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Abstract—The increasing demand for accurate and affordable 

indoor positioning has caused the increase in research to achieve 

it. Although Global Satellite Positioning Systems have acceptable 

accuracy outdoors, they do not have acceptable accuracy indoors. 

This led to researchers exploring different systems for indoor 

positioning. This paper implements an indoor navigation system 

using fingerprinting. It compares the accuracy of the 

deterministic kNN algorithm and probabilistic Naïve Bayes 

algorithm for positioning. We also develop a database table that 

can be used to give directions. A variant of the Dijkstra’s shortest 

path algorithm is used to find nodes on the shortest path from a 

source node to a destination node on a server. The source node is 

determined by using the positioning system developed and the 

destination node is inputted by the user. 

Keywords—Fingerprint, KNN algorithm, Navigation Systems, 

Positioning techniques.   

I. INTRODUCTION 

Nowadays, most mobile applications are location aware. 
Location aware applications have been used for navigation, 
improving search results and geo-fencing. Most of the location 
aware applications use Global Positioning System (GPS). GPS 
is a navigation system that uses 24 US satellites scattered all 
over space to provide worldwide coverage. A smartphone 
equipped with a GPS receiver uses data from 3 of GPS 
satellites to determine its longitude and latitude. Nonetheless, 
GPS is well not suited for indoor use due mainly to the high 
degradation of signals from satellites when indoors. Thus, 
indoor positioning systems based on Bluetooth, Zigbee and 
WiFi have been proposed by different researchers [1] [2]. In 
this paper, we build a WiFi based indoor positioning system 
using a technique called fingerprinting [3], [4]. 

Bin Hu [5] developed a smartphone WiFi based indoor 
positioning system using smart phones. He developed the 
client side application on Android software platform, and the 
server side application using Apache Tomcat web server and 
Microsoft SQL Server database. The smartphone application 
he developed collects RSSI data and sends it to the Apache 
Tomcat server, Apache in turn saves the data to the SQL 
database. Later when a user requests location the database 
entries are used to estimate the user location. The estimated 
location is sent to the smartphone via the Apache Tomcat 
server. He used a custom made algorithm to estimate location.  

Landu Jiang [6] developed a Wi-Fi based indoor 
localization technique based on fingerprinting. In his 
approach, he uses temporal data in addition to spatial data to 
estimate location. That is, the algorithm he developed not only 
uses RSSI values at this instant but also use values in the near 
past. Therefore, his algorithm does not consider mere points 

rather it considers tracking lines which contain a prescribed 
number of points. He evaluated the system using 10 tracking 
lines and achieved a 5% average increase in accuracy 
compared to all other RSSI based indoor positioning systems. 

Abdul Quyum [7] developed a Wi-Fi based indoor 

positioning. To mitigate Wi-Fi RSSI fluctuations he used 

particle filters. During his investigation, he also discovered 

that collecting calibration data in all directions can bring about 

better performance. 

II. SYSTEM DESIGN 

In fingerprinting, a radio map of the building is built by 
surveying the area for which indoor positioning is desired first. 
Then, the radio map is used to train a pattern recognition 
model. The trained pattern recognition model is saved and later 
used to estimate the position of target devices. The stage in 
which radio map is built is called offline (calibration) phase. 
After the pattern recognition model is built, the target device 
sends the RSSI values it sees to a server which uses the trained 
classifier to predict the position of the target device. The access 
points used were one TP-Link TL-WA901N and two TP-Link 
TL-WA801N. The network shown in Figure 1 was setup. 
Then, we used an RSSI data collection Android application we 
developed to collect RSSI data. The Android application 
collects RSSI data automatically and prompts the data 
collecting personnel for a label of the current location. It then 
forwards the RSSI data and label to a data collection server 
running on the Raspberry Pi. The data collection server 
receives the RSSI values and the labels and adds it as row to a 
file. We collected data at 51 reference points the second floor 
of Block 21 in Addis Ababa Science and Technology 
University. The app does not just send the set of RSSI values 
of WiFi signals it detected. It sends which RSSI value was 
detected from which access point. The wireless access points 
are identified by their MAC address. The selected reference 
points are shown in Figure 2. The data collection server is 
given a list the MAC addresses of the wireless access points 
that will be used for positioning. Using this list, the location 
server filters out entries for access points that will not be used 
for positioning. When data has been collected for all reference 
points, the server is stopped and it saves all the data it collected 
in a Numpy compressed array format (.npz). Numpy is a 
popular Python library for scientific computing. Seventy 
rounds of data collection were performed thus giving 70 RSSI 
vectors for each reference point. 
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Figure 1Architecutre of the proposed positioning system 

