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Abstract - Software defect prediction (SDP) enhances
software reliability under settings with very scarce testing
resources, although most literature tends to model
preprocessing, class-imbalance surpass, feature selection and
modelling as independent phases, thus impeding any realistic
deployment. This paper presents a single, end-to-end
machine-learning pipeline, which combines all these steps into
one framework. Four baselines and a stacked hybrid
ensemble were studied and measured under equal
experimental conditions which were controlled. Experimental
findings have proved that ensemble and hybrid pipeline
developably outperform baseline performance on every
imbalance-sensitive measure in within-project and cross-
project settings. Compared to cross-project performance, the
ensembles have high robustness, thus justifying the use of
integrated ensemble pipelines as the practical way to address
software development environments within limited testing
resources.
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I. INTRODUCTION

The problem of software quality failures is a major economic
and operational liability as software systems become the
foundation of essential services within the financial sector,
medical care, administration, and business processes. Empirical
data always indicates that defects found toward the end of the
software development life cycle are more expensive to fix, lead to
later delivery and affect the reliability of the system [14], [20].
Such issues are magnified in developing economies like Nigeria
whereby the tight development cycles, poor testing
infrastructures, and an inconsistent record of defects continue to
persist [4], [17].

Software Defect Prediction (SDP) based on machine-learning has
become a possible approach to detect early defective software
modules based on both process-level and static software metrics.
Nevertheless, a lot of current SDP research is limited to a single
aspect of performance of the algorithm, overlooking the
combination of preprocessing, mitigation of class imbalances, and
feature selection into a unified pipeline. This fragmentation
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impairs reproducibility and discourages use in the engineering
world environment [11], [18].

This paper hence targets the creation of built-in machine-learning
flaw forecast lines that openly embrace resampling, feature
gathering and both baseline and multi-ensemble classifiers in a
single experimental system. The study isolates the model
selection effect by standardising all non-modelling components
and only differing the learning architecture and making it practical
to deploy under constrained conditions.

II. RELATED WORK

Early software defect prediction models were based on both
reliability-growth and probabilistic models, including the
Jelinski-Moranda model and the Musa model, which focused on
estimating the occurrence of defects, rather than predicting any
artefact-level defects [1], [13]. The following creation of
reference repositories, such as NASA MDP and PROMISE,
shifted the focus in research on defect prediction to supervised
machine-learning techniques, exploiting measures of software
metrics at rest [18].

The conventional classifiers (Logistic Regression, Naive Bayes,
Decision Trees, and Support Vector Machines) were evaluated by
subsequent investigations. Although these models provided a
first-order threshold of viability, they demonstrated severe
deficiencies in the treatment of nonlinear interactions of measures
and the problem of imbalance in classes [6], [21]. Contrastingly,
the tree-based ensemble methods, superficially, Random Forest,
have later demonstrated greater resilience by reducing variance
and nonlinearly modeling the data [4], [8].

Modern studies predict gradient-boosting models such as
XGBoost and stacking models, which are significantly better than
solitary learners in noisy and unbalanced environments [5], [12].
However, in practice, empirical studies, especially those carried
out in African, and more specifically Nigerian, environments
often use these methodologies separately, without providing a
logical sequence involving pre-processing, resampling and
feature-selection steps. The practice produces non-homogenous
results, and it obstructs the generalization of results [2], [19].

This paper specifically deals with these limitations,
formalizing the prediction of defects as an end-to-end pipeline,
instead of considering it a classifier on its own.
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III.PROPOSED METHODOLOGY

A. System Architecture

The proposed system takes a linear, end-to-end pipeline
structure, which operationalises the conversion of raw software
measures into defect-risk forecasts. It is revealed that the
architecture is divided into seven sequential layers: data
acquisition, preprocessing, mitigation of class-imbalance, feature
selection, modelling, evaluation, and interpretability. The
isolation and interoperability of each stratum leads to both within-
project and cross-project controlled experimentation and
reproducibility.

This architecture therefore ensures any performance differences
that have been found between pipelines can be attributed to the
modelling approach only, and not to confounding factors due to
preprocessing or sampling processes.
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Fig. 1. Flowchart of the system from end to end

B. Algorithm Design

This study formulates software defect prediction as a
supervised binary classification problem implemented through
five distinct machine-learning pipelines. All pipelines share an
identical preprocessing, resampling, feature-selection, and
evaluation structure; they differ only in the learning architecture.
This design ensures that observed performance differences are
attributable to algorithmic behaviour rather than upstream data
handling.

