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Abstract  
 

 In building materials such as concrete, the 

moisture is removed by way of drying that needs an 

intense energy. It is introduced a mathematical 

model to describe this phenomenon. It consists to 

solve a system of two coupled equations, the first 

for mass transfer, and the second for heat transfer. 

Thermo physical properties of concrete play an 

important rule. 

Because thermal conductivity is considered as 

basic parameter to understand the heat flow in a 

material, it is computed by three ways and 

introduced in model equations. 

It is concluded that thermal conductivity, which is 

affected by moisture content, has a significant 

influence on energy consumption. 

 

Key words: moisture, energy, building, thermal 

conductivity, continuous approach, volume control 

method. 

 

1. Introduction  
 

    One of the many difficulties confronting 

researchers in the field of buildings is 

uncovering methods which reduce the energy 

consumption, new and innovative techniques 

which decrease heat losses and enhance product 

quality. 

 An analysis of conduction heat through structure is 

of great importance in energy efficient building 

design. 

The knowledge of thermal conductivity and other 

thermal transport properties of construction 

materials involved in the process of heat transfer 

profile and heat flow through the material [1]. 

Effective thermal conductivity is the net overall 

thermal conductivity of porous materials. Its 

prediction is not a straight forward process. This 

turns out to be difficult problem because the 

transfer property is a complex function of many 

other parameters, such as the thermal conductivities 

of each phase, their relative proportions, the size of 

the solid particles, the contact areas and distribution 

within the medium,[2]. 

Many models based on different assumptions and 

with various degrees of realism have been 

developed in order to predict the effective thermal 

conductivity of these heterogeneous systems [2]. 

 The presence of moisture may affect thermal 

conductivity. It increases with increasing moisture 

content. Since water has conductivity about 25 

times that of air, it is clear that when the air in the 

pores has been partially displayed by water or 

moisture, the concrete must have greater 

conductivity [4].          

 Seiger and Hurd [5] reported that when unit weight 

of concrete increased 1% due to the water 

absorbsion, the thermal conductivity of the 

concrete increases 5%. This proves that moisture 

has an effect on heat transfer then on energy 

consumption. 

   So in this study, it is necessary to analyze and 

characterize the behavior of different phenomena as 

mass and heat transfer. 

 

2. Moisture transfer  
 

Moisture is one of the most deteriorating factors 

of building. The masonry moisture content depends 

on hygroscopic equilibrium between building 

materials and environment, which is determined by 

the drying and wetting rate of masonry. Therefore, 

the moisture content is not determined by the water 

that is absorbed by the material, but also by the 

amount of water that is evaporated, as described by 

the drying process [6]. 

 Moisture has become an important parameter 

to predict the thermal properties, because of its 

adverse affects on porous material. 

2.1. Mathematical model 

For predicting, variation of thermal 

conductivity with moisture content, it is adopted a 

model of mass transfer for computing moisture 

content for concrete.  

A humid porous plane of concrete is dried by 

air (Ta=323K, v=20m/s, φ=40%) (fig.1). 
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Figure 1 Mathematical model. 

Moisture migration is modeled using a 

continuous approach. It is based on a description of 

the system as a fictitious continuum by using 

effective coefficients of heat and mass transfers [7], 

[8], [9]. 

The receding front model is employed for 

describing this process of migration [10]. 
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In the sorption zone (0<x<ξ) 
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Where D1 is the liquid transfer coefficient, S1 is 

the moisture saturation of free water, DSorp is the 

adsorbed water transfer coefficient, S2 is the 

adsorbed water saturation, Mv denotes the molar 

mass of vapor and Pv is the partial vapor pressure. 

For non hygroscopic material, S2=0 and DSorp is 

negligible. 

Initial condition  
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The effective vapor diffusivity does not depend 

on the distribution of the pores, but the evaporation 

area. Therefore, this transport parameter is assumed 

as a function of saturation, porosity and the binary 

diffusion coefficient [11], [12]. 

     PTSPTSDD vaeff ,1,,1                       

(5) 

The binary diffusion coefficient δva is 

considered as temperature and pressure dependent. 
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Where TR =273.15K and PR =101325 Pa are 

reference temperature and pressure respectively. 
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(8) 

Sorption isotherm is applied in the model. Its 

value is obtained experimentally by allowing 

sufficiently long contact of material with air under 

isothermal conditions. The function of sorption 

isotherm is obtained by fitting curves from 

experimental data[14]: 
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3. Heat transfer 

The numerical modeling of heat transfer in 

porous media requires the accurate knowledge of 

several thermo physical properties as thermal 

conductivity. 

