
 

 

Information Flow based Malware Detection 

System for Android  

 

S. Kalaiarasi, Thota Srikiran, Vulla Ravi Teja, Konathala Vamsi Krishna,  

Bathina Ramachandra Rao 
Computer Science and Engineering,  

SRM Institute of Science and Technology, Chennai, India. 

 

Abstract: In this paper we propose another method to distinguish 

the malware in android gadgets utilizing data stream based 

examination and profound learning algorithms. In this 

methodology the framework analyzes the structure of data 

streams. Data stream is the development of data among 

individuals and a PC. Proficient and secure data streams are a 

focal factor in the execution of basic leadership, procedures and 

communication. The structure of the stream contains designs 

which are utilized to distinguish the conduct present in them. A 

procedure called the N-gram examination which is utilized to 

recognize the examples in complex flows. The N-gram 

investigation is performed on groupings of API calls that happen 

along Complex-Flows' control stream ways. We show accuracy 

by testing the framework on different applications. 

 
Index Terms: Deep learning, Information Flows, N-Gram. 

Analysis,  API calls, SVM Algorithm 

I. INTRODUCTION 

  Lately as the innovation is expanding step by step it is critical 

to verify our information and touchy data and keep them secret 

from others. But since of expanded innovation it wound up less 

demanding to hack into somebody's information and stole the 

information from them causing so much misfortune. Android 

gadgets have turned into a piece of our day by day lives. It is 

normal that by 2019 the quantity of clients utilizing an Android 

gadget will achieve five million. So the Android has turned 

into an essential wellspring of focus for the programmers to 

hack the information. They use malware to contaminate the 

gadget and transmit the client information in the gadget to the 

programmer. A malware is a vindictive code which shrouds 

itself in a considerate application and runs complex 

calculations once it is contaminated. 

 There are numerous past frameworks that are available to 

recognize the malware in the Android gadget. Albeit a few 

frameworks are effective, the counter malware creators have 

created different methods against the malware. In these past 

methodologies the streams are absent so the engineers utilized 

the battery utilization as a factor to recognize the malware. 

However at this point the data streams are available in the 

applications which are utilized to distinguish the streams and 

examine their structure and conduct to recognize the malware. 

A few calculations are likewise used to help recognize the 

malware in the kindhearted applications. The distinction 

between the pernicious application and the kind application is 

the manner by which the data stream are created and 

application conduct amid calculation of delicate data. A 

considerate application processes the touchy data and the after 

that the calculation stops yet if there should arise an occurrence 

of pernicious application it keeps on doing the calculations and 

duplicating or sending the utilization information to the 

programmers. To recognize these practices of the malignant 

applications the perplexing streams are utilized. A 

Complex-Flow is a great deal of clear (source, sink) streams 

that share a run of the mill bit of code in a program. For 

example, a program can scrutinize contact information, 

scramble it, store it, and send it over the Internet. The objective 

of this paper is to discover the distinction by dissecting the 

conduct and examples by utilizing complex streams and 

profound learning strategies by utilizing calculations called as 

SVM algorithm and N-gram analysis. 

II. SYSTEM DESIGN 

2.1 Proposed System 

In this undertaking we demonstrate that there is have to look 

past the typical straightforward streams so as to distinguish the 

vindictive applications and malware present in it. The malware 

have developed and rather than essentially gathering the 

information and quickly uncovering it, the malware is playing 

out the mind boggling computations and furthermore changing 

the application conduct. So as to identify the malware we 

utilize the dynamic investigation procedure to distinguish the 

malware.Our proposed system uses the following features: 

• String feature  

• Method opcode feature  

• Method API feature  

• Shared library function opcode feature  

• Permission feature 

• Component feature  

• Environmental feature 

2.1.1 Proposed System Advantages 

•  It can mirror the attributes of Android applications. 

• It can speak to malware qualities adequately 

notwithstanding when malware shares numerous regular 

properties with kind applications. 

•  High detection exactness  

•  It upgrade the general exactness of the model 

•  It decrease the preparation time.. 

