
Indexing Structures for Range Searching with

Point Objects: A Survey

P. Z. Piah
Department of Computer Science

Kenule Benson Saro-Wiwa Polytechnic

Bori-Rivers State, Nigeria

V. Ejiofor
Department of Computer Science

Nnamdi Azikiwe University

Awka, Nigeria

 P. O. Asagba
Department of Computer Science

University of Port Harcourt

Port Harcourt, Nigeria

K. T. Igulu
Department of Computer Science

Kenule Benson Saro-Wiwa Polytechnic

Bori-Rivers State, Nigeria

Abstract—This paper discusses the various indexing

structures for range queries. Attention is directed to point

objects because of its correlation to tuples of the tables of

relational databases. It discusses the structures in details and

possible ways of implementing them in relational databases. A

special attention is given to structures that are relatively

efficient for range searching in multidimensional space.

Keywords—Range; Searching; Query; Indexing; Structures;

Multidimensional; Geometric Objects

I. INTRODUCTION

Peripherally, it seems that databases have little or nothing in

common with geometry (precisely, computational geometry).

But a deeper look into these two seemingly unrelated

concepts will produce a mapping between them as illustrated

in Table 1. To this end, we regard records or tuples in a

database as points in a space (precisely multi-dimensional).

Queries on the records of the database can be translated to

queries of the points on the multi-dimensional space.

Generally, supposing our interest is to perform queries on k

attributes (columns) of the records in the database, records in

the database are regarded as points in k-dimensional space. A

range query that reports all records whose attribute values lie

between intervals of the database attributes can be translated

to a query of all points within a k-dimensional axis-parallel

volume. In computational geometry parlance, such a query is

called a rectangular range query, or an orthogonal range

query or simply a range query[1].

Table I: Duality of Space and Database

DBMS Computational Geometric

Database Space

Tuples/Records/Rows Points

Attributes Dimensions

Values of attributes Coordinates of dimensions

The main purpose of indexing a table of a database is to

expedite query execution. This is achieved by utilizing the

constraints imposed by a query in order to condense the

number of disk accesses. The biggest challenge research in

database community is to reduce the number of disk accesses

since data cannot persist in the main memory. The quest is to

develop efficient indexing structures. The b-Tree and its

variants are the de facto structures used in most modern

relation databases. Another challenge of the community is

indexing structures for range queries spanning many

attributes. This paper reviews structures that can aid efficient

manipulation of range queries especially in relational

databases utilizing computational geometric techniques. This

paper is organized as follows: section I introduces the paper,

section II discusses query and its various categories, section

III discusses the selected and relevant indexing structures and

section IV concludes our discussion.

II. QUERING (SEARCHING)

A. Queries and Query Types

Relational queries are primarily expressed by operators of the

relational algebra and they operate either with a single table

or span multiple tables [2]. Single table queries restrict, re-

arrange or aggregate the tuples of one relation [3]. A query is

a predicate (x) over the tuples of a relation R. The result set

(RS) of a query is the subset of tuples of R sufficiently satisfy

the query predicate in (1). The result set size is the cardinality

of the result set as given in (2).

RS(R,) = {xR |(x)} (1)

 |RS(R,)| (2)

A restriction query is a predicate (x) on the tuples ‘x’ of a
relation R. A restriction query can be to a point-exact match
query or on some dimension-partial match or partial range
query. A range query is a special case of query with
restrictions on all the dimensions. Reference [4] categorizes
queries into single table queries and multiple table queries.
Multiple table queries specifically join single table queries of
different tables. Single table queries are further categorized
into restriction queries and queries of re-arrangement which
can be sorting, projection , grouping and aggregation. Partial
range query is a type that gives restriction on some
dimensions of the query and some unrestricted. This can be
further categorized as exact-match query or range query.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

635

B. Range Queries

Range queries give restriction on all dimensions (attributes)

of the query. From the geometric perspective, let P be a set of

n points in Ðk (i.e. k dimensional- Ðk= {d1, d2, d3, …, dk }) and

let D be a family of subsets of Ðk
 (i.e.D Ðk). Let ri represent

a range of the ith dimension (ri  di). We call ri an interval

represented by its lower and upper bound (ri =(l,h)). Elements

of D are called ranges (i.e. D ={r1 , r2, …, rk}). Let Δ be

points subsumed by the range set D. Given the above, the

requirement is to build appropriate data structure that

supports range reporting, range count (number of points in

the result set or the cardinality of the result set), emptiness

query (determining if the result set size is not zero) given in

(3), (4) and (5) respectively.

