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Abstract—Image Classification is an important problem in
several areas such as recognition of faces, handwritten digits,
objects etc. In the existing methods for feature extraction and
classification, the objects are considered as vectors but in
modern applications the input data are usually treated as
tensors. Extracting maximum discriminating features from the
tensor objects and its classification are challenging problems in
machine learning and pattern recognition. This work proposes a
novel scheme for supervised feature extraction of tensor objects
based on maximization of Tsallis mutual entropy. Several
experiments show that the proposed approach results superior
accuracy in both feature extraction and classification.

Index Terms——Image Classification, Feature Extraction,
Tensor decomposition, Tsallis Mutual information, KNN
Classifier.

I. INTRODUCTION

Classifying face images, handwritten digits and images of
objects find immense application in several fields. Classical
methods for feature extraction treat inputs as vectors. But this
may lead to several problems such as increasing
dimensionality, small sample size and computational burden.
In most of the modern applications, image data are usually
represented by multi-way arrays (tensors) [1]-[3]. In many
applications the input image data may be too large and may
consist of redundant information. In order to design optimal
classifiers, we need to extract discriminating features from the
input data. Several supervised feature extraction algorithms
have been recently proposed for tensors [4]-[7].These
algorithms are generalization of Linear Discriminant Analysis
(LDA) to tensor objects and which uses only the second order
statistics of the data. Extracting features by maximizing the
mutual information (MMI) overcomes this problem and
provides highly discriminating features [8, 9].

Shannon’s definition of mutual information is used in [8]
but it has some inherent limitations. The traditional use of
Shannon entropy in Information theory may not be well
applied in some situations. Tsallis has proposed a new concept
of entropy which extends the preceding traditional Shannon’s
theory. This new concept, called non extensive entropy, was
used recently for image segmentation and other related areas
[10]-[12]. In this paper, our primary goal is to study the
usefulness of the Tsallis entropy by comparing it to the classic
Shannon entropy in the context of image classification. MMI
based on Shannon entropy discussed by [8] provides a single
discrimination measure for optimization. In order to provide a
wide class of measures we propose a method called

maximization of parametric Tsallis mutual entropy for
extracting the most discriminative features from tensor
objects. Shannon entropy is a particular case of Tsallis entropy
and varying its parameter results different objective functions
for optimization.

A series of experiments were carried out for the problem
of classifying image patterns under different values of the
entropy parameters. For classification we use KNN classifier
for the sake of simplicity. Our goal is to assess how well the
different entropies can be used for feature extraction and
hence to determine the class of a new test sample. The
experiments show that the Tsallis entropy has great
advantages over Shannon entropy for pattern classification.

The rest of the paper is organized as follows. Section Il
will provide some notations and basic concepts of feature
extraction by MMI. Section Il describes the proposed
method. Section IV provides performance analysis of the
proposed method. Section V contains conclusions.

I1. BASIC CONCEPTS AND RELATED WORKS

In this section, we will provide some basic notations of
tensor objects and also introduce some methods such as
maximization of mutual information for feature extraction
using Shannon’s entropy.

A. Notations

Tensors are geometric objects and it is a multi-way
generalization of vector and matrix. The order of tensor is the
dimensionality or number of indices needed to represent it.

For example, tensor y €[] "2 is an N-way tensor. A
tensor y can be decomposed by Tucker decomposition and

can be expressed as x ~ F x{A}, where A are factor
matrices and F is the core tensor [8].