2.2 Multi Flows 

The goal of the Multi-Flow detection algorithm is to:  

1     Generate a global graph of complete data stream paths for 

an application, and 

2   Identify the convergence between individual data stream 

ways that speak to Multi-Flows. Here, the crossing point of two 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

40

www.ijert.org
www.ijert.org
www.ijert.org


 

 

 

data stream ways basically implies two data stream ways share 

no less than one hub in the worldwide diagram.  

 3   These multi streams are utilized to identify the application 

practices utilizing the examples. We utilized these streams to 

test on some generous applications to take note of the 

pernicious practices of the application. 

III. SYSTEM ARCHITECTURE 

 
Fig. 1 System Architecure 

 

     
Fig. 2  Feature Extraction 

 

As appeared in the Fig 1 the crude information is transfered 

into a compiler where it is handled and the highlights are 

extricated as appeared in the Fig 2. After the highlights are 

separated these highlights are contrasted and the current 

highlights. At that point the preparation is given to the 

engineers dependent on the highlights and testing s done. The 

incorporated code is sent into a characterization calculation 

which is the SVM joined with the N-Gram investigation to 

distinguish the consequences of the code and locate the 

vindictive pieces of code in the application information. 

The element extraction process is the fundamental procedure 

where the application bundle is part into their comparing 

records like the show documents, Dex documents, and Shared 

Libraries. After the extraction procedure each record is 

additionally extricated to make it increasingly executable for 

the processor. The show documents are extricated of creating 

Permissions, Components and Environmental Feature Vector. 

The Dex documents are decompiles and sent to Dalvik Virtual 

Machine which creates the Dalvik Opcode frequencies and 

API Invocation frequencies. These are additionally used to 

produce the Vectors as appeared in Fig. 2. The mutual libraries 

are dismantled to create Opcode frequencies and this is utilized 

to separate the vector as appeared in the Fig.2. 

IV. WORK FLOW 

 

 
Fig. 3  Work Flow Graph 

4.1 SVM Algorithm 

"Bolster Vector Machine" (SVM) is a managed AI 

computation which can be used for both portrayal or backslide 

challenges, it is generally used in course of action issues. In 

this computation, we plot each datum thing as a point in 

n-dimensional space (where n is number of features you have) 

with the estimation of every segment being the estimation of a 

particular encourage. By then, we perform gathering by finding 

the hyper-plane that different the two classes extraordinary .  

4.2 N-Gram Algorithm 

The fundamental purpose of n-grams is that they catch the 

language structure from the factual perspective, similar to what 

letter or word is probably going to pursue the given one. The 

more drawn out the n-gram (the higher the n), the more setting 

you need to work with. Ideal length truly relies upon the 

application. On the off chance that your n-grams are 

excessively short, you may neglect to catch imperative 

contrasts. Then again, on the off chance that they are 

excessively long, you may neglect to catch the "general 

knowledge” and only stick to particular cases.  

V. MODULES 

The modules are classified into three parts 

1    Raw Data Extraction Process 

2    Feature Extraction Process 

3 Feature Vector Generation Process 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

41

www.ijert.org
www.ijert.org
www.ijert.org


 

 

 
Fig.3   Module Description 

 

5.1.1 Raw Data Extraction Process 

This extraction process is performed to make the apk records 

compilable. To separate the crude information, an Android 

package document is unfastened, and a show record, a DEX 

document, and distributed library records are extricated first. 

The show document and the dex record are decoded or 

dismantled by APKtool, and the common library records (for 

example .so documents) in the bundle can be dismantled. 

 
5.1.2 Feature Extraction Process 

This process is directed to acquire the basic component 

information from the crude information. To begin with, 

strategy opcode highlights and technique API highlights are 

removed from little documents which have the dismantled 

consequences of the dex record. The little record is isolated 

into the technique squares, and, by examining Dalvik 

bytecodes, the Dalvik opcode recurrence of every strategy is 

determined. Likewise, amid the bytecode examining, it is 

checked whether the conjuring of the hazardous APIs exists in 

the strategy, and the unsafe API summon recurrence of every 

technique is determined. 