Let the training dataset be defined as:
D = {(z:yi) }iza (1)

where x; represents a vector of static and structural software
metrics for module 7, and y; denotes its defect label.

Five defect prediction pipelines were developed:
1. Baseline Pipelines

The baseline pipelines represent established learning
paradigms commonly used in software defect prediction
literature. They serve as controlled reference models against
which ensemble and hybrid architectures are evaluated.

1JERTV 151 S020052

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 15 Issue 02, February - 2026

a. Logistic Regression (LR):
b.  Support Vector Machine (SVM)
¢.  Random Forest (RF)
d. XGBoost
The baseline pipelines are guide by the algorithm below

Algorithm: Baseline Modelling and Evaluation Pipeline

Input:

Training data (Xiain, Virain)
Test data (Xiest, Viest)
Baseline classifier C

Output: Performance metrics

Step 1: Initialize the baseline classifier CCC
Step 2: Train the classifier

Step 3: Generate predictions on test data
Step 4: Compute confusion matrix

Step 5: Compute performance metrics

Step 6: Store performance metrics

Return: Performance metrics

Main Experimental Loop
For each experimental run or dataset configuration do
Execute Baseline Modelling and Evaluation Pipeline
Store resulting metrics

End

2. Hybrid Pipeline
a. Stacked Ensemble (RF + SVM — LR)
The hybrid pipeline follows the algorithm below

Algorithm: Stacked Hybrid Ensemble Modelling and
Evaluation Pipeline (RF + SVM — LR)

Input:
Training data (Xiain, Virain)
Test data (Xiest, Viest)

Output: Performance metrics
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Step 1: Initialize base learners
Random Forest classifier (RF)
Support Vector Machine classifier (SVM)
Step 2: Train base learners on training data
Step 3: Generate base-level probability outputs on training data
Step 4: Construct meta-feature matrix
Step 5: Initialize Logistic Regression meta-learner (LR)
Step 6: Train meta-learner on meta-features
Step 7: Generate base-level probability outputs on test data
Step 8: Construct test-time meta-features
Step 9: Generate final predictions using meta-learner
Step 10: Compute confusion matrix
Step 11: Compute performance metrics
Step 12: Store performance metrics

Return: performance metrics

Main Experimental Loop

For each experimental run or dataset configuration do
Execute Stacked Hybrid Ensemble Modelling Pipeline
Store resulting performance metrics

End

Each pipeline follows an identical algorithmic flow: data
cleaning, standardisation, optional resampling via SMOTE,
optional feature selection, model training, and prediction. The
hybrid pipeline employs RF and SVM as base learners whose
probabilistic outputs are combined and calibrated using a Logistic
Regression meta-learner. This design utilizes complementary
decision behaviours whilst remaining interpretable at the final
stage.

C. Mathematical Model
The software modules are represented by feature vectors

X = [37':1; Lidy vy 13-.;p] )

in which every element has a corresponding static or structural
metric of software, such as complexity, coupling or the depth of
inheritance. Defect status is encoded as a binary label

y:[yl,y2,...,yn], yE‘EDT]‘ 3)
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where yi = 1 indicates a defective module and yi = 0 indicates a
non-defective module. This formulation defines a standard
supervised binary classification problem under class imbalance
conditions.

1. Baseline Mathematical Models

a) Logistic Regression (LR): Logistic Regression models
the conditional probability of defectiveness using a linear decision
function passed through a sigmoid activation:

1

Plyi=1|x)=———
(0 =11%0) = Ty

Where f denotes the learned coefficient vector and fy the
intercept.

The logistic regression model was implemented using the
solver provided by the scikit-learn library. It serves as a
transparent baseline for performance comparison and also the
meta-learner in the stacked ensemble pipeline.

b) Support Vector Machine (SVM): The Support Vector
Machine pipeline represents a margin-based learning paradigm
designed to handle high-dimensional feature spaces. The SVM
optimisation objective is given by:

1
min EHsz +C E &
w,b,§ -1 (5)

T
BI_

Subject to:
Yi (wrgb(mv) +b) 2 1— {'&: ‘53 2 0 (6)

Where ¢(+) denotes the kernel mapping.