 

Figure 2: Locations of selected reference points and access points 

The data in npz file which will be used to train a classifier. 
The classifier will then be used to estimate the position of 
target devices during the positioning phase. The Python library 
sklearn (sci-kit learn) was used to train the pattern recognition 
model. First, a k-Nearest Neighbors classifier was trained. 
Then, the classifier was stored to a file using a persistence 
model. A module called joblib was used for model persistence. 
The classifier used was the k-Nearest Neighbors (KNN) 
algorithm with k equal to 3. A Gaussian Naïve Bayes classifier 
was also trained and tested on the system. This completes the 
calibration phase. In the positioning phase, the target device 
scans for WiFi networks, collects RSSI and MAC address data, 
sends it to a location server and waits for the server’s response. 
The server receives the data and loads the trained classifier. 
The classifier is then used to estimate the position. The 
classifier is fed the RSSI value for each access point used for 
positioning and outputs a reference point number. The 
reference point numbers and their corresponding coordinates 
are stored in a MySQL database. The location server queries 
the database to determine the coordinates of the predicted 
reference point on the floor. The coordinates are then 
converted to their corresponding pixel locations in the floor 
map image. The pixel coordinates of the estimated location in 
the original floor map is then sent to the target device. The 
target device receives this data and sends a request for the floor 
map to the location server. The location server receives this 

request and then transfers the location server to the target 
device. When all of the image is received the target device 
displays the floor map on its screen. The target device, 
however, does not display the floor map image in its original 
size. It scales the image to fit its screen. As it does so it saves 
the scale factor for its width and height. The scale factors are 
used to scale the pixel coordinates received from the location 
server which were the locations in the original image. The 
other thing that our system can do in the positioning phase is 
give directions to a desired location from the current location. 
A lot of the steps on the target device’s side to get directions 
are similar to the steps used to know its location. Similar to the 
location estimation case, the Android application first sends 
the RSSI and MAC address data to the location server. The 
location server first sees the type of the request and determines 
that it is a request for directions to a room. Then, it parses 
important information such as the destination room, RSSI and 
MAC address data. It then feeds the RSSI and MAC address 
data to the trained classifier. The trained classifier returns the 
reference point number of the estimated location. The location 
server queries the MySQL database for the coordinates of the 
reference point number. The MySQL database does not just 
have the rows with reference point number and their 
corresponding coordinates. Rather, it also contains two 
columns: the first one contains a list of the reference point 
numbers of immediate neighbors for each reference point and 
the second one contains distance to each neighbor. These two 
columns are used to build a graph representation of the 
reference points in the graph. A graph representation needs to 
be built from the database entries. We developed a Python 
module to extract the entries of the database and develop an 
adjacency list representation of the graph. The module also has 
an extended implementation of the Dijkstra’s shortest path 
algorithm. After the graph is built, Dijkstra’s algorithm is run 
on the graph which returns the shortest path to the destination 
from the estimated position. The Dijkstra’s algorithm we 
implemented returns the set of consecutive reference points the 
shortest path must pass through. The used variant of Dijkstra’s 
algorithm is described below. The location server queries the 
MySQL database to determine the floor coordinates of each 
reference point in the shortest path, converts the floor 
coordinates to pixel coordinates and forwards it to the target 
device. Then, the location server sends the floor map image to 
the target device. Upon receiving all this information, the 
target device displays the floor map and draws a line between 
every consecutive point in the data it received. 