Δ∩P (3)

|Δ∩P| (4)

Δ∩P=Φ or |Δ∩P|=0 (5)

We shall regard an exact point query as a special case of range query

whose intervals are equal values on the various dimensions. i.e. l=h

for all the k dimensions. No two points on the plane have the same

address (no two points have the same x-and y-coordinates for 2-d

space).

III. THE SURVEY

A. Balanced Binary Search Tree (BST)

A BST is a binary tree whose leaves are at the same level.

This usually efficient for range queries in one dimension (one

attribute). Let P = {p1 , p2, . . . , pn} be the given set of points

on the real line. A solution that uses an array is of course also

feasible for 1-D space. However, solution with array

apparently does not give room for efficient update operations

on the set P [1]. This is generally the limitation of array. The

points in the set P are stored in the leaves of the BST. The

internal nodes maintain splitting values to guide the traversal.

Splitting value stored at a node ν is designated xv. By

assumption, the subtree at the left of a node ν contains all the

points smaller than or equal to xv, and all points strictly

greater than xv are stored in the right subtree. To report points

in a range [x:xʹ], we traverse the tree with the lower bound

and upper bound i.e. x and xʹ respectively in BST. Supposing

μ and μʹ be the two leaves where the searches terminate,

respectively. The points in the interval [x:xʹ] are the points

stored in the leaves in-between μ and μʹ, μ and μʹ points

possibly inclusive. Reference [1] summarizes as a theorem :

“Let P be a set of n points in 1-dimensional space. The set P

can be stored in a balanced binary search tree, which uses

S(t)=O(n) storage and has P(t)=O(nlogn) construction time,

such that the points in a query range can be reported in time

Q(t)=O(k+logn), where k is the number of reported points.”

B. Quad-Tree

The quad-tree was one of the early data structures for

rectangle-parallel/orthogonal range searching first mentioned

in [5]. The quad-tree was proposed as a data structure for

composite key. The quad-tree, like kd-tree (subsection C)

splits the space into iso-oriented hyper-planes. Although the

term quad-tree in literatures mainly refers to the 2-d variant

but the concept can be applied to any arbitrary d. The

original work of [5] was principally a multi-dimensional

binary search tree for point data. It must not necessarily be a

balanced tree. Since then, there has been hundreds of

publications dealing with quad-trees. References [6,7,8,9,10]

give a far-reaching synopsis of the various types of quad-

trees and their applications. Reference [11] introduced the

region quad-trees which was based on regular (perfect-equal-

sized) decomposition of the space into 2d subspaces. The

uniform partitioning greatly impact the performance of

searching. Reference [12] proposed the PM quad-tree which

can store polygonal data directly. PM quad-trees divide the

quad-tree regions (and the data objects in them) until they

contain only a small number of polygon edges or vertices.

C. Kd-Tree

Regrettably, the worst-case behavior of quad-trees is quite

bad. Barely a year after, the kd-tree which is an improved

quad-tree was first mentioned by [13]. According to [13], the

k-d-tree is a binary search tree that represents a recursive

subdivision of the universe into subspaces by means of (d-1)-

dimensional hyper-planes. The hyper-planes are iso-oriented,

and their direction interchanges among the d possibilities.

Each splitting must contain at least one point. The Insertion

and searching operations are quite simple and straightforward

but the deletion operation is quite complicated which could

result to reorganization of the sub-trees beneath the deleted

point. The Kd-tree as proposed by [13] is mainly for point

data. The main limitation of the original Kd-tree is its

sensitivity to the order inwhich the points are inserted and

points are strewn all over the universe. In 1979 [14]

introduced the Adaptive Kd-tree. The Adaptive Kd-tree

ameliorates the problems of the original Kd-tree by choosing

a split of almost equal number of points on both sides of the

plane. Splitting is continued recursively until each subspace

holds only a certain number of points. The adaptive k-d-tree

is static in principle; it is apparently difficult to keep the tree

balanced where frequent insertions and deletions is the order.

Adaptive Kd-tree works best if all the data are known

beforehand (static) and if updates are infrequent. By this, the

structure has a bad performance in dynamic cases.

The Bintree due to [15] is another variant of the Kd-tree. This

structure subdivides the universe recursively into d-

dimensional boxes of equal size until each contains only a

certain number of points. Although it is apparent this kind of

partitioning is less adaptive, it has several advantages, such as

the implicit knowledge of the partitioning hyper planes [4].

Other variants of Kd-tree worth mentioning are K-d-B-Trees

due to [16], hB-Trees due to [17,18], Extended Kd-tree due

to [19], BD-Tree due to [20], SKD-Tree due to [21], GBD-

Tree due to [22], LSD-Tree due to [23], KD2B-Tree due to

[24], G-Tree due to [25].

