Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

Information Flow based Malware Detection
System for Android

S. Kalaiarasi, Thota Srikiran, Vulla Ravi Teja, Konathala VVamsi Krishna,
Bathina Ramachandra Rao
Computer Science and Engineering,
SRM Institute of Science and Technology, Chennai, India.

Abstract: In this paper we propose another method to distinguish
the malware in android gadgets utilizing data stream based
examination and profound learning algorithms. In this
methodology the framework analyzes the structure of data
streams. Data stream is the development of data among
individuals and a PC. Proficient and secure data streams are a
focal factor in the execution of basic leadership, procedures and
communication. The structure of the stream contains designs
which are utilized to distinguish the conduct present in them. A
procedure called the N-gram examination which is utilized to
recognize the examples in complex flows. The N-gram
investigation is performed on groupings of API calls that happen
along Complex-Flows' control stream ways. We show accuracy
by testing the framework on different applications.

Index Terms: Deep learning, Information Flows, N-Gram.
Analysis, API calls, SVM Algorithm

I. INTRODUCTION

Lately as the innovation is expanding step by step it is critical
to verify our information and touchy data and keep them secret
from others. But since of expanded innovation it wound up less
demanding to hack into somebody's information and stole the
information from them causing so much misfortune. Android
gadgets have turned into a piece of our day by day lives. It is
normal that by 2019 the quantity of clients utilizing an Android
gadget will achieve five million. So the Android has turned
into an essential wellspring of focus for the programmers to
hack the information. They use malware to contaminate the
gadget and transmit the client information in the gadget to the
programmer. A malware is a vindictive code which shrouds
itself in a considerate application and runs complex
calculations once it is contaminated.

There are numerous past frameworks that are available to
recognize the malware in the Android gadget. Albeit a few
frameworks are effective, the counter malware creators have
created different methods against the malware. In these past
methodologies the streams are absent so the engineers utilized
the battery utilization as a factor to recognize the malware.
However at this point the data streams are available in the
applications which are utilized to distinguish the streams and
examine their structure and conduct to recognize the malware.
A few calculations are likewise used to help recognize the
malware in the kindhearted applications. The distinction
between the pernicious application and the kind application is
the manner by which the data stream are created and
application conduct amid calculation of delicate data. A
considerate application processes the touchy data and the after
that the calculation stops yet if there should arise an occurrence

of pernicious application it keeps on doing the calculations and
duplicating or sending the utilization information to the
programmers. To recognize these practices of the malignant
applications the perplexing streams are utilized. A
Complex-Flow is a great deal of clear (source, sink) streams
that share a run of the mill bit of code in a program. For
example, a program can scrutinize contact information,
scramble it, store it, and send it over the Internet. The objective
of this paper is to discover the distinction by dissecting the
conduct and examples by utilizing complex streams and
profound learning strategies by utilizing calculations called as
SVM algorithm and N-gram analysis.

Il. SYSTEM DESIGN

2.1 Proposed System

In this undertaking we demonstrate that there is have to look
past the typical straightforward streams so as to distinguish the
vindictive applications and malware present in it. The malware
have developed and rather than essentially gathering the
information and quickly uncovering it, the malware is playing
out the mind boggling computations and furthermore changing
the application conduct. So as to identify the malware we
utilize the dynamic investigation procedure to distinguish the
malware.Our proposed system uses the following features:

* String feature

* Method opcode feature

* Method API feature

* Shared library function opcode feature

* Permission feature

» Component feature

» Environmental feature
2.1.1 Proposed System Advantages

« It can mirror the attributes of Android applications.

« It can speak to malware qualities adequately

notwithstanding when malware shares numerous regular

properties with kind applications.

* High detection exactness

* It upgrade the general exactness of the model

« It decrease the preparation time..

2.2 Multi Flows

The goal of the Multi-Flow detection algorithm is to:
1 Generate a global graph of complete data stream paths for
an application, and

2 ldentify the convergence between individual data stream
ways that speak to Multi-Flows. Here, the crossing point of two

I JERTV 8| S050056

www.ijert.org 40

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

data stream ways basically implies two data stream ways share
no less than one hub in the worldwide diagram.