 

5.1.3 Feature Vector Generation Process 

The removed features includes in the past procedure are 

utilized to form highlight vectors. Seven sorts of the 

component vector are produced from separated highlights. The 

seven element vectors are partitioned into two sorts as 

indicated by their element portrayals: presence based 

component vectors and likeness based element vectors. The 

presence based element vector is the element vector whose 

components just speak to the presence of highlights in the 

vindictive element database, and instances of these are string, 

consent, part and natural element vectors. 

 

 

 

VI. EVALUATION 

6.1 Methodology and Metrics 

We utilized four arrangements of various mixes in our trials to 

assess the order framework. 

The evaluation process is as follows: 

•   In this we utilized a ten times cross approval system 

to partition the applications into sets called preparing 

and testing sets. The classifiers is prepared on 

highlight vectors to frame arbitrary 90 percent of both 

considerate and pernicious applications. The grouping 

procedure will be rehashed a few times altogether and 

the normal is determined. 

• The preparing set depends on both good and 

malignant applications. The N-grams that are 

produced from these applications are utilized to frame 

global element space. A component vector is 

assembled dependent on N-grams. 

• After preparing the classifiers we utilize the testing set 

of blended applications for the order. The classifiers at 

that point gives the choice on an application, in view 

of the N-grams highlight vector, as either 'malicious' 

or 'good'. 

 

The following 

TP  “True  positive  rate”—the rate at which a good app is 

detected as a good app 

TN  “True  negative  rate”—the rate at which a malware is 

detected perfectly as malware app 

FP “ False  positive  rate”—the  rate  at which the malware is 

detected as a good app incorrectly. 

FN “False negative rate”—the rate at which the good app is 

detected as a malware  

VII. RESULT 

7.1 Google Play Apps vs Malware Apps 

In this area, we structured distinctive analyses to assess our 

framework completely dependent on favorable applications 

and present day malware applications. In the first place, we 

look at the previous and recent Google Play applications 

against present day pernicious applications exclusively; at that 

point, we run examination on all amiable applications and 

noxious applications. To do this, we isolate present day 

pernicious applications arbitrarily into two sets to coordinate 

with previous and recent generous applications as needs be and 

name them as Malware_one and Malware_two. The point by 

point results are talked about underneath. 
Table 1 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

42

www.ijert.org
www.ijert.org
www.ijert.org


 

 

 

7.2 2018  Playstore apps vs Modern Malware Apps 

We assess our methodology on various arrangements of 

applications. In this we have utilized the latest Google play 

applications, marked as Play_2018, for our amiable 

applications set. We have picked an alternate arrangement of 

vindictive applications, which are named as Malware_2. The 

outcomes are appeared in the Table 1.The outcomes 

demonstrate a comparable conduct as we increment the gram 

size.by utilizing this we can accomplish exceptionally exact 

characterization of the applications, while using the false 

positive rates minimum. Littler gram values gives us the better 

precision for both kind applications and malevolent 

applications. 

Table 2 

 

Moreover we additionally ran the order on the latest playstore 

applications vs alternate arrangements of vindictive apps due 

to malware, The assessment results have appeared in the  above 

table.As we can see that outcomes are familiar. So as should be 

obvious that the cutting edge malware applications are 

increasingly like kindhearted applications as indicated by the 

utilization of the single APIs. 