The k-d-B-Trees exhibit a forced split effect, which does not

allow one to give any space utilization guarantees. In worst

case a large amount of pages may be completely empty. The

hB-Trees have a complex organization and extremely

difficult algorithms, since they are a hybrid data structure. In

addition hB-Trees may store several references of a node to

the same child node, which may result in a super linear

growth of the index nodes with respect to the number of

regions in space.The performance of Kd-trees is summarized

in [1] which uses O(n) for storage, O(nlogn) for

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

636

preprocessing and O(√n + k) for rectangular range query

reporting. Where k is the number of points reported. For d-

dimesnsional space, the query time is bounded by O(n1-1/d+k).

Common limitations of the kd-tree and its variants is that for

some distributions and cases no hyper-plane can be found

that splits/partitions the data points evenly and uniformly

[18], they rely on the order of insertion (it’s not appropriate

for ordered data), dead (empty immaterial) spaces are

covered and as such it is not sufficiently adequate for

secondary memory indexing [26].

D. Range Trees

The Range tree was independently proposed by several

researchers [27,28,29,30]. The range trees ameliorate the

query time of a range query at the expense of storage time

(speed and space tradeoff) compared to the Kd-trees. The

range tree is a multi-level/layered structure. It handles the

intervals of the dimensions independently by constructing

canonical structures. The performance as summarized in [1]

uses O(nlogn) for storage, preprocessing time of O(nlogn)

and O(log2n + k) for range query. Where k is the number of

points reported. Experience shows that the query time can be

enhanced utilizing fractional cascading. Reference [28,29]

described an improved query time to O(logn+k) by fractional

cascading. Fractional cascading applies in fact not only to

range trees, but in many situations where many searches are

done with the same search key [1]. Reference [31,32] discuss

this technique in its full granularity. Reference [33]

disscussed the usage of fractional cascading in a dynamic

setting.

Reference [34] described the modified and improved version

of the layered range tree which is the most efficient data

structure for 2-dimensional range queries; he enhanced the

storage to O(nlogn/log logn) while keeping the query time

O(logn+k). Reference [35,36] also verified the optimality of

the modification. If the query range is unbounded to one side

(i.e. [x : x’]×[y : +∞]), then O(logn) query time can be

achieved with only linear space, using a priority search

tree[1]. In higher dimensions the best result for orthogonal

range searching (albeit in theory) is also due to [35] which

proposes a structure for d-dimensional queries with

O(n(logn/log logn)d-1) storage and polylogarithmic query

time. This result is apparently optimal (albeit in theory).

Storage and query time trade-offs are also possible [37, 38].

Reference [39] describes more efficient data structures for

range searching when the points lie on a U×U grid, yielding

query time bounds of O(loglogU +k) or O(√U +k), contingent

on the preprocessing time allowed. The results use data

structures described earlier [40,41]. With respect to general

case, better time bounds can be attained for many

computational geometry problems if the coordinates of the

objects are restricted to lie on grid points. Examples are the

nearest neighbor searching problem [41], point location, and

line segment intersection [42]. For queries unbounded on one

side, priority tree [43], interval trees [44,45] and segment

trees are recommended structures for querying. Since our

focus is on point data, we assume queries are bounded on all

sides and thus we skip the discussion of these unbounded-

based structures in much detail.

E. R-Tree

The R-Tree is due to [46]. It is a height-balanced tree like the

B-Trees. An R-tree corresponds to a hierarchy of nested d-

dimensional intervals (boxes). Each node n of the R-tree

corresponds to a disk page and a d-dimensional interval Id(v).

If v is an interior node then the intervals corresponding to the

descendants vi of n are contained in Id(v). Intervals at the

same tree level may overlap. If v is a leaf node, Id(v) is the d-

dimensional minimum bounding box of the objects stored in

v. For each object in turn, v stores only its Minimum

Bounding Box (MBB) and a reference to the complete object

description. The following are the properties of R-Tree

according to [46].

i. Every node contains between m and M entries unless it

is the root. The lower bound m prevents the

degeneration of trees and ensures an efficient storage

utilization. Whenever the number of a node’s

descendant’s drops below m, the node is deleted and its

descendants are distributed among the sibling nodes

(tree condensation). The upper bound M can be derived

from the fact that each tree node corresponds to exactly

one disk page.

ii. The root node has at least two entries unless it is a leaf.

iii. The R-tree is height-balanced; that is, all leaves are at

the same level. The height of an R-tree is at most

ceiling of logm (N) for N index records (N . 1).