B. Maximization of mutual information

Maximization of mutual information is considered as the
more general criteria for extracting the most discriminative
features from tensor objects [8]. Let y denote a three-way

random tensor and y denote its corresponding class label.
Then y can be represented through Tucker decomposition in

terms of projection matrices and core tensor as
— o7 T eT
F=xyx,U" x,U* x,U
o)

Volume 3, | ssue 13

Published by, www.ijert.org 1



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCICN-2015 Conference Proceedings

The elements of the core tensor are gives the features that can
be used for classification. But our aim is to find out the most
discriminative features for classification. In order to get such
elements of the core tensor, we need to find out the projection
matrices which maximize the mutual information measure.
Jukic and Filipovic [8] proposed an iterative method for
obtaining the mode-n projection matrix by solving the
following optimization problem

U™ =arg max Ia(fy)
uOT g™ g (2)
where | is the mutual information based on Shannon
measure of entropy
C. Estimation of Mutual Entropy via Shannon’s entropy and
Tsallis entropy
For a continuous random variable X with probability
density function f(X) with finite or infinite support &

.The Shannon entropy H(X) of a random variable X is
defined by

H(X)=— j f (x)log, (f (x))dx

xel
3)
The entropy measure H( X) quantifies the average uncertainty
associated with the random variable X. The conditional
entropy measures the average uncertainty associated with X, if
we know the outcome of Y, which is defined as,

HX[Y) == [ | (xy)log,(f (x| y))dxdy

xel yeY

@
where, f(x,y)is the joint  probability

and f (x| y) is the conditional probability.
The mutual information (MI) between X and Y is defined by

density

TOGY)=H(X)=H(X[Y)=H()-H( | X)
(5)

Mutual information quantifies the information gain or the
shared information between X and Y.

Generalized Shannon entropy was given by Tsallis and can
be expressed as [13]

1
H;(X):_l(l— j f(x)“dx]

- xeX (6)
where, & is the entropy parameter and when o =1Tsallis
entropy reduces to Shannon Entropy.

Mutual information can be generalized by Tsallis mutual
entropy. The Tsallis mutual entropy is defined for ¢ >1 as
[14]
L (X3Y) =H (X)) = HI(X]Y)

=H, (Y)=H (Y| X)

=H, (X)+HZ(Y)=H; (X.Y). (7)

I11. PROPOSED METHOD

In order to extract the most discriminating features in a
tensor objects we have to use generalized mutual information
criteria. This will provide a range of measures depending on
the entropy parameter. In this paper we propose a supervised
feature extraction algorithm for tensor objects by maximizing
the Tsallis mutual information. Approach is similar to [8] but
Tsallis entropy is used instead of Shannon entropy.
Performance of the classification algorithm using the extracted
features is examined by varying the entropy parameters
including the Shannon counterpart.

Now we will discuss the estimation of Tsallis mutual
information and its gradient of a scalar random variables.

Negentropy of a random variable f is defined as
‘7aT(f)= HZ(fGauss)' Hl(f)

(8)
Tsallis  Mutual information between scalar random
variable f and Y can be expressed as
1- «,
(27760'2)( 72)
1I1(f,y)= —1_fa - T (f)- ©)
1- &

oS (2rec?,,_ )( 72)

a P(y=K)I 1”” - 7 (fly= k)]

k=1 -

where 7 (f) is the negative entropy, o is the variance and
P(y = k) being the probability of y belonging to class k.
Gradient of 1] (f,y) with respectto W is given by

Ny 1 (F,y) =N, I;WTX, y)=

a P(y=KN,Z (fly=K)I- N7 (f)-
k=1

¢ @ra)sy
é{ P(y = k)[(Zﬂeafly:k) % Cypy= W

k=1 1- o (10)
where C is the covariance matrix estimated using the training
data set. Let’s derive expression for negative entropy and its
gradient based on nonpolynomial approximation discussed by
[15]. Following the similar steps of [15] we have

1 (A (1)
HO» ——f- o (b, () du}
a-1 (11)
Cumulants in Equation (5.30) of [15] are very small and thus
We can use an approximation

A+ &)* = 1+ a(s- £2/2) 12)

Following Equation (5.33) and (5.34) of [15] with Tsallis
entropy we get

T (f)» ag(f)
N, 77 (f)» aN,,J(f)

(13)