3.1. Thermal conductivity 

Thermal conductivity is the property that 

determines the working temperature levels of a 

material. It assumes a critical role in the 

performance of materials and it is important 

parameter in problems involving steady state heat 

transfer. It is one of the physical quantities whose 

measurement is very difficult and it requires high 

precision in the determination of the factors 

necessary for its calculation. 

Many models are available to predict the 

thermal conductivity of two phases systems in 
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terms of the thermal conductivities of the 

constituents [15]. 

The thermal conductivity is function of 

moisture content and temperature. It decreases 

linearly with temperature [16] and it is reported that 

is 70% great in moist state more than that in dry 

state [1].  

Three values of thermal conductivity are taken 

for computing heat transfer: 

a) Maxwell Euken model:  
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λs and λp thermal conductivities of 

solid and porous, Vs and Vp volume 

fractions. 

b) 

20601.0

77459.041222.0 2  SS   (11) 

Thermal conductivity determined by 

“hot box method” [17], [18] and [19]. 

c) aT 0 [20]                           (12) 

Heat transfer equations are written: 
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In the sorption one :  
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Where cp1, cp2 are the specific heat capacities of 

water and vapor, λ1, λ2 are the thermal 

conductivities of water and vapor. 

Initial condition: 
pTTT  21

                     (15) 

Condition at interface : 
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Boundary conditions :  
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In the model external mass and heat transfer 

coefficients are assumed to be constants as long as 

the external conditions are constant [21]. 

Convective heat transfer coefficient has been 

estimated from the mass transfer coefficient using 

the Chilton Colburn relation. 

The non linear partial differential equations of 

the mathematical model calculate material moisture 

content and temperature as a function of position 

and time. 

The procedure adopted for their solution 

consists basically of discrediting the spatial 

variable according to the control volume method 

[22].   

 

4. Results 

Figure 2 shows that mass transfer is controlled 

by three mechanisms which become sequentially 

significant with the progress of drying; convection, 

followed by diffusion in the solid phase, and 

conversion of bound into free diffused water in the 

last stages of drying until equilibrium is reached 

[23].  
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Figure 2 Moisture content function of time. 

The drying is divided into an initial period and a 

second one [24]. During the initial period, it exists 

an evaporative plane at which all the free water 

evaporates. Since the liquid flow is insignificant 

beneath the plane due to the pit aspiration, this 

plane recedes into the material as drying proceeds. 

It divides the material into two parts, a wet zone 

beneath the plane and a sorption zone above it. In 

this last zone, moisture is assumed to exist as 

bound water and water vapor. In the wet zone, the 

moisture content remains at the initial value. After 

the evaporative plane reaches the centre layer of the 

board, drying is controlled by bound water 

diffusion and water vapor flow. It is called the 

second drying period [25].   
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Figure 3 Temperature inside the material. 

Thermal conductivity is computed by utilizing 

the moisture content evaluated by mass transfer 

equations and it is included in heat transfer 

equations. 

Figure 3 shows that heat transfer in concrete 

covers heat conduction and phase exchange and 

they are interactive [26]. Convection is neglected 

because concrete is hygroscopic material. 

Temperature increases than it reaches its 

equilibrium value.  
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Figure 4 average temperatures for different values 

of thermal conductivity. 

 

For different values of thermal conductivity, 

temperature varies (figure 4). Because the energy 

transfer in concrete to be dried results from the heat 

flow rate due to thermal conduction and the 

enthalpy flow rates of the liquid and vapor initiated 

by moisture transfer. 

 

5. Conclusion 
  

     This study covers only some aspects of the 

processes occurring within the material during 

drying of porous solids. 

From the results and simulations presented, some 

conclusions can be made: 

► It is presented a solution technique for one 

dimensional drying simulation based on a 

comprehensive mathematical model, 

which describes all relevant transport 

phenomena, heat and mass transfer, by 

means of effective parameters (effective 

thermal conductivity, effective mass 

diffusion coefficient, effective 

permeability), by using the volume 

averaging method and the control volume 

element method; 

► The advantage of employed model is that 

it offers a very good representation of the 

physical phenomena occurring in porous 

media during drying. However, the 
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problem encountered in its using is the 

difficulty is determining its complicated 

transport coefficients which depend 

strongly on the material properties and 

structure. These parameters are either 

function of moisture content or 

temperature or both them; 

► The thermal conductivity of concrete is 

significantly affected by moisture content. 

It increases with its increase. 

The objective of this study is analyzed the 

criteria of building design such as energy 

efficiency, minimization of environmental impact 

and protection of the health and safety of the 

inhabitants.  
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