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 Abstract - Software defect prediction (SDP) enhances 
software reliability under settings with very scarce testing 
resources, although most literature tends to model 
preprocessing, class-imbalance surpass, feature selection and 
modelling as independent phases, thus impeding any realistic 
deployment. This paper presents a single, end-to-end 
machine-learning pipeline, which combines all these steps into 
one framework. Four baselines and a stacked hybrid 
ensemble were studied and measured under equal 
experimental conditions which were controlled. Experimental 
findings have proved that ensemble and hybrid pipeline 
developably outperform baseline performance on every 
imbalance-sensitive measure in within-project and cross-
project settings. Compared to cross-project performance, the 
ensembles have high robustness, thus justifying the use of 
integrated ensemble pipelines as the practical way to address 
software development environments within limited testing 
resources. 
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I. INTRODUCTION 

 The problem of software quality failures is a major economic 
and operational liability as software systems become the 
foundation of essential services within the financial sector, 
medical care, administration, and business processes. Empirical 
data always indicates that defects found toward the end of the 
software development life cycle are more expensive to fix, lead to 
later delivery and affect the reliability of the system [14], [20]. 
Such issues are magnified in developing economies like Nigeria 
whereby the tight development cycles, poor testing 
infrastructures, and an inconsistent record of defects continue to 
persist [4], [17]. 

Software Defect Prediction (SDP) based on machine-learning has 
become a possible approach to detect early defective software 
modules based on both process-level and static software metrics. 
Nevertheless, a lot of current SDP research is limited to a single 
aspect of performance of the algorithm, overlooking the 
combination of preprocessing, mitigation of class imbalances, and 
feature selection into a unified pipeline. This fragmentation 

impairs reproducibility and discourages use in the engineering 
world environment [11], [18]. 

This paper hence targets the creation of built-in machine-learning 
flaw forecast lines that openly embrace resampling, feature 
gathering and both baseline and multi-ensemble classifiers in a 
single experimental system. The study isolates the model 
selection effect by standardising all non-modelling components 
and only differing the learning architecture and making it practical 
to deploy under constrained conditions. 

II. RELATED WORK 

 Early software defect prediction models were based on both 
reliability-growth and probabilistic models, including the 
Jelinski-Moranda model and the Musa model, which focused on 
estimating the occurrence of defects, rather than predicting any 
artefact-level defects [1], [13]. The following creation of 
reference repositories, such as NASA MDP and PROMISE, 
shifted the focus in research on defect prediction to supervised 
machine-learning techniques, exploiting measures of software 
metrics at rest [18]. 

The conventional classifiers (Logistic Regression, Naive Bayes, 
Decision Trees, and Support Vector Machines) were evaluated by 
subsequent investigations. Although these models provided a 
first-order threshold of viability, they demonstrated severe 
deficiencies in the treatment of nonlinear interactions of measures 
and the problem of imbalance in classes [6], [21]. Contrastingly, 
the tree-based ensemble methods, superficially, Random Forest, 
have later demonstrated greater resilience by reducing variance 
and nonlinearly modeling the data [4], [8]. 

Modern studies predict gradient-boosting models such as 
XGBoost and stacking models, which are significantly better than 
solitary learners in noisy and unbalanced environments [5], [12]. 
However, in practice, empirical studies, especially those carried 
out in African, and more specifically Nigerian, environments 
often use these methodologies separately, without providing a 
logical sequence involving pre-processing, resampling and 
feature-selection steps. The practice produces non-homogenous 
results, and it obstructs the generalization of results [2], [19]. 

 This paper specifically deals with these limitations, 
formalizing the prediction of defects as an end-to-end pipeline, 
instead of considering it a classifier on its own. 
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III.PROPOSED METHODOLOGY

A. System Architecture
The proposed system takes a linear, end-to-end pipeline 

structure, which operationalises the conversion of raw software 
measures into defect-risk forecasts. It is revealed that the 
architecture is divided into seven sequential layers: data 
acquisition, preprocessing, mitigation of class-imbalance, feature 
selection, modelling, evaluation, and interpretability. The 
isolation and interoperability of each stratum leads to both within-
project and cross-project controlled experimentation and 
reproducibility.

This architecture therefore ensures any performance differences 
that have been found between pipelines can be attributed to the 
modelling approach only, and not to confounding factors due to 
preprocessing or sampling processes. 