3 These multi streams are utilized to identify the application
practices utilizing the examples. We utilized these streams to
test on some generous applications to take note of the
pernicious practices of the application.

1. SYSTEM ARCHITECTURE

- Features
Raw Data —= Pre

Processing Extraction

|

Features

Comparison
Training Testing

LJ/J

Classification
Algorithm

Detection

Result

Fig. 1 System Architecure

Extracting Permission

Decoding }
. > Components

Generating Permission / Component

Manifest files - . . Environmental Feature Vector
Environmental information
» Generating String Feature Vector
Decompil Extracting Strings
“or;p‘ ng » Dalvik Opcode Freq. » Generating Method API Feature Vector
X

API invocation Freq.
> Generating Method OP Feature Vector

Disassembling
Shared Libraries

Generating Shared Lib.

Extracting ode Freq. —»
» g Ope 4 Function Feature Vector

Fig. 2 Feature Extraction

As appeared in the Fig 1 the crude information is transfered
into a compiler where it is handled and the highlights are
extricated as appeared in the Fig 2. After the highlights are
separated these highlights are contrasted and the current
highlights. At that point the preparation is given to the
engineers dependent on the highlights and testing s done. The
incorporated code is sent into a characterization calculation
which is the SVM joined with the N-Gram investigation to
distinguish the consequences of the code and locate the
vindictive pieces of code in the application information.

The element extraction process is the fundamental procedure
where the application bundle is part into their comparing
records like the show documents, Dex documents, and Shared
Libraries. After the extraction procedure each record is
additionally extricated to make it increasingly executable for
the processor. The show documents are extricated of creating
Permissions, Components and Environmental Feature Vector.
The Dex documents are decompiles and sent to Dalvik Virtual
Machine which creates the Dalvik Opcode frequencies and
API Invocation frequencies. These are additionally used to
produce the Vectors as appeared in Fig. 2. The mutual libraries
are dismantled to create Opcode frequencies and this is utilized
to separate the vector as appeared in the Fig.2.

1IV. WORK FLOW

— — —
A 1 Yes A - . No Benign
- l.,,s_ pp Malicious or w Apps
| App D

Feature SVM
Dataset

Algorithm

o ry

Feature
Extraction

Smali/xml
Files

k,,,f’_"

Decoder
(Decompilation)

[y I

Fig. 3 Work Flow Graph

4.1 SVM Algorithm

"Bolster Vector Machine" (SVM) is a managed Al
computation which can be used for both portrayal or backslide
challenges, it is generally used in course of action issues. In
this computation, we plot each datum thing as a point in
n-dimensional space (where n is number of features you have)
with the estimation of every segment being the estimation of a
particular encourage. By then, we perform gathering by finding
the hyper-plane that different the two classes extraordinary .

4.2 N-Gram Algorithm

The fundamental purpose of n-grams is that they catch the
language structure from the factual perspective, similar to what
letter or word is probably going to pursue the given one. The
more drawn out the n-gram (the higher the n), the more setting
you need to work with. Ideal length truly relies upon the
application. On the off chance that your n-grams are
excessively short, you may neglect to catch imperative
contrasts. Then again, on the off chance that they are
excessively long, you may neglect to catch the "general
knowledge” and only stick to particular cases.

V. MODULES
The modules are classified into three parts
1 Raw Data Extraction Process

2 Feature Extraction Process

3 Feature Vector Generation Process

I JERTV 8| S050056

www.ijert.org 41

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

| Android Application Framework |

mpiler
| dexfile | [xmifie |
—
§ Exiractor
i Tmonctioent [Permsson] |---

ki Intent [~ ienilier |

| Intelligent Leamer Jaf ;

[Decision Maker |

-

[User Interface]

Fig.3 Module Description

5.1.1 Raw Data Extraction Process

This extraction process is performed to make the apk records
compilable. To separate the crude information, an Android
package document is unfastened, and a show record, a DEX
document, and distributed library records are extricated first.
The show document and the dex record are decoded or
dismantled by APKtool, and the common library records (for
example .so documents) in the bundle can be dismantled.