(14)
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A. System Architecture

Feature
extraction
by MMI
using
Tsallis
Image entropy

preprocessing [ 7 writh
different
entropy

pararneter

Input 1mages

Apply
«—— classification

algornthm

Class label
of'test data

Output: New projection matrix U™

Algorithm 2: Classification

Fig. 1. Image classification

Algorithm 1: Feature Extraction

Input:. D ={(X,C), ..., (Xy,Cy )}

X, = (X, Xpm) NEW instance to be classified

pLr

1. Start

2..For each (Xi,Ci)caIcuIate the Euclidean distance
d(xi’xp)

3. Order d (X, Xp) from lowest to highest i =1,..., N
4. Select k- nearest instances to X b
5. Assign Xp into the most frequent class in D

6. Stop

Output: Class label of the most frequent class

Input: 1. Set of K training samples,

Ly el ™} kell,....C}

2. Class labels Yy,
Parameters: Features matrix (tensor) size for each
mode((pl,..., pN)), entropy parameter o with different

values
Initialize U™ ] " nefl,..., N}
Repeat

Forn=1toN

Compute

Z,"=yx_{U¥
Find the mode-n matrix using the optimization procedure
T
U, =arg maxl, (f,y)

umdT y™ 1
End
Until (convergence)
Output: Projection matrices U™ €1 ™™ nefl,..., N}

Optimization procedure

Input: Feasible initial projection matrix U "
k<0

Repeat
i T
Calculate gradient Vo |a (f,)/)

Calculate A, with A:=GU®T —U® G7
T
G=-V,u Ia (f,y)

Select the step size 7, using curvilinear search
U® «Q(z,)U"
T o\ T
Q) =1+ A (-2 A)
T
Voo LD (F,Y)

Update with

Until < tolerence

E

IV. PERFORMANCE EVALUATION

This work mainly focuses on supervised feature extraction
from tensor objects. Here we take images of objects and faces
as inputs. Optimal features are extracted from these input
images by maximization of mutual information criteria using
Tsallis entropy. A comparative performance analysis of the
feature extraction method is evaluated in the context of
classification by varying the entropy parameter o from 1.25 to
3 with an increment of 0.25. Shannon entropy is the special
case when the parameter o tends to 1.  One of the simple well
known classifiers such as KNN are used for classification
purpose .Performance evaluation under different images and
feature dimensions in object recognition and face recognition
applications using KNN is given in Tables | to IV and Figures
4and5.

In order to assess the performance of the proposed work
several experiments are performed on the standard datasets
with images of objects and face images. The Columbia
University Image Library (COIL-20) dataset consists of gray
scale images of 20 objects. Five objects out of 20 are used for
the present study. Each object is represented by 72 gray scale
images obtained by rotating the object with step of five
degree. Each image is downsampled into 32X32 pixels and
16X16 pixels, and ten samples per class were randomly
selected for training set with remaining samples forming the
test set. The number of components in each mode was set to
(R1,R2) € {(5, 5), (10,10)} and no feature selection was
performed on the extracted features.

Fig. 2. Object images from COIL 20
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Fig. 3. Face images from Sheffield face database

TABLE | . ACCURACY ESTIMATION OF OBJECT RECOGNITION

USING KNN. IMAGE DIMENSION: 32X32, FEATURE DIMENSION:

Object Recognition

=]
£

1 125 151758 2 225252738 3
Entropy Parameter o.

»g 92

2 #

o

= 90 ’7V ———— b —#—Image Size 32x32,
g8 Feature Size 10x10
]

‘g 86 l’ e —o—Image Size 32x32,
H Feature Size 5x5
Q84 "

% 82 | Image Size 16x16,
o Feature Size 10x10
‘g 80 —+—=Image Size 16x16,
§ 78 Feature Size 5x5

@

a

Fig. 4. Classification Accuracy of Face Recognition
under different values of entropy parameter o.