Fig. 1. Flowchart of the system from end to end

B. Algorithm Design
This study formulates software defect prediction as a 

supervised binary classification problem implemented through 
five distinct machine-learning pipelines. All pipelines share an 
identical preprocessing, resampling, feature-selection, and 
evaluation structure; they differ only in the learning architecture. 
This design ensures that observed performance differences are 
attributable to algorithmic behaviour rather than upstream data 
handling.

Let the training dataset be defined as: 

(1)

where xi represents a vector of static and structural software 
metrics for module i, and yi_ denotes its defect label.

Five defect prediction pipelines were developed:

1. Baseline Pipelines

The baseline pipelines represent established learning 
paradigms commonly used in software defect prediction 
literature. They serve as controlled reference models against 
which ensemble and hybrid architectures are evaluated.

a. Logistic Regression (LR): 

b. Support Vector Machine (SVM)

c. Random Forest (RF)

d. XGBoost

The baseline pipelines are guide by the algorithm below

Algorithm: Baseline Modelling and Evaluation Pipeline

Input:

Training data (Xtrain, ytrain)

Test data (Xtest, ytest)

Baseline classifier C

Output: Performance metrics 

Step 1: Initialize the baseline classifier CCC

Step 2: Train the classifier

Step 3: Generate predictions on test data

Step 4: Compute confusion matrix

Step 5: Compute performance metrics

Step 6: Store performance metrics

Return: Performance metrics

Main Experimental Loop

For each experimental run or dataset configuration do

  Execute Baseline Modelling and Evaluation Pipeline

  Store resulting metrics

End

2. Hybrid Pipeline

a.

The hybrid pipeline follows the algorithm below

Input:

Training data (Xtrain, ytrain)

Test data (Xtest, ytest)

Output: Performance metrics 
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Step 1: Initialize base learners

Random Forest classifier (RF)

Support Vector Machine classifier (SVM)

Step 2: Train base learners on training data

Step 3: Generate base-level probability outputs on training data

Step 4: Construct meta-feature matrix

Step 5: Initialize Logistic Regression meta-learner (LR)

Step 6: Train meta-learner on meta-features

Step 7: Generate base-level probability outputs on test data

Step 8: Construct test-time meta-features

Step 9: Generate final predictions using meta-learner

Step 10: Compute confusion matrix

Step 11: Compute performance metrics

Step 12: Store performance metrics

Return: performance metrics

Main Experimental Loop

For each experimental run or dataset configuration do

Execute Stacked Hybrid Ensemble Modelling Pipeline

Store resulting performance metrics

End

Each pipeline follows an identical algorithmic flow: data 
cleaning, standardisation, optional resampling via SMOTE, 
optional feature selection, model training, and prediction. The 
hybrid pipeline employs RF and SVM as base learners whose 
probabilistic outputs are combined and calibrated using a Logistic 
Regression meta-learner. This design utilizes complementary 
decision behaviours whilst remaining interpretable at the final 
stage.

C. Mathematical Model
The software modules are represented by feature vectors

(2)

in which every element has a corresponding static or structural 
metric of software, such as complexity, coupling or the depth of 
inheritance. Defect status is encoded as a binary label

(3)

where yi = 1 indicates a defective module and yi  =  0 indicates a 
non-defective module. This formulation defines a standard 
supervised binary classification problem under class imbalance 
conditions.

1. Baseline Mathematical Models

a) Logistic Regression (LR): Logistic Regression models 
the conditional probability of defectiveness using a linear decision 
function passed through a sigmoid activation:

(4)

Where β denotes the learned coefficient vector and β0 the 
intercept.

The logistic regression model was implemented using the 
solver provided by the scikit-learn library. It serves as a 
transparent baseline for performance comparison and also the 
meta-learner in the stacked ensemble pipeline.

b) Support Vector Machine (SVM): The Support Vector
Machine pipeline represents a margin-based learning paradigm 

designed to handle high-dimensional feature spaces. The SVM 
optimisation objective is given by:

(5)

Subject to:

(6)

Where ϕ( ) denotes the kernel mapping. 

c) Random Forest (RF): The Random Forest pipeline 
represents a tree-based ensemble learning paradigm. A Random 
Forest constructs an ensemble by:

(7)

Where each ft is a decision tree trained on a bootstrap sample with 
random feature subspace selection. Each tree minimizes node 
impurity, commonly measured using Gini index:

(8)
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d) XGBoost: The XGBoost pipeline represents a gradient-
boosted decision tree paradigm optimised for predictive accuracy. 
The objective function is:

(9)

Where Ω(fk) penalises model complexity.

