of system administrators to

repartition or manually rebalance metadata storage load

across MDSs. Dynamic subtree partitioning uses dynamic

load balancing mechanism to redistribute metadata

dynamically among MDS cluster to handle the changing

workload.

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030734

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

457

HBase with HDFS

The HBase plan takes after a layered engineering, in the soul

of past frameworks, stacked in two layers. In the base layer,

HBase utilizes HDFS(Hadoop Distributed File System) as a

capacity back-end. HDFS opens to its customer applications a

common namespace and actualizes versatility and adaptation

to internal failure systems at the document layer. Having

settled those issues in its stockpiling back-end, HBase centers

in the rationale and flexibility elements of the database.

Performing key worth rearrangements on top of an affix just

appropriated record framework results in high system load

and noteworthy compose intensification, affecting read

execution. HBase furthermore performs compose ahead

logging for strength which advance increases composes.

Layering is frequently in charge of execution punishments

because of the absence of joining intrinsic in such plans.

HBASE's energy clients have been implying at execution

issues under particular workloads .It is not ideal for an

extensive variety of workloads that are commanded by

arbitrary peruses. It results in high system load and

noteworthy compose intensification, affecting read execution.

IV. PROPOSED SYSTEM

In this project, we propose an alternative architecture to

HBase, named HBase-BDB, to overcome the aforementioned

problems. We show that the replacement of HDFS with a

thinner layer of a local key-value store implemented over

local volumes benefits performance without requiring a major

re-engineering effort.

Since there are several local key value store engines with

different properties available, we decided to leverage one of

them (Berkeley DB (BDB) Java Edition2) that fits well our

design goals. BDB-JE is a robust, efficient, widely deployed

integrated database engine. It implements a B+ tree index,

known to perform well for random read workloads and

provide good support for range queries.

The entire database is implemented as a log avoiding the need

for a separate write-ahead (commit) log. Since BDB-JE is

available in a replicated high-availability edition we inherit

those properties in HBase-BDB. Removing HDFS from the

picture takes away several convenient mechanisms that

underlie HBase’s elasticity architecture. To make up for this

loss we design and implement new efficient elasticity

mechanisms suitable for HBase-BDB.

Overall, our key contributions in this project are

 Design and implementation of a distributed key-value

store architecture maintaining HBase’s front-end and

replacing HDFS with log-structured B+-trees over direct-

attached file systems, improving performance and

eliminating overheads due to HBase layering

 Novel, efficient elasticity mechanisms for splitting and

moving data regions over the direct-attached file systems

 HBase-BDB is designed to overcome HBase’s

performance bottlenecks (while retaining compatibility

with HBase applications) without losing on elasticity

features

 Berkeley DB provides a simple function-call API for a

number of programming languages, including C, C++,

Java, Perl, Tcl, Python, and PHP. All database operations

happen inside the library. Multiple processes, or multiple

threads in a single process, can all use the database at the

same time as each uses the Berkeley DB library.

 Low-level services like locking, transaction logging,

shared buffer management, memory management, and so

on are all handled transparently by the library.

Better performance is achieved due to replacement of HDFS

with a thinner layer of a local key-value store implemented

over local volumes.It also eliminates the overhead due to

HBase layering.It implements B+ tree index known to

perform well for random read workloads and provide good

support for range queries.

ARCHITECTURE OF PROPOSED SYSTEM

Fig:1 Proposed System Architecture

The architecture of the BDB consists of mainly six modules:

Interactive Shell

This component is designed to provide an user interface for

the user to interact with the Berkeley database.

Inventory Database

 The inventory database is developed to evaluate the

performance of the record accessing operations by the

normal Hbase system and the successfully integrated Hbase&

Berkeley database system. This system mainly consists of

four components as follows

 Lock: This component is designed in such a way that if a

user is modifying any record, it locks that particular

record so that no othe user can access it till the

modification completes.

 Buffer pool: This acts as a cache memory in the system

i.e, all the recently accessed record will be stored in this

buffer pool

 Log: It performs the role of database administrator,

where all recent activity performed are stored.

 Storage space: This component provides the storage

space for storing all the records in the form of elastic key

value pair.

Database Environment

The database environment provides with the authentication

measures where it consists of two components as follows

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030734

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

458

 Setup: This component is used to setup the connection

with the database. It expects the valid user ID and

password to setup the connection with the database.

 Close: It is used to terminate the connection with the

database.

Data Accessor

The data accessor is used to access the record from the

inventory database. It provides with the two major

components as follows

 Inventory Accessor: This provides the user with the

options to search any product based on its name and also

by its respective vendor name.