Searching in R-Tree is similar to the B-Tree. R-Trees cannot

give any performance guarantee for the basic operations,

since they do not partition the multidimensional space in

disjoint parts, but allow overlapping rectangles. Successors of

the R-Tree like the R*-Tree [47] and the X-Tree [48] use

complicated algorithms or even introduce buckets of varying

size to minimize overlaps. However, complicated algorithms

cannot overcome this problem in general. Introducing buckets

of varying size may cause the index to degenerate. So the

basic problem of R-Trees still remains.

F. Grid File

The Grid File [49] is a typical representative of an access

method based on hashing. The grid file superimposes a d-

dimensional orthogonal grid on the universe. Because the

grid is not necessarily regular, the resulting cells may be of

different shapes and sizes. A grid directory associates one or

more of these cells with data buckets, which are stored on one

disk page each. Each cell is associated with one bucket, but a

bucket may contain several adjacent cells. Since the directory

may grow large, it is usually kept on secondary storage. To

guarantee that data items are always found with no more than

two disk accesses for exact match queries, the grid itself is

kept in main memory, represented by d one-dimensional

arrays called scales. The grid file suffers from a super linear

growth of the directory even for data that are uniformly

distributed [50]. Grid-files give a two-access-guarantee for

retrieval, but have an extremely bad worst-case behavior for

updates: Inserting a point may result in a non-local split of

the grid and thus require a reorganization of the grid-file.

Furthermore, grid files have problems with dependencies in

the multidimensional data distribution. For linearly dependent

data the grid may require more storage than the tuples stored

in the grid.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

637

G. Bang File

Reference [51] proposed a new structure called the BANG

(Balanced and Nested Grid) file to obtain a better adaption to

given data points. Albeit it differs from the grid file in many

facets. Analogous to the grid file, it partitions the universe

into intervals (boxes). However the difference is that in

BANG file, bucket regions may intersect. This can’t occur in

the regular grid file. Precisely, one can form nonrectangular

bucket regions by taking the geometric difference of two or

more intervals (nesting). To increase storage utilization, it is

possible during insertion to reallocate points between

different buckets. To manage the directory, the BANG file

uses a balanced search tree structure. In combination with the

hash-based partitioning of the universe, the BANG file can

therefore be viewed as a hybrid structure. In order to achieve

a high storage utilization, the BANG file performs spanning

splits that may lead to the displacement of parts of the tree.

As a result, a point search may in the worst case require the

traversal of the entire directory in a depth-first manner. To

address this problem, [52] later proposed different splitting

strategies, including forced splits as used by the k-d-B-tree.

These strategies avoid the spanning problem at the possible

expense of lower storage utilization. Reference [25] made a

similar proposal based on the BD-tree and called the resulting

structure a G-tree (grid tree). The structure differs from the

BD-tree in the way the partitions are mapped into buckets. To

obtain a simpler mapping, the G-tree expenses the minimum

storage utilization that holds for the BD-tree.

H. B-Tree

The B-Tree is due to [53] and its variants are the de-facto

indexing structure for modern relational databases. They

enjoy logarithmic performance of the basic operations of

insertion, delete and exact match query with the exception of

the range query. The performance setback of b-trees is that

they work perfectly for indexing single attribute but

performance deteriorate for multiple attributes. A popular

approach to handling multidimensional search queries

consists of the consecutive application of such single key

structures, one per dimension. Unfortunately, this approach

can be very inefficient [54]. Since each index is traversed

independently of the others, we cannot exploit the possibly

high selectivity in one dimension to narrow down the search

in the remaining dimensions. In general, there is no easy and

obvious way to extend single key structures in order to handle

multidimensional data [4].

Instead of maintaining a single index structure for multiple

attributes key, a total of d (d is the number of attributes of the

table) indexes must be managed and updated upon insertion

and deletion of objects. Also in a range query that requires

these n attributes, the d indexing must be accessed. This is

highly computationally expensive. Also, Multidimensional

searching with several indexes has additive behavior. B-Trees

do not also guarantee physical proximity of tuples and pages

with respect to the dimensions (attributes) [55,56, 57, 58].

I. Multidimensional Access Methods(MAMs)

Loosely speaking, MAMs are set of methods to model spatial

databases (stores spatial objects) for fast access. MAMs are

categorized into Point Access Methods (PAMs) and Spatial

Access Methods (SAMs). PAMs have primarily been

designed to perform spatial searches on point databases (i.e.,

databases that store only points). The points may be

embedded in two or more dimensions, but they do not have a

spatial extension. Spatial access methods, however, manage

extended objects, such as lines, polygons, or even higher-

dimensional polyhedra. In literature, one often finds the term

spatial access method referring to what we call

multidimensional access method. Other terms used for this

purpose also includes spatial index or spatial index structure

[4]. MAMs can also be categorized into primary and

secondary storage structures. Primary memory structures are

used to manage multidimensional data in the main memory

whereas the secondary storage structures are used for

efficient management of large database in the secondary

storage [4].