5.1.2 Feature Extraction Process

This process is directed to acquire the basic component
information from the crude information. To begin with,
strategy opcode highlights and technique API highlights are
removed from little documents which have the dismantled
consequences of the dex record. The little record is isolated
into the technique squares, and, by examining Dalvik
bytecodes, the Dalvik opcode recurrence of every strategy is
determined. Likewise, amid the bytecode examining, it is
checked whether the conjuring of the hazardous APIs exists in
the strategy, and the unsafe APl summon recurrence of every
technique is determined.

5.1.3 Feature Vector Generation Process

The removed features includes in the past procedure are
utilized to form highlight vectors. Seven sorts of the
component vector are produced from separated highlights. The

VI. EVALUATION

6.1 Methodology and Metrics

We utilized four arrangements of various mixes in our trials to
assess the order framework.

The evaluation process is as follows:

e Inthis we utilized a ten times cross approval system
to partition the applications into sets called preparing
and testing sets. The classifiers is prepared on
highlight vectors to frame arbitrary 90 percent of both
considerate and pernicious applications. The grouping
procedure will be rehashed a few times altogether and
the normal is determined.

e The preparing set depends on both good and
malignant applications. The N-grams that are
produced from these applications are utilized to frame
global element space. A component vector is
assembled dependent on N-grams.

o After preparing the classifiers we utilize the testing set
of blended applications for the order. The classifiers at
that point gives the choice on an application, in view
of the N-grams highlight vector, as either 'malicious'
or 'good'.

The following

TP “True positive rate”—the rate at which a good app is
detected as a good app

TN “True negative rate”—the rate at which a malware is
detected perfectly as malware app

FP “ False positive rate”—the rate at which the malware is
detected as a good app incorrectly.

FN “False negative rate”—the rate at which the good app is

detected as a malware

VIl. RESULT

7.1 Google Play Apps vs Malware Apps

In this area, we structured distinctive analyses to assess our
framework completely dependent on favorable applications
and present day malware applications. In the first place, we
look at the previous and recent Google Play applications
against present day pernicious applications exclusively; at that
point, we run examination on all amiable applications and
noxious applications. To do this, we isolate present day
pernicious applications arbitrarily into two sets to coordinate
with previous and recent generous applications as needs be and
name them as Malware_one and Malware_two. The point by
point results are talked about underneath.

seven element vectors are partitioned into two sorts as Table 1
s) p . Classification Results on Play__2018 vs Malware_2 Apps
indicated by their element portrayals: presence based _
. | Zram size | TP | ™ | FP | FM |accurac',r
component vectors and likeness based element vectors. The
. 1 0921 [0.767 [0.233 | 0.079 0.838
presence based element vector is the element vector whose 2 0841 Toses To1a0 [0159 0853
components just speak to the presence of highlights in the 3 0619 | 0863 | 0137 | 0381 075
vindictive element database, and instances of these are string, 4 0475 | 0948 | 0.052 | 0525 0743
consent, part and natural element vectors. > 0424 | 0548 | 0052 | 0576 0721
172 0968 | 0849 | 0151 | 0032 0904
12,3 0857 | 0877 | 0123 | 0143 0868
1234 |0683 |0877 | 0123 | 0317 0787
12345 | 0667 | 089 | 011 | 0333 0787
IJERTV8I S050056 www.ijert.org 42

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 8 Issue 05, May-2019

7.2 2018 Playstore apps vs Modern Malware Apps

We assess our methodology on various arrangements of
applications. In this we have utilized the latest Google play
applications, marked as Play 2018, for our amiable
applications set. We have picked an alternate arrangement of
vindictive applications, which are named as Malware_2. The
outcomes are appeared in the Table 1.The outcomes
demonstrate a comparable conduct as we increment the gram
size.by utilizing this we can accomplish exceptionally exact
characterization of the applications, while using the false
positive rates minimum. Littler gram values gives us the better
precision for both kind applications and malevolent

applications.
Table 2
Classification Results on Play_2018 vs Malware_1 Apps
[gamsize| TP | TN | FP | FN [accuracy |

