
Indoor Navigation System using Fingerprinting

Habib M., Abraham . K, Abel D., Amanuel W.,

Gebremikael T., and Michaele G.
College of Electrical and Mechanical Engineering,

Department of Electrical and Electronics Engineering,

Addis Ababa Science and Technology University (AASTU),

Addis Ababa, Ethiopia

Abstract—The increasing demand for accurate and affordable

indoor positioning has caused the increase in research to achieve

it. Although Global Satellite Positioning Systems have acceptable

accuracy outdoors, they do not have acceptable accuracy indoors.

This led to researchers exploring different systems for indoor

positioning. This paper implements an indoor navigation system

using fingerprinting. It compares the accuracy of the

deterministic kNN algorithm and probabilistic Naïve Bayes

algorithm for positioning. We also develop a database table that

can be used to give directions. A variant of the Dijkstra’s shortest

path algorithm is used to find nodes on the shortest path from a

source node to a destination node on a server. The source node is

determined by using the positioning system developed and the

destination node is inputted by the user.

Keywords—Fingerprint, KNN algorithm, Navigation Systems,

Positioning techniques.

I. INTRODUCTION

Nowadays, most mobile applications are location aware.
Location aware applications have been used for navigation,
improving search results and geo-fencing. Most of the location
aware applications use Global Positioning System (GPS). GPS
is a navigation system that uses 24 US satellites scattered all
over space to provide worldwide coverage. A smartphone
equipped with a GPS receiver uses data from 3 of GPS
satellites to determine its longitude and latitude. Nonetheless,
GPS is well not suited for indoor use due mainly to the high
degradation of signals from satellites when indoors. Thus,
indoor positioning systems based on Bluetooth, Zigbee and
WiFi have been proposed by different researchers [1] [2]. In
this paper, we build a WiFi based indoor positioning system
using a technique called fingerprinting [3], [4].

Bin Hu [5] developed a smartphone WiFi based indoor
positioning system using smart phones. He developed the
client side application on Android software platform, and the
server side application using Apache Tomcat web server and
Microsoft SQL Server database. The smartphone application
he developed collects RSSI data and sends it to the Apache
Tomcat server, Apache in turn saves the data to the SQL
database. Later when a user requests location the database
entries are used to estimate the user location. The estimated
location is sent to the smartphone via the Apache Tomcat
server. He used a custom made algorithm to estimate location.

Landu Jiang [6] developed a Wi-Fi based indoor
localization technique based on fingerprinting. In his
approach, he uses temporal data in addition to spatial data to
estimate location. That is, the algorithm he developed not only
uses RSSI values at this instant but also use values in the near
past. Therefore, his algorithm does not consider mere points

rather it considers tracking lines which contain a prescribed
number of points. He evaluated the system using 10 tracking
lines and achieved a 5% average increase in accuracy
compared to all other RSSI based indoor positioning systems.

Abdul Quyum [7] developed a Wi-Fi based indoor

positioning. To mitigate Wi-Fi RSSI fluctuations he used

particle filters. During his investigation, he also discovered

that collecting calibration data in all directions can bring about

better performance.

II. SYSTEM DESIGN

In fingerprinting, a radio map of the building is built by
surveying the area for which indoor positioning is desired first.
Then, the radio map is used to train a pattern recognition
model. The trained pattern recognition model is saved and later
used to estimate the position of target devices. The stage in
which radio map is built is called offline (calibration) phase.
After the pattern recognition model is built, the target device
sends the RSSI values it sees to a server which uses the trained
classifier to predict the position of the target device. The access
points used were one TP-Link TL-WA901N and two TP-Link
TL-WA801N. The network shown in Figure 1 was setup.
Then, we used an RSSI data collection Android application we
developed to collect RSSI data. The Android application
collects RSSI data automatically and prompts the data
collecting personnel for a label of the current location. It then
forwards the RSSI data and label to a data collection server
running on the Raspberry Pi. The data collection server
receives the RSSI values and the labels and adds it as row to a
file. We collected data at 51 reference points the second floor
of Block 21 in Addis Ababa Science and Technology
University. The app does not just send the set of RSSI values
of WiFi signals it detected. It sends which RSSI value was
detected from which access point. The wireless access points
are identified by their MAC address. The selected reference
points are shown in Figure 2. The data collection server is
given a list the MAC addresses of the wireless access points
that will be used for positioning. Using this list, the location
server filters out entries for access points that will not be used
for positioning. When data has been collected for all reference
points, the server is stopped and it saves all the data it collected
in a Numpy compressed array format (.npz). Numpy is a
popular Python library for scientific computing. Seventy
rounds of data collection were performed thus giving 70 RSSI
vectors for each reference point.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080107
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