Reference [4] gives a comprehensive survey of MAMs. This

work focuses on PAMs. Reference [4] also categorizes PAMs

into: Techniques based on hashing (grid files [59], EXCELL

[60], multi-level grid files [61], twin grid files [62] and

multidimensional hashing [63,64]), hierarchical access

methods (K-D-B-Tree [16], LSD-Tree [65], Buddy Tree [66],

BANG File [51], hB-Tree [17], R-Trees [46, 67,68,48]) and

space filling curves in combination with one-dimensional

access methods [69,70,71,72,73]. Another technique is to use

a blend of several one-dimensional methods such as inverted

files [74,75] or bitmap index intersection [76].

 Another paradigm that is quite promising in access methods

is to map the multi-dimensional data onto a one-dimensional

space filling curve (SFC) [77] like the Z-curve or the H-curve

and use the properties of this curve for efficient retrieval. The

thrilling thing about SFCs over the techniques described

before is that they allow a disjoint partitioning of the

multidimensional space (i.e. the partitions of the multi-

dimensional space do not overlap). Another advantage is that

the storage requirements do not degenerate for any data

distribution and also it preserves the spatial proximity of

multidimensional points in one dimensional space. Well

known one-dimensional indexing methods can be applied and

multidimensional search problems are reduced to linear

search problems. Hence multidimensional insertion, deletion

and point query algorithms inherit the complexities of the

corresponding one-dimensional access method. Using B-

Trees as one-dimensional access method allows to give

logarithmic performance guarantees for the basic operations

of insertion, deletion and point queries.

Most approaches based on SFCs were designed for spatial

data, e.g., the zk-d-B-Tree [70], XZ-Ordering [48], DOT

[78].

Reference [79] applies the Hilbert curve for indexing of

multidimensional data and provides algorithms for the basic

operations. It also analyses all basic curves and operations

required for query processing. He provides alternative and

optimized algorithms for the calculation of Z-curve, Gray-

Code-curve, and Hilbert-curve. For the Hilbert-curve he

proposes compressed state diagrams which work for up to 8

dimensions in order to speed up the calculation of the curve.

For higher dimensional universes they are not suitable

anymore due to their size requirements. Performance

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

638

measurements was also carried out with three million

randomly generated data points in 3 to 16 dimensional spaces

with a grid size of 232 points. The page size was adapted to

have the same capacity with respect to the number of records

for each dimensionality. In practice there were 8450+/-150

pages which result in ≈355 tuples per page. He measured data

file creation by random inserts, partial match queries, and

range queries for the Hilbert-curve, the Moores Curve (a

variation of the Hilbert-curve, [80]), Gray-Code-curve, Z-

curve, and Grid-file [59].

The simple design of the Z-curve shows a considerable

advantage over the Hilbert curve and Gray-Code-curve for

both classes of address calculations and retains its cost linear

to the address length with growing dimensionality. His

preliminary measurements also show that the Z-curve is

superior with respect to elapsed time for all measured queries,

being faster by a factor of up to 4 for some cases. However it

was loading up to 15% more pages in some case and ≈10% in

average for these queries.

J. UB-Tree

The UB-tree is due to Rudolf and Markl [82] in their work on

Mistral [81]. The UB-tree as described in [82] is a structure to

index multi-dimensional data with linear complexities i.e.

using a structure that has linear complexities. The UB-Tree

exploits the capabilities of B-tree and Z-curve [79]. Each

multi-dimensional data tuple is transformed into an integer

(Z-address), which is inserted into the B-tree. Each node is a

pair of integer ([:]) denoting the lower bound () and the

upper bound () of a region on the plane respectively. It

suffices to note at this point that the entire plane is regarded

as a Z-region (Super-Z-region). For consistency, all regions

will be regarded as simply Z-region. A leaf of the UB-tree

which is mapped to a Z-region of the curve holds data

(points) or link to the data. Usually, a region mapped to a disk

block (or page). Range query can be handled by retrieval

points in regions that are perfectly subsumed by the query

box or that intersect the query box. Figure 1 shows (a) typical

2-D 8by8 space with 6 Z-regions (b) UB-tree-nodes

corresponding to the z-regions in the space. The inner nodes

of UB-tree recursively divides the space, such that a

hierarchy of nested Z-regions is formed.

The original UB-Tree range query algorithm is exponential

albeit it was ameliorated to a linear time. Reference [82]

argued that the best underling B-Tree for the UB-Tree is the

B+Tree because of the chaining of the leaves for range query.