10X10, 5X5
Object Rec KNN Object Rec KNN
32x32 5X5 32x32 10x10

Alpha Accuracy Alpha Accuracy

1 84.17 1 81.67

1.25 86.67 1.25 92.5

15 86.67 15 92.5

1.75 86.67 1.75 92.5

2 86.67 2 92.5

2.25 86.67 2.25 92.5

2.5 86.67 2.5 92.5

2.75 86.67 2.75 92.5

3 86.67 3 92.5

TABLE Il. ACCURACY ESTIMATION OF OBJECT RECOGNITION

USING KNN IMAGE DIMENSION: 16X16, FEATURE DIMENSION:

Face Recognition

£ 100

E 9 ——s—s———s—s—s—u

b=

z 90 —dr—Image Size 28x23,
< g5 | Feature Size 10x10
=1

g 80y =—o—Image Size 28x23,
2 . Feature Size 5x5

S 75

e 0 Image Sizel6x16,

B Feature Size 10x10
% 65 —+—Image Size 16x16,
z 60 T T T T T T T T 1 Feature Size 5x5

A 1 125151758 2 22525275 3

Entropy Parameter a

10X10, 5X5
Object Rec KNN Object Rec KNN Fig. 5. Classification Accuracy of Object Recognition
16x16 55 16x16 10x10 under different values of entropy parameter a.
Alpha Accuracy Alpha Accuracy TABLE Ill. ACCURACY ESTIMATION OF FACE RECOGNITION
USING KNN. IMAGE DIMENSION: 16X16, FEATURE DIMENSION:
1 84.17 1 91.67 10X10, 5X5
1.25 90 1.25 89.17 Face Rec KNN Face Rec KNN
1.5 90 1.5 89.17 16x16 10x10 16x16 5x5
1.75 90 1.75 89.17 Alpha Accuracy Alpha Accuracy
2 90 2 89.17 1 80.77 1 71.16
2.25 90 2.25 89.17 1.25 94.23 1.25 86.55
2.5 90 2.5 89.17 15 94.23 15 82.69
3 | 90 3 _ 89.17 2 92.31 2 75
The Sheffield Face database (SFD) consists of 575
images of 20 individuals with mixed race gender and 2.25 94.23 2.25 80.76
appearance. Four individuals with mixed combinations are 25 94.23 2.5 82.69
considered in the present study. Each i.ndividu_al showp ina 2.75 9423 275 80.77
range of poses from profile to frontal views with each image
cropped to 112 X 92 pixels with 8 bit gray levels per pixels. 3 94.23 3 80.77

Prior to feature extraction all images were down sampled to
28 X 23 pixels, and raw images were used as input for feature
extraction. Training set was formed by randomly selecting six
samples for each class with remaining images forming the
test set. The number of components in each mode was set to
(R1,R2) € {(5, 5), (10,10)} and no feature selection was
performed on the extracted features.
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TABLE IV. ACCURACY ESTIMATION OF FACE RECOGNITION
USING KNN. IMAGE DIMENSION: 28X23, FEATURE DIMENSION:

10X10, 5X5
Face Rec KNN Face Rec KNN
28x23 10x10 28x23 5x5
Alpha Accuracy Alpha Accuracy
1 78.85 1 75
1.25 90.38 1.25 88.46
15 90.38 15 88.46
1.75 90.38 1.75 86.54
2 90.38 2 86.54
2.25 90.38 2.25 86.54
2.5 90.38 2.5 86.54
2.75 90.38 2.75 86.54
3 90.38 3 80.77

V. CONCLUSION

This work proposes a novel approach for supervised feature
extraction for tensor objects by MMI criteria using Tsallis
entropy. The projection matrices are obtained by maximizing
an approximation of mutual information between the extracted
features and class labels. More discriminative features can be
obtained by using higher order statistics of the data rather than
using only second order statistics. Several experiments show
that the proposed approach can be used to significantly
improve discriminative ability of the features extracted from
tensor objects. Various linear and non-linear tensor based
classifiers can be used to analyze the performance of the
proposed method and an effective comparative study can be
done in future.
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