227

Figure 1Architecutre of the proposed positioning system

Figure 2: Locations of selected reference points and access points

The data in npz file which will be used to train a classifier.
The classifier will then be used to estimate the position of
target devices during the positioning phase. The Python library
sklearn (sci-kit learn) was used to train the pattern recognition
model. First, a k-Nearest Neighbors classifier was trained.
Then, the classifier was stored to a file using a persistence
model. A module called joblib was used for model persistence.
The classifier used was the k-Nearest Neighbors (KNN)
algorithm with k equal to 3. A Gaussian Naïve Bayes classifier
was also trained and tested on the system. This completes the
calibration phase. In the positioning phase, the target device
scans for WiFi networks, collects RSSI and MAC address data,
sends it to a location server and waits for the server’s response.
The server receives the data and loads the trained classifier.
The classifier is then used to estimate the position. The
classifier is fed the RSSI value for each access point used for
positioning and outputs a reference point number. The
reference point numbers and their corresponding coordinates
are stored in a MySQL database. The location server queries
the database to determine the coordinates of the predicted
reference point on the floor. The coordinates are then
converted to their corresponding pixel locations in the floor
map image. The pixel coordinates of the estimated location in
the original floor map is then sent to the target device. The
target device receives this data and sends a request for the floor
map to the location server. The location server receives this

request and then transfers the location server to the target
device. When all of the image is received the target device
displays the floor map on its screen. The target device,
however, does not display the floor map image in its original
size. It scales the image to fit its screen. As it does so it saves
the scale factor for its width and height. The scale factors are
used to scale the pixel coordinates received from the location
server which were the locations in the original image. The
other thing that our system can do in the positioning phase is
give directions to a desired location from the current location.
A lot of the steps on the target device’s side to get directions
are similar to the steps used to know its location. Similar to the
location estimation case, the Android application first sends
the RSSI and MAC address data to the location server. The
location server first sees the type of the request and determines
that it is a request for directions to a room. Then, it parses
important information such as the destination room, RSSI and
MAC address data. It then feeds the RSSI and MAC address
data to the trained classifier. The trained classifier returns the
reference point number of the estimated location. The location
server queries the MySQL database for the coordinates of the
reference point number. The MySQL database does not just
have the rows with reference point number and their
corresponding coordinates. Rather, it also contains two
columns: the first one contains a list of the reference point
numbers of immediate neighbors for each reference point and
the second one contains distance to each neighbor. These two
columns are used to build a graph representation of the
reference points in the graph. A graph representation needs to
be built from the database entries. We developed a Python
module to extract the entries of the database and develop an
adjacency list representation of the graph. The module also has
an extended implementation of the Dijkstra’s shortest path
algorithm. After the graph is built, Dijkstra’s algorithm is run
on the graph which returns the shortest path to the destination
from the estimated position. The Dijkstra’s algorithm we
implemented returns the set of consecutive reference points the
shortest path must pass through. The used variant of Dijkstra’s
algorithm is described below. The location server queries the
MySQL database to determine the floor coordinates of each
reference point in the shortest path, converts the floor
coordinates to pixel coordinates and forwards it to the target
device. Then, the location server sends the floor map image to
the target device. Upon receiving all this information, the
target device displays the floor map and draws a line between
every consecutive point in the data it received.

Dijkstra (Graph, source, destination):

Set the distance attribute of all nodes to ∞

Set the parent attribute of all nodes to NIL

Set the distance attribute of the source node

to 0

Add all the nodes of the graph to a queue Q

while Q is not empty:

 u = pop a node from Q

 for each vertex v adjacent to node u:

 if v.distance > u.distance +

weight of edge from u to v:

 v.distance = u.distance +

weight of edge from u to v

 v.parent = u.parent

u = destination

path = empty list

while the parent of u is not NIL:

 add u to the path list

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080107
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

228

 u = the parent of u

reverse the path list

return path

Algorithm 1: Dijkstra's algorithm [8]

III. EXPERIMENTAL RESULTS AND

DISCUSSIONS
Three access points were fixed in Block 21 of at AASTU.