He also proposed a new split point algorithm which displaces

the redundancy introduced by the split point tree as used in

the original UB-Tree algorithm. Analysis shows that the bit

interleaving operation is negligible and that the UB-Tree and

most structures that utilizes SFC do not suffer of the curse of

dimensionality. The Z-curve is preferred above other SFCs

because the computation of point addresses is pretty cheap.

Figure 1: Z-curve with Z-regions and UB-Tree

The cost of insertion, deletion and point query operations of

the UB-tree is the same as the underlying one-dimensional

index structure (B-tree) but the address of the tuples in

question must first be calculated. The range query is a more

time-intensive operation of the UB-tree. Proposed algorithms

to minimize the cost of range query operation can be found in

[82,84]. Bit-interleaving is used to calculate the Z-address

from the coordinates.

IV. CONCLUDING REMARKS

The paper discusses various structures that are used for
indexing data in databases utilizing computational geometric
techniques. Most of the structures from A to H either are main
memory structures or single attribute structures. Most of the
main memory structures have been extended to secondary
storage structures but suffer of the curse of dimensionality (i.e.
they deteriorate by increase in the number of attributes in the
query). Most structures that utilizes SFCs do not suffer of the
curse of dimensionality. Therefore they are the next
generation indexing structures for OLAP applications that are
characterized with complex queries spanning several
dimensions.

REFERENCES

[1] M. D. Berg, O. Cheong, M. v. Kreveld and M. Overmars,
Computational Geometry: Algorithms and Applications, Verlag Berlin
Heidelberg: Springer, 2008.

[2] E. F. Codd, "A Relational Model of Data for Large Shared Databanks,"
ACM, vol. 13, no. 6, pp. 377-387, 1970.

[3] J. D. Ullman, Database and Knowledge Based Systems Volume I,
Rockville, MD: Computer Science Press, 1988.

[4] O. Gunther and V. Gaede, "Multi-dimensional Acess Methods," ACM
Computing Surveys, vol. 30, no. 2, 1998.

[5] J. L. Bentley and R. A. Finkel, "Quad trees: a data structure for
retrieval on composite keys.," Acta Inform., vol. 4, p. 1–9, 1974.

[6] H. Samet, "An overview of quadtrees, octrees, and related hierarchical
data structures," Theoretical Foundations of Computer Graphics and
CAD. NATO ASI Series F, vol. 40, pp. 51-68, 1988.

[7] H. Samet, Applications of Spatial Data Structure, Addison-Wesley,
1990.

[8] H. Samet, "The Design and Analysis of Spatial Data Structures," MA,
Addison-Wesley, 1990.

[9] H. Samet, "Foundations of Multidimensional and Metric Data
Structures," San Mateo, CA, Morgan Kaufmann, 2006.

[10] S. Aluru, "Quadtrees and octrees," Chapman & Hall/CRC, 2005.

[11] H. Samet, "The Quadtree and related hierarchical data structure," ACM
Computing Survey, vol. 16, no. 2, pp. 187-260, 1984.

[12] H.Samet and R.E. Webber, “Hierarchical data structures,” 2nd
International Electronic Image Week, Nice, vol.2, pp. 577-584, 1985.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

639

[13] J. L. Bentley, "Multidimensional binary search trees used for
associative searching," ACM Communication, vol. 18, p. 509–517,
1975.

[14] J. L. Bentley and J. H. Friedman, "Data structures for range
searching.," ACM Computing Survey, vol. 11, no. 14, p. 397–409, 1979.

[15] M. Tamminen, "Comment on quad- and octrees," ACM, p. 204–212,
1984.

[16] J. Robinson, "The K-D-B-Tree: A Search Structure for large
multidimensional dynamic Indexes," in ACM SIGMOD Conference,
1981.

[17] D. B. Lomet and B. Salzberg, " The hBtree: A multiattribute indexing
method with good guaranteed performance," in ACM Transaction of
Database Systems, 1990.

[18] D. B. Lomet and B. Salzberg, "The hBtree: A robust multiattribute
search structure," in Fifth IEEE International Conference on Data
Engineering, 1989.

[19] T. Matsuyama, L. V. Hao and M. Nagao, "A file organization for
geographic information systems based on spatial proximity," Int'l
journal of Computing Vis. Graph. Image Process, vol. 26, no. 3, pp.
303-318, 1984.

[20] Y. Ohsawa and M. Sakauchi, "BD-tree: A new n-dimensional data
structure with efficient dynamic characteristics," in Ninth World
Computer Congress, IFIP , 1983.