 Vendor Accessor: This accessor is only provided for the

vendors to search any of the records or the products only

by its name.

Service Layer

The service layer is mainly composed of backend

implementation of Berkeley database which is done using

theprovisions such as Java, JEE (Servlet, JDBC, JSP),

HBASE, HADOOP, MySQL/Oracle, Wildfly server, Maven

as the building tool etc.

Client Layer

The client layer is mainly a front end support provided for the

user in the user interface which is implemented using

HTML5, CSS3, Skeleton, Foundation,Jquery, Ajax etc.

Fig:2 Reusable plugin architecture

The re-usable plugin is mainly used to convert the basic SQL

query into BDB compatible commands. This re-usable plugin

majorly consists of 4 modules as shown in the fig2.

 Module1: The initial module provides the operations like

getting the connection with the re-usable plugin in the initial

stage and for getting the connection terminated.

 Initialize DB: This component is used for getting the

connection with the re-usable plugin. It is built using the

tool known as DBUtil.

 Clean up: This component is use for getting the

connection terminated from the re-usable plugin.

 Module2: This module is used for initializing the particular

operation and also consists of a component for checking the

syntax of the given SQL queries.

 Initialize Streams: This component is used to select the

particular stream given such as input stream & output

stream. If the operation is to read the data from the

database then the output stream is going to be initialized.

If the operation is to write the data to the database then

the input stream is going to be initialized.

 Assert Input Stream: This component is used to check

the syntax of the given SQL query. If the given query is

syntactically correct then its parsed to the next module,

else it’s going to give the error message for the user.

 Module3: This module is designed to collect the parsed SQL

query and it will break the query into the form of tokens.

 Input Stream Parser: This component is used to break the

SQL query into the form of tokens. All the keywords that

are used in the query is going to be stored in the token

manager.

 Token manager: This component is used store all the

keywords in the query which is tokenized by the input

stream parser.

 Module4: This module consists of Bali parser which is used

to differentiate between the constants and the tokens. It also

consists of the query builder and the query executer

component.

 Query Builder: This component is designed for building

the BDB compatible command using the given

appropriate SQL query.

 Query Executer: This component is used for executing

the BDB command and to access the data stored the

Berkeley database.

 Bali Parser: Bali parser which is used to differentiate

between the constants and the tokens.

V. CONCLUSION

In this paper we exhibited HBase-BDB, a conveyed key value

store that shares HBase's information model and information

dissemination instruments yet leaves from it in the utilization

of a log structured B+-tree filed capacity back-end over

locally attached files frameworks. With the utilization of a log

organized key quality store consolidated with novel

versatility systems HBase-BDB can enhance over HBase in

irregular read. HBase-BDB lingers behind HBase just in

irregular sweeps; these however are just a little share of

general operations in well known workloads. Support for

flexibility in HBase-BDB is appeared to be viable in yielding

comparative accessibility and execution effect to what is

achievable with HBase-HDFS.

REFERENCES

[1] J. H. SALTZER, D. P. REED, AND D. D. CLARK, “END-TO-END

ARGUMENTS IN SYSTEM DESIGN,” ACM TRANSACTIONS ON

COMPUTERSYSTEMS (TOCS), VOL. 2, NO. 4, PP. 277–288, 1984.

[2] M. Welsh and D. Culler, “Virtualization considered harmful: OS design
directions for well-conditioned services,” in Proceedings of the 8th
Workshop on Hot Topics in Operating Systems, 2001, pp. 139–144.

[3] Apache HBase, http://www.hbase.org.

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030734

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

459

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on

Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[5] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in
ACM SIGPLAN Notices, vol. 31, no. 9, 1996, pp. 84–92.

Anusha A C (BE)

Information Science and Engineering Department,

East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,

Bangalore 560091 Karnataka.

Madhuri M (BE)

Information Science and Engineering Department,

East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,

Bangalore 560091 Karnataka.

Neha H (BE)

Information Science and Engineering Department,

East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,

Bangalore 560091 Karnataka.

Keerthi Prabhashankar (BE)

Information Science and Engineering Department,

East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,

Bangalore 560091 Karnataka.

Vidhya K

Assistant Professor, B.E,

M.tech(Computer Networks),

(Ph.D

in Image Processing)

Department of Information Science and Engineering,

East West Institute of Technology,

#63,Magadi Main Road,Vishwaneedam post,

Bangalore 560091 Karnataka.

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS030734

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

460