¢) Random Forest (RF): The Random Forest pipeline
represents a tree-based ensemble learning paradigm. A Random
Forest constructs an ensemble by:

. 1 &
=) = T 3 i)
t=1 (7

Where each f; is a decision tree trained on a bootstrap sample with
random feature subspace selection. Each tree minimizes node
impurity, commonly measured using Gini index:

1
Gini = 1— pi
5®
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d) XGBoost: The XGBoost pipeline represents a gradient-
boosted decision tree paradigm optimised for predictive accuracy.
The objective function is:

L= Z Uy, 95) + Z Q(fx)
i k

Where Q(f) penalises model complexity.

2. Hybrid Ensembe Mathematical Model: The stacked hybrid
ensemble represents a meta-learning paradigm combining
heterogeneous learners. These predictions were concatenated to
form a meta-feature vector given by:

~RF
zi = [p; (10)

Where Logistic Regression was trained on z; to produce the final
prediction.

]

IV.EXPERIMENTAL SETUP

A. Tools

All pipelines were implemented using Python-based machine-
learning libraries. Scikit-learn was used for baseline models,
preprocessing, and metric computation; XGBoost was used for
gradient-boosted ensembles; and imbalanced-learn provided
SMOTE for resampling. These tools were selected for their
reproducibility, numerical stability, and suitability for resource-
constrained environments.

B. Dataset

Experiments utilised benchmark defect datasets from the
Large Defect Prediction Benchmark v1.0, including ANT, IVY,
JEDIT, and LUCENE [22]. These datasets contain multiple
software versions, static code metrics, and binary defect labels,
exhibiting realistic class imbalance and heterogeneity typical of
real-world systems.

TABLE L. SUMMARY OF DATASETS USED IN THE
EXPERIMENTS
Dataset Project Typical Defect Ratio Feature
Versions Module Characteristics Count
Range
ANT 14,15, 1.6 178-822 Mostly < 30% defective 21
vy 1.1,1.4,2.0 111-704 Highly imbalanced 21
(up to =57%)
JEDIT 4.0,4.1,4.2 306-997 Moderate imbalance 21
(=13-26%)
LUCENE | 2.0,2.2,2.4, | 195-782 Severely imbalanced 14-21*
vl
and variable (46—
60%)
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This table summarises the four benchmark software defect
datasets used in the experiments. All datasets are sourced from
the Large Defect Prediction Benchmark v1.0 and exhibit class
imbalance typical of real-world software systems.

C. Parameters

The homogeneous parameter configurations used in each
pipeline were related to preprocessing, resampling, and
evaluation. Random seeds were intentionally pinned in place so
as to ensure deterministic results and hence comparisons would
be fair. The feature standardization was performed through z-
score normalization that was computed only on the training
samples, hence eliminating leakage.

V. RESULTS AND ANALYSIS

A. Performance Metrics

Within-project evaluation proves that the ensemble and hybrid
pipelines have an inbuilt capacity to surpass the baseline models
in MCC, F1, AUC, and G-Mean with the stacked hybrid
configuration showing the maximum capacity. Although cross
project results show a decreasing trend, ensemble methods still
outperform other methods, highlighting the performance-
enhancing aspect of architecture [2]. The evidence is presented in
Tables I and II below.

TABLE L. PERFORMANCE COMPARISON OF DEFECT
PREDICTION PIPELINES UNDER WPDP
Model Performance Metrics
MCC | F1 AUC | G-Mean
Logistic Regression (LR) 0.33 0.49 0.74 | 0.61
Support Vector Machine (SVM) 040 | 0.53 0.78 | 0.65
Random Forest (RF) 046 | 0.57 0.82 | 0.69
XGBoost 0.98 | 0.99 1.00 | 0.98
Stacked Hybrid (RF + SVM — 0.99 | 0.995 | 1.00 | 0.997
LR)

This table offers a brief summary of WPDP performance for
all the pipelines evaluated. The results are aggregated over
several data sets. Notably, the stacked hybrid ensemble
achieves the finest Matthews correlation coefficient (MCC),
Fl-score, and area under the receiver operating characteristic
curve (AUC) with XGBoost coming close. Finally, the
Random Forest model outperforms linear and margin-based
baselines in all of the metrics considered.
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TABLE II. PERFORMANCE COMPARISON OF DEFECT
PREDICTION PIPELINES UNDER WPDP
Model Performance Metrics
MCC | F1 AUC | G-Mean
Logistic Regression (LR) 0.09 | 0.17 | 0.52 | 0.35
Support Vector Machine (SVM) 0.11 0.20 | 0.55 | 0.42
Random Forest (RF) 0.13 | 0.23 | 0.57 | 0.45
XGBoost 033 | 049 | 0.74 | 0.69
Stacked Hybrid (RF + SVM — 0.34 | 0.50 | 0.75 | 0.70
LR)

This table shows CPDP performance for source-targer project
pairs. Although the absolute scores are lower than those
obtained by WPDP, the ranking is consistent. Hybrid and
boosting-based pipelines are better than all baseline learners in
MCC, F1, AUC, and G-Mean.