[21] B. C. Ooi, R. Sacks-Davis and K. J. Mcdonell, " Spatial indexing by
binary decomposition and spatial bounding," Information System
Journal, vol. 16, no. 2, pp. 211-237, 1991.

[22] Y. Ohsawa and M. Sakauchi, "A new tree type data structure with
homogeneous node suitable for a very large spatial database," Sixth
IEEE International Conference on Data Engineering, p. 296–303,
1990.

[23] A. Henrich, H.-W. Six and P. Widmayer, "The LSD tree: Spatial access
to multidimensional point and non-point objects," in Fifteenth
International Conference on Very Large Data Bases, 1989.

[24] P. Oosterom, " Reactive data structures for geographic information
systems.," 1990.

[25] A. Kumar, "G-tree: A new data structure for organizing
multidimensional data," IEEE Transaction of Knowledge and. Data
Engineering., vol. 6, no. 2, p. 341–347, 1994.

[26] S. Bachtold and D. A. Kiem, "High-Dimensional Index Structure:
Database support for next decades's in Applications," 2000.

[27] J. L. Bentley, "Decomposable searching problems," Information
Processing Letter, vol. 8, pp. 244-251, 1979.

[28] G. S. Lueker, "A data structure for orthogonal range queries. In Proc.,"
in 19th Annual IEEE Symposium Foundation Computer Science, 1978.

[29] D. E. Willard, "The super-b-tree algorithm," Cambridge, MA, 1979.

[30] D. T. Lee and C. K. Wong, "Quintary trees: A file structure for
multidimensional database systems," ACM Transction Database
System, vol. 5, p. 339–353, 1980.

[31] B. Chazelle and L. J. Guibas, "Fractional cascading: I. A data
structuring technique," Algorithmica, vol. 1, p. 133–162, 1986.

[32] B. Chazelle and L. J. Guibas, "Fractional cascading: II. Applications,"
Algorithmica, vol. 1, p. 163–191, 1986.

[33] K. Mehlhorn and S. Naher, "Dynamic fractional cascading,"
Algorithmica, vol. 5, pp. 215-241, 1990.

[34] B. Chazelle. Filtering search: A new approach to query-answering.
SIAM J. Comput., 15:703–724, 1986.

[35] B. Chazelle, "Lower bounds for orthogonal range searching, II: The
arithmetic model," ACM, vol. 37, p. 439–463, 1990.

[36] B. Chazelle, "Lower bounds for orthogonal range searching, I: The
reporting case," ACM, vol. 37, p. 200–212, 1990.

[37] H. W. Scholten and M. H. Overmars, "General methods for adding
range restrictions to to decomposable searching problems," Symbolic
Computing, vol. 7, pp. 1-10, 1989.

[38] D. E. Willard and G. S. Lueker, "Adding range restriction capability to
dynamic data structures," ACM, vol. 32, p. 597–617, 1985.

[39] M. H. Overmars, "Efficient data structures for range searching on a
grid," Journal of Algorithms, vol. 9, p. 254–275, 1988.

[40] D. E. Willard, "New trie data structures which support very fast search
operations," Computer System Science, vol. 28, pp. 379-394, 1984.

[41] R. G. Karlsson, "Algorithms in a restricted universe.," Waterloo, ON,
1984.

[42] R. G. Karlsson and M. H. Overmars, "Scanline algorithms on a grid.
BIT," BIT, vol. 28, pp. 227-241, 1988.

[43] E. McCreight, "Priority search trees," SIAM J. Comput., vol. 14, no. 1,
pp. 257-275, 1985.

[44] M. Edward, "Efficient algorithms for enumerating intersecting intervals
and rectangles," CSL-80-9, Xerox Palo Alto Res. Center, Palo Alto,
CA, 1980.

[45] H. Edelsbrunner, "Dynamic data structures for orthogonal intersection
queries," Inst. Informationsverarb., Tech. Univ, 1980.

[46] A. Guttman, "R-Trees: A dynamic Index Structure for spatial
Searching," in ACM SIGMOD, 1984.

[47] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger., "The R*-Tree.
An efficient and robust Access Method for Points and Rectangles," in
ACM SIGMOD, 1990.

[48] S. Berchtold, D. Keim and H.-P. Kriegel, "The X-Tree. An Index
Structure for high dimensional Data," in 22nd VLDB, 1996.

[49] J. Nievergelt, H. Hinterberger and K. Sevcik, "The grid file: An
adaptable, symmetric multikey file structure.," in LNCS 123, Springer-
Verlag, ork, Berlin/Heidelberg/New Y, 1981.

[50] M. Regnier, "Analysis of the grid file algorithms," in BIT, 1985.