1 0937 |0.795 | 0.205 | 0.063 0.86

2 0937 |0.781 | 0.219 0.063 0.853

3 0.841 | 0904 | 0.096 0.159 0.875

4 0441 |0.883 |0.117 [0559 0.691

5 0.39 0908 | 0091 0.61 0.684

1,2 0937 | 0.836 | 0.164 | 0.063 0.882
123 0.825 0.89 0.11 0.175 0.86
1234 0.703 0909 | 0.091 0.297 0.849
12345 0.688 0909 | 0091 | 0313 0.844

Moreover we additionally ran the order on the latest playstore
applications vs alternate arrangements of vindictive apps due
to malware, The assessment results have appeared in the above
table.As we can see that outcomes are familiar. So as should be
obvious that the cutting edge malware applications are
increasingly like kindhearted applications as indicated by the
utilization of the single APIs.

Appset TP TN FP FN Accuracy

Play_2016vsMalware_1 | 0.87 | 0.62 | 0.39 | 0.14 | 0.73

Play _2018vsMalware_2 | 059 | 0.82 | 0.18 | 042 | 0.72

VIIl. DISCUSSION

Data streams themselves may not give enough data to
recognize malware applications. Point by point application
conduct, can be caught by utilizing the N-grams, it is a vital
element that can give the basic data used to recognize noxious
applications from kindhearted applications. The point by point
application conduct gathered by Information-Flow gives more
proof of the noxiousness of an application. For instance,
assume an accompanying perception recognized by the
examination. Comparable, long API call grouping are less
normal crosswise over amiable applications, showing that kind
applications differ incredibly in application conduct. In any
case, long API call grouping are normal crosswise over
malware applications and can enhance the identification rate of
malevolent applications, demonstrating malware shares similar
standards of conduct. Diverse values of the N-grams indicates
toughness of the application conduct. Numerous MalGenome
applications can be characterized independently from
kindhearted applications dependent on gram-1 includes alone,
which means these applications show critical contrast of

application conduct on single API versus benevolent
applications. Interestingly, grouping of other current malware
applications has to meet requirements more than gram-1
highlight. This considers these type of malwares are most
similar with the other application than the MalGenome. Be that
as it may, they can in any case be separated from typical
applications by dissecting itemized application practices
spoken to by various gram highlights.

IX. CONCLUSION

We hereby proposed a new idea of Information Flows to infer
application conduct on gadget touchy information. We
likewise present a robotized arrangement framework that
influences application conduct alongside application data
streams for grouping kind and noxious Android applications.
We have point by point our way to deal with find Complex
Flows in an application, separate application conduct includes,
and apply an arrangement strategy. We demonstrate the
viability of our grouping framework by exhibiting assessment
resulting in the Play Store applications and some vindictive
applications. The future work is to plan the filtering N-Grams
which includes the extraction of disposing the non-effective
edge work of API calls We additionally can use other Al
grouping methods to locate the best ones.

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api- level features
for robust malware detection in android. In Proc. of SecureComm 2013,
2013.W.-K. Chen, Linear Networks and Systems (Book style).Belmont,
CA: Wadsworth, 1993, pp. 123-135.

[2] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C.
Kruegel, G. Vigna, A. Doupe’, and M. Polino. Going native: Using
a large-scale analysis of android apps to create a practical
native-code sandboxing policy. In Proc. of NDSS 2016, 2016.

[3] D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck.Drebin:
Effective and explainable detection of android malware in your
pocket, 2014.

[4] S. Arzt and E. Bodden. Stubdroid: Automatic inference of precise
data-flow summaries for the android framework. In Proc. of ICSE 16,
2016.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle- aware taint analysis for
android appstion in tcb source code. In PLDI ’14, Edinburgh, UK,
2014.

[6] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S.
Rasthofer, and E. Bodden. Mining apps for abnormal usage of
sensitive data. In ICSE ’15, Piscataway, NJ, USA,2015.

[71 P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M.
d’Amorim, and M. D. Ernst. Static analysis of implicit control flow:
Resolving Java reflection and Android intents. In ASE ’15, Lincoln, NE,
USA, 2015.

[8] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for android. In SPSM ’11,
2011.

I JERTV 8| S050056

www.ijert.org 43

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