Appset TP TN FP FN Accuracy 

Play_2016vsMalware_1 0.87 0.62 0.39 0.14 0.73 

Play_2018vsMalware_2 0.59 0.82 0.18 0.42 0.72 

 

VIII. DISCUSSION 

Data streams themselves may not give enough data to 

recognize malware applications. Point by point application 

conduct, can be caught by utilizing the N-grams, it is a vital 

element that can give the basic data used to recognize noxious 

applications from kindhearted applications. The point by point 

application conduct gathered by Information-Flow gives more 

proof of the noxiousness of an application. For instance, 

assume an accompanying perception recognized by the 

examination. Comparable, long API call grouping are less 

normal crosswise over amiable applications, showing that kind 

applications differ incredibly in application conduct. In any 

case, long API call grouping are normal crosswise over 

malware applications and can enhance the identification rate of 

malevolent applications, demonstrating malware shares similar 

standards of conduct. Diverse values of the N-grams indicates 

toughness of the application conduct. Numerous MalGenome 

applications can be characterized independently from 

kindhearted applications dependent on gram-1 includes alone, 

which means these applications show critical contrast of 

application conduct on single API versus benevolent 

applications. Interestingly, grouping of other current malware 

applications has to meet requirements more than gram-1 

highlight.This considers these type of malwares are most 

similar with the other application than the MalGenome. Be that 

as it may, they can in any case be separated from typical 

applications by dissecting itemized application practices 

spoken to by various gram highlights. 

IX. CONCLUSION 

We hereby proposed a new idea of Information Flows to infer 

application conduct on gadget touchy information. We 

likewise present a robotized arrangement framework that 

influences application conduct alongside application data 

streams for grouping kind and noxious Android applications. 

We have point by point our way to deal with find Complex 

Flows in an application, separate application conduct includes, 

and apply an arrangement strategy. We demonstrate the 

viability of our grouping framework by exhibiting assessment 

resulting in the Play Store applications and some vindictive 

applications. The future work is to plan the filtering N-Grams 

which includes the extraction of disposing the non-effective 

edge work of API calls We additionally can use other AI 

grouping methods to locate the best ones.  

REFERENCES 

[1] Y. Aafer, W. Du, and H. Yin.  Droidapiminer: Mining api- level features 

for robust malware detection in android.  In Proc. of SecureComm 2013, 

2013.W.-K. Chen, Linear Networks and Systems (Book style).Belmont, 
CA: Wadsworth, 1993, pp. 123–135. 

[2] V.  M.  Afonso,  P.  L.  de  Geus,  A.  Bianchi,  Y.  Fratantonio, C.  

Kruegel,  G.  Vigna,  A.  Doupe´,  and  M.  Polino.    Going native:  Using  
a  large-scale  analysis  of  android  apps  to create  a  practical  

native-code  sandboxing  policy.   In  Proc. of NDSS 2016, 2016. 

[3] D.   Arp,   M.   Spreitzenbarth,   H.   Gascon,   and   K.   Rieck.Drebin:   

Effective   and   explainable   detection   of   android malware in your 

pocket, 2014. 

[4] S. Arzt and E. Bodden.  Stubdroid: Automatic inference of precise 

data-flow  summaries  for  the  android  framework. In Proc. of ICSE 16, 
2016. 

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y.  L.  

Traon,  D.  Octeau,  and  P.  McDaniel.     Flowdroid: Precise  context,  
flow,  field,  object-sensitive  and  lifecycle- aware  taint  analysis  for  

android  appstion  in  tcb  source code.  In PLDI ’14, Edinburgh, UK, 

2014. 
[6] V. Avdiienko,  K. Kuznetsov,  A. Gorla,  A. Zeller,  S. Arzt, S.  

Rasthofer,  and  E.  Bodden.   Mining  apps  for  abnormal usage of 

sensitive data. In ICSE ’15, Piscataway, NJ, USA,2015. 
[7] P.    Barros,    R.    Just,    S.    Millstein,    P.    Vines,    W.    Dietl, M.  

d’Amorim,  and  M.  D.  Ernst.    Static  analysis  of  implicit control flow: 

Resolving Java reflection and Android intents.  In ASE ’15, Lincoln, NE, 
USA, 2015. 

[8] I.  Burguera,  U.  Zurutuza,  and  S.  Nadjm-Tehrani.   Crowdroid: 

behavior-based malware detection system for android.  In SPSM ’11, 
2011. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV8IS050056
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 8 Issue 05, May-2019

43

www.ijert.org
www.ijert.org
www.ijert.org