Dijkstra (Graph, source, destination): 

Set the distance attribute of all nodes to ∞ 

Set the parent attribute of all nodes to NIL 

Set the distance attribute of the source node 

to 0 

Add all the nodes of the graph to a queue Q 

while Q is not empty: 

 u = pop a node from Q 

 for each vertex v adjacent to node u: 

  if v.distance > u.distance + 

weight of edge from u to v: 

   v.distance = u.distance + 

weight of edge from u to v 

   v.parent = u.parent 

u = destination 

path = empty list 

while the parent of u is not NIL: 

 add u to the path list 
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 u = the parent of u 

reverse the path list 

return path 

Algorithm 1: Dijkstra's algorithm [8] 

III. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 
Three access points were fixed in Block 21 of at AASTU. 

The access points were placed in the second floor, third floor 
and the fourth floor. All the access points were connected to a 
switch. Also connected to the switch was a Raspberry Pi. The 
data collection server and the location server were installed in 
the Raspberry Pi. Then, fifty-one points were selected on the 
corridor of the second floor of Block 21. Each of these 
reference points were assigned a label (or a reference point 
number). Consecutive reference points were placed at a 
distance of 1.5m from each other. Initially, the access points 
were placed on the corridors of the 2nd, 3rd and 4th floors, three 
rounds of data collection were carried out with the access 
points located at these locations. However, upon examining the 
collected data we noted that up to 10 consecutive reference 
points had the same set of RSSI values. This is undesirable 
since the classifier will have a hard time in distinguishing 
between the consecutive reference points that have the same 
set of RSSI values. We suspected that the cause of the 
similarity in RSSI values was the availability of a line-of-sight 
path from all the access points to the target device. The 
availability of line-of-sight path means that the set of RSSI 
values received mainly depend on the distance from the access 
points. And a significant change in RSSI value cannot be 
expected in points separated by 1.5 m when LOS path is 
available. Thus, we placed the three access point inside rooms. 
The first was placed in room 202 in the second floor, the 
second was placed in room 304 in the third floor and the last 
one placed in room 402 of the fourth floor. By placing the 
access points in the rooms we made the RSSI from each access 
point not only dependent on the distance from access point but 
also on the number of walls the WiFi signal has to pass 
through. The placement of the access points indoors 
significantly improved the distinguishability of the RSSI 
vectors at consecutive reference points. All subsequent 
experiments were carried out with the access points placed at 
these locations. The locations of selected reference points and 
their and their labels are shown in Figure 2. The locations of 
the access points are also shown in the map. The labels 2nd, 3rd 
and 4th next to the access point symbols in the map show the 
floor the access point is at. The training data was collected with 
a Huawei SCL-U31 phone which runs Android OS. The RSSI 
Collector application was installed in the device. At each 
reference point, seventy sets of RSSI values were collected. To 
test the indoor positioning system, 52 points were selected. 
The Huawei phone was placed at some location. The phone 
holder notes which grid point it should be classified as. This is 
done by identifying the grid point that is closest to the test 
point. Then, the user opens the app and sends a WAI request 
to the server to which the server replies with the estimated grid 
point. The estimated grid point is noted and compared with the 
grid point it should be classified as. All of the selected test 
points but two were closer to different reference points.  Upon 
completion of the test in sixty-six percent of the test points 
were correctly labeled, nine percent were labelled to be at the 
next reference point and 5.5 percent were labelled to be two 
grid points away by the KNN classifier. The Bayesian 

classifier correctly predicted for 18% of the test points only. 
The whole summary of the results is shown in figure 3and 
figure 4. At each of the selected test point, we run the find 
direction feature to different destinations. The system was 
100% accurate in finding the shortest path. However, because 
it had to estimate the current position and that was about 66% 
accurate some mistakes in the starting position (source node) 
were seen. 

 

Figure 3: Accuracy of the Bayesian classifier 

 

Figure 4: Accuracy of the kNN classifier 

IV. CONCLUSION 
We proposed a method for positioning and navigation that 

can be applied indoors. Results show that kNN classifier 
achieves an accuracy of 0.75 m (position predicted as the 
closest reference point with a reference point separation of 1.5 
m) 66% of the time and an accuracy of 1.5 m (position 
predicted as the second closest reference point) 9% of the time. 
The kNN classifier outperformed the Gaussian naïve Bayes 
which achieved an accuracy of 0.75m only 17% of the time. It 
was also noted that, reception of strong signals over wide areas 
causes the degradation of performance by yielding 
indistinguishable RSSI vectors at consecutive reference points.  
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