2. Hybrid Ensembe Mathematical Model: The stacked hybrid 
ensemble represents a meta-learning paradigm combining 
heterogeneous learners. These predictions were concatenated to 
form a meta-feature vector given by:

(10)

Where Logistic Regression was trained on zi to produce the final 
prediction.

IV.EXPERIMENTAL SETUP

A. Tools
All pipelines were implemented using Python-based machine-

learning libraries. Scikit-learn was used for baseline models, 
preprocessing, and metric computation; XGBoost was used for 
gradient-boosted ensembles; and imbalanced-learn provided 
SMOTE for resampling. These tools were selected for their 
reproducibility, numerical stability, and suitability for resource-
constrained environments.

B. Dataset
Experiments utilised benchmark defect datasets from the 

Large Defect Prediction Benchmark v1.0, including ANT, IVY, 
JEDIT, and LUCENE [22]. These datasets contain multiple 
software versions, static code metrics, and binary defect labels, 
exhibiting realistic class imbalance and heterogeneity typical of 
real-world systems.

TABLE I. SUMMARY OF DATASETS USED IN THE 
EXPERIMENTS

Dataset Project 
Versions

Typical 
Module 
Range

Defect Ratio 
Characteristics

Feature 
Count

ANT 1.4, 1.5, 1.6 178–822 Mostly < 30% defective 21
IVY 1.1, 1.4, 2.0 111–704 21

JEDIT 4.0, 4.1, 4.2 306–997 21

LUCENE 2.0, 2.2, 2.4, 
v1

195–782 14–21*

This table summarises the four benchmark software defect 
datasets used in the experiments. All datasets are sourced from 
the Large Defect Prediction Benchmark v1.0 and exhibit class 
imbalance typical of real-world software systems.

C. Parameters
The homogeneous parameter configurations used in each 

pipeline were related to preprocessing, resampling, and 
evaluation. Random seeds were intentionally pinned in place so 
as to ensure deterministic results and hence comparisons would 
be fair. The feature standardization was performed through z-
score normalization that was computed only on the training 
samples, hence eliminating leakage.

V. RESULTS AND ANALYSIS

A. Performance Metrics
Within-project evaluation proves that the ensemble and hybrid 

pipelines have an inbuilt capacity to surpass the baseline models 
in MCC, F1, AUC, and G-Mean with the stacked hybrid 
configuration showing the maximum capacity. Although cross 
project results show a decreasing trend, ensemble methods still 
outperform other methods, highlighting the performance-
enhancing aspect of architecture [2]. The evidence is presented in 
Tables I and II below.

TABLE I. PERFORMANCE COMPARISON OF DEFECT 
PREDICTION PIPELINES UNDER WPDP

Model Performance Metrics
MCC F1 AUC G-Mean

Logistic Regression (LR) 0.33 0.49 0.74 0.61
Support Vector Machine (SVM) 0.40 0.53 0.78 0.65
Random Forest (RF) 0.46 0.57 0.82 0.69
XGBoost 0.98 0.99 1.00 0.98

0.99 0.995 1.00 0.997

This table offers a brief summary of WPDP performance for 
all the pipelines evaluated. The results are aggregated over 
several data sets. Notably, the stacked hybrid ensemble 
achieves the finest Matthews correlation coefficient (MCC), 
F1-score, and area under the receiver operating characteristic 
curve (AUC) with XGBoost coming close. Finally, the 
Random Forest model outperforms linear and margin-based 
baselines in all of the metrics considered.
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TABLE II. PERFORMANCE COMPARISON OF DEFECT 
PREDICTION PIPELINES UNDER WPDP 

Model Performance Metrics 
MCC F1 AUC G-Mean 

Logistic Regression (LR) 0.09 0.17 0.52 0.35 

Support Vector Machine (SVM) 0.11 0.20 0.55 0.42 

Random Forest (RF) 0.13 0.23 0.57 0.45 

XGBoost 0.33 0.49 0.74 0.69 

 

0.34 0.50 0.75 0.70 

 

This table shows CPDP performance for source-targer project 
pairs. Although the absolute scores are lower than those 
obtained by WPDP, the ranking is consistent. Hybrid and 
boosting-based pipelines are better than all baseline learners in 
MCC, F1, AUC, and G-Mean. 