The access points were placed in the second floor, third floor
and the fourth floor. All the access points were connected to a
switch. Also connected to the switch was a Raspberry Pi. The
data collection server and the location server were installed in
the Raspberry Pi. Then, fifty-one points were selected on the
corridor of the second floor of Block 21. Each of these
reference points were assigned a label (or a reference point
number). Consecutive reference points were placed at a
distance of 1.5m from each other. Initially, the access points
were placed on the corridors of the 2nd, 3rd and 4th floors, three
rounds of data collection were carried out with the access
points located at these locations. However, upon examining the
collected data we noted that up to 10 consecutive reference
points had the same set of RSSI values. This is undesirable
since the classifier will have a hard time in distinguishing
between the consecutive reference points that have the same
set of RSSI values. We suspected that the cause of the
similarity in RSSI values was the availability of a line-of-sight
path from all the access points to the target device. The
availability of line-of-sight path means that the set of RSSI
values received mainly depend on the distance from the access
points. And a significant change in RSSI value cannot be
expected in points separated by 1.5 m when LOS path is
available. Thus, we placed the three access point inside rooms.
The first was placed in room 202 in the second floor, the
second was placed in room 304 in the third floor and the last
one placed in room 402 of the fourth floor. By placing the
access points in the rooms we made the RSSI from each access
point not only dependent on the distance from access point but
also on the number of walls the WiFi signal has to pass
through. The placement of the access points indoors
significantly improved the distinguishability of the RSSI
vectors at consecutive reference points. All subsequent
experiments were carried out with the access points placed at
these locations. The locations of selected reference points and
their and their labels are shown in Figure 2. The locations of
the access points are also shown in the map. The labels 2nd, 3rd
and 4th next to the access point symbols in the map show the
floor the access point is at. The training data was collected with
a Huawei SCL-U31 phone which runs Android OS. The RSSI
Collector application was installed in the device. At each
reference point, seventy sets of RSSI values were collected. To
test the indoor positioning system, 52 points were selected.
The Huawei phone was placed at some location. The phone
holder notes which grid point it should be classified as. This is
done by identifying the grid point that is closest to the test
point. Then, the user opens the app and sends a WAI request
to the server to which the server replies with the estimated grid
point. The estimated grid point is noted and compared with the
grid point it should be classified as. All of the selected test
points but two were closer to different reference points. Upon
completion of the test in sixty-six percent of the test points
were correctly labeled, nine percent were labelled to be at the
next reference point and 5.5 percent were labelled to be two
grid points away by the KNN classifier. The Bayesian

classifier correctly predicted for 18% of the test points only.
The whole summary of the results is shown in figure 3and
figure 4. At each of the selected test point, we run the find
direction feature to different destinations. The system was
100% accurate in finding the shortest path. However, because
it had to estimate the current position and that was about 66%
accurate some mistakes in the starting position (source node)
were seen.

Figure 3: Accuracy of the Bayesian classifier

Figure 4: Accuracy of the kNN classifier

IV. CONCLUSION
We proposed a method for positioning and navigation that

can be applied indoors. Results show that kNN classifier
achieves an accuracy of 0.75 m (position predicted as the
closest reference point with a reference point separation of 1.5
m) 66% of the time and an accuracy of 1.5 m (position
predicted as the second closest reference point) 9% of the time.
The kNN classifier outperformed the Gaussian naïve Bayes
which achieved an accuracy of 0.75m only 17% of the time. It
was also noted that, reception of strong signals over wide areas
causes the degradation of performance by yielding
indistinguishable RSSI vectors at consecutive reference points.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080107
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

229

REFERENCES

[1] M. A. Al-Ammarz, S. Alhadhrami, A. Al-Salman, A. Alarifiy, H. S. Al-

Khalifa, A. Alnafessahy and M. Alsalehy, "Comparative Survey of
Indoor Positioning Technologies, Techniques, and Algorithms," in

International Conference on Cyberworlds, Santander, 2014.

[2] D. R. Mautz, "Indoor Positioning Technologies," 2012.
[3] R. O. Duda, P. E. Hart and D. G. Stork, "Maximum likelihood and

Bayesian estimation," in Pattern Classification, New York, Wiley -

Interscience, 2001, pp. 84 - 140.
[4] S. He and S.-H. G. Chan, "Wi-Fi Fingerprint-based Indoor Positioning:

Recent Advances and Comparisons," IEEE Communications Surveys &

Tutorials, vol. 18, no. 1, pp. 466 - 490, 2015.
[5] B. Hu, "Wi-Fi Based Indoor Positioning System Using Smartphones,"

2013.

[6] L. Jiang, "A WLAN Fingerprinting Based Indoor Localization
Technique," Lincoln, USA, 2012.

[7] M. A. Quyum, "Guidelines for Indoor Positioning," 2013.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Dijkstra's
Algorithm," in Introduction to Algorithms, Massachusetts, The MIT

Press, 2009, pp. 658-662.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080107
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

230