B. Comparison

The created pipelines include linear, margin-based, ensemble,
and hybrid structures, which can allow a comparative approach to
be conducted on equal conditions. Ensemble and hybrid pipelines
are laid out in structural locations to outperform baseline learners
by simulating nonlinear interactions and minimizing variation,
which is in line with previous empirical studies [5], [14].

10 - WPDP
== CPDP

g
g o8
g
£
5 06
-
§
s
[4
g os
£
2
=1
g
Z 02

0.0

Wl oy @ g00% AR
e \ ™ .3 ot ¥ Lo
g™ e pond® ey
AW
o ace®

Fig. 2. Comparison of pipeline performance between WPDP and CPDP (The

figure compares the performance of MCC in within-project (WPDP) and cross-
project (CPDP) setups in all pipelines. The performance hierarchy in the results
of WPDP shows that ensemble and hybrid models achieve significantly higher
values of MCC compared to the baseline classifiers. Conversely, CPDP causes a
significant loss of performance across all models, with a greater variance, and
hence sensitivity to dataset shift is highlighted. However, XGBoost and the hybrid
pipeline have a relatively higher MCC, which shows a higher level of robustness
and limited transferability benefits as compared to single models.)

C. Discussion

These findings indicate that the combination of
preprocessing, class imbalance treatment, feature selection and
modelling into a single pipeline leads to a stable performance
improvement compared to individual baseline methods as it has
been shown in previous ensemble-based defect prediction
research [8]. Table (I and II) demonstrates that ensemble and
hybrid architectures, especially in XGBoost and stacked RF-
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SVM-LR, are significantly better than linear and margin-based
classifiers in terms of WPDP and CPDP across imbalance-aware
metrics. This hierarchy of performance is further demonstrated in
Fig.2 which shows the obvious benefit of ensemble pipelines
although overall degradation is observed when compared under
cross project evaluation. These results validate that the
architectural diversity and nonlinear learning are the main forces
behind successful prediction of software defects and are aligned
with previous empirical data present in [5].

The described decline in the performance measured in a series of
projects confirms the already existing concern about the
heterogeneity of data sets, but also demonstrates the relatively
strong performance of ensemble-based pipelines. The results
indicate transferability limitations can be alleviated, but not
corrected, by the use of integrated architectures. Table 2 and Fig.
2 show that ensemble and hybrid models maintain better relative
performance despite a general degradation of metrics under
CPDP. These observations agree with the previous ensemble-
based software defect prediction research and build upon the
existing literature by showing that performance improvements are
optimised when modelling decisions are considered as part of an
end-to-end pipeline as opposed to stand-alone elements [11], [19].

Comprehensively, the work defines a deployable SDP
architecture that can be used in the environment with little data
and testing capacity. This integration fills a gap that has been
perceived to exist in literature related to Nigerian and larger
African SDP literature, whereby fragmented methods prevail and
practical implementation limits are frequently ignored.

VI.CONCLUSION AND FUTURE WORK

A. Conclusion

This study built and tested a combined machine-learning
predictor of software defect functional which consolidates
preprocessing, class-imbalance management, feature selection,
and modelling into one, deployable, pipeline. The same
conditions of an experiment were applied to four baseline
classifiers and a stacked hybrid ensemble, so that the performance
variations observed can be explained by modelling architecture
only. The findings reveal that ensemble and hybrid pipelines are
always more effective with imbalance-aware measures than
baseline learners, proving the usefulness of architectural diversity
and nonlinear learning in prediction of defects in resource-
constrained conditions. In general, the suggested framework
offers a viable and repeatable basis of implementing software
defect predictive systems when there are limited testing resources
and previous defect statistics.

B. Future Work

Future research will build on this study by performing more
in-depth assessment at class-imbalance and cross-project
transferability conditions to characterise robustness in the event
of dataset heterogeneity. Besides this, interpretability stability
will be explored with the help of SHAP-based explanations to
identify consistency and reliability of feature attributions across
models and experimental damages. These extensions will also
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facilitate reliable implementation of defect prediction systems
through the connection of predictive performance and transparent
and stable decision logic.
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