 

B. Comparison 
 The created pipelines include linear, margin-based, ensemble, 
and hybrid structures, which can allow a comparative approach to 
be conducted on equal conditions. Ensemble and hybrid pipelines 
are laid out in structural locations to outperform baseline learners 
by simulating nonlinear interactions and minimizing variation, 
which is in line with previous empirical studies [5], [14]. 

 
Fig. 2.  Comparison of pipeline performance between WPDP and CPDP (The 
figure compares the performance of MCC in within-project (WPDP) and cross-
project (CPDP) setups in all pipelines. The performance hierarchy in the results 
of WPDP shows that ensemble and hybrid models achieve significantly higher 
values of MCC compared to the baseline classifiers. Conversely, CPDP causes a 
significant loss of performance across all models, with a greater variance, and 
hence sensitivity to dataset shift is highlighted. However, XGBoost and the hybrid 
pipeline have a relatively higher MCC, which shows a higher level of robustness 
and limited transferability benefits as compared to single models.) 

C. Discussion 
  These findings indicate that the combination of 
preprocessing, class imbalance treatment, feature selection and 
modelling into a single pipeline leads to a stable performance 
improvement compared to individual baseline methods as it has 
been shown in previous ensemble-based defect prediction 
research [8]. Table (I and II) demonstrates that ensemble and 
hybrid architectures, especially in XGBoost and stacked RF-

SVM-LR, are significantly better than linear and margin-based 
classifiers in terms of WPDP and CPDP across imbalance-aware 
metrics. This hierarchy of performance is further demonstrated in 
Fig.2 which shows the obvious benefit of ensemble pipelines 
although overall degradation is observed when compared under 
cross project evaluation. These results validate that the 
architectural diversity and nonlinear learning are the main forces 
behind successful prediction of software defects and are aligned 
with previous empirical data present in [5]. 

The described decline in the performance measured in a series of 
projects confirms the already existing concern about the 
heterogeneity of data sets, but also demonstrates the relatively 
strong performance of ensemble-based pipelines. The results 
indicate transferability limitations can be alleviated, but not 
corrected, by the use of integrated architectures. Table 2 and Fig. 
2 show that ensemble and hybrid models maintain better relative 
performance despite a general degradation of metrics under 
CPDP. These observations agree with the previous ensemble-
based software defect prediction research and build upon the 
existing literature by showing that performance improvements are 
optimised when modelling decisions are considered as part of an 
end-to-end pipeline as opposed to stand-alone elements [11], [19]. 

Comprehensively, the work defines a deployable SDP 
architecture that can be used in the environment with little data 
and testing capacity. This integration fills a gap that has been 
perceived to exist in literature related to Nigerian and larger 
African SDP literature, whereby fragmented methods prevail and 
practical implementation limits are frequently ignored. 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 
 This study built and tested a combined machine-learning 
predictor of software defect functional which consolidates 
preprocessing, class-imbalance management, feature selection, 
and modelling into one, deployable, pipeline. The same 
conditions of an experiment were applied to four baseline 
classifiers and a stacked hybrid ensemble, so that the performance 
variations observed can be explained by modelling architecture 
only. The findings reveal that ensemble and hybrid pipelines are 
always more effective with imbalance-aware measures than 
baseline learners, proving the usefulness of architectural diversity 
and nonlinear learning in prediction of defects in resource-
constrained conditions. In general, the suggested framework 
offers a viable and repeatable basis of implementing software 
defect predictive systems when there are limited testing resources 
and previous defect statistics. 

 

B. Future Work 
 Future research will build on this study by performing more 
in-depth assessment at class-imbalance and cross-project 
transferability conditions to characterise robustness in the event 
of dataset heterogeneity. Besides this, interpretability stability 
will be explored with the help of SHAP-based explanations to 
identify consistency and reliability of feature attributions across 
models and experimental damages. These extensions will also 
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facilitate reliable implementation of defect prediction systems 
through the connection of predictive performance and transparent 
and stable decision logic. 
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