[51] M. Freeston, "The BANG File: A new Kind of Grid File," in ACM
SIGMOD, San Francisco, CA, 1987.

[52] M. Freeston, "Advances in the design of the BANG file," in Third
International Conference on Foundations of Data Organization and
Algorithms , Berlin/Heidelberg/New York, 1989.

[53] B. Rudolf and E. McCreight, "Organization and Maintenance of Large
Ordered Indexes," ACTA Information, vol. 1, no. 3, pp. 173-189, 1972.

[54] H. P. Kriegel, "Performance comparison of index structures for
multikey retrieval," in ACM SIGMOD International Conference on
Management of Data, 1984.

[55] R. Bayer, "The universal B-tree for multidimensional indexing: general
concepts," in International Conference on Worldwide Computing and
Its Applications, Springer, Berlin, 1997.

[56] M. Franklin, "B+-Trees," wikipedia, 15 06 2015. [Online]. Available:
https://www.cs.umd.edu/class/spring2006/cmsc424/notes/B+-
Trees.ppt. [Accessed 26 06 2015].

[57] D. Comer, "The Ubiquitous B-Tree," ACM Computing Surveys, vol. 11,
no. 2, pp. 121-137, 1979.

[58] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching., Addison Wesley, 1973.

[59] J. Nievergelt, H. Hinterberger and K. Sevcik, "The Grid-File," ACM
TODS, vol. 9, no. 1, pp. 38-71, 1984.

[60] M. Tamminen, "The extendible cell method for closest point
problems," BIT, vol. 22, pp. 27-42, 1982.

[61] K. Hinrichs, " Implementation of the Grid File: Design Concepts and
Experience," BIT, vol. 25, pp. 569-592, 1985.

[62] A. Hutflesz, H. Six and P. Widmayer, "Twin Grid Files: Space
Optimizing Access Schemes.," in ACM SIGMOD, 1988.

[63] C. Faloutsos, "Multi-attribute Hashing Using Gray Codes," in ACM
SIGMOD, 1985.

[64] C. Faloutsos, "Gray Codes for Partial Match and Range Queries," IEEE
TSE, vol. 14, no. 10, pp. 1381-1393, 1988.

[65] A. Hutflesz, H.-W. Six and P. Widmayer, "The LSD-Tree: Spatial
Access to Multidimensional Point and non-Point Objects," in VLDB
Conference, Amsterdam, Netherlands, 1989.

[66] B. Seeger and H. Kriegel, "The Buddy Tree: An Efficient and Robust
Access Methods for Spatial Database Systems," in 14th VLDB
Conference, 1988.

[67] T. Sellis, N. Roussopoulos and C. Faloutsos, "The R+-Tree: A
Dynamic Index for Multi- Dimensional Objects," in 13th VLDB
Conference, Brighton, England, 1987.

[68] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger., "The R*-Tree.
An efficient and robust Access Method for Points and Rectangles," in
ACM SIGMOD, 1990.

[69] H. Tropf and H. Herzog, "Multidimensional Range Search in
Dynamically Balanced Trees," Angewante Informatik, 1983.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

640

[70] J. A. Orenstein and T. Merret, "A Class of Data Structures for
Associate Searching," in ACM SIGMOD-PODS, Portland, Oregon,
1984.

[71] H. Jagadish, "Linear Clustering of Objects with multiple Attributes," in
ACM SIGMOD, 1990.

[72] D. Abel and J. Smith, "A Data Structure and Algorithm based on a
linear Key for a Rectangle Retrieval Problem.," Computer Vision, vol.
24, pp. 1-13, 1983.

[73] C. Faloutsos and S. Roseman, "Fractals for Secondary Key Retrieval,"
in 8th ACM SIGMOD-PODS, 1989.

[74] Y. Lum, "Multi-Attribute Retrieval with Combined indexes," ACM,
vol. 13, no. 14, pp. 660-665, 1970.

[75] D. Haderle, Y. Wang and J. Cheng, "Single Table Access Using
Multiple Indexes Optimization, Execution and Concurrency Control
Techniques," in International Conference on Extending Database
Technology,, 1990.

[76] P. O´Neill and D. Quass, "Improved Query Performance with Variant
Indexes," in ACM SIGMOD, Tucson, Arizona, 1997.

[77] H. Sagan, "Space Filling Curves," Berlin/Heidelberg/New York, 1994.

[78] C. Faloutsos and Y. Rong, "Dot: A spatial access method using
fractals," in Seventh International Conference on Data Engineering,
IEEE Computer Society, Kobe, 1991.

[79] J. Lewder, "The Application of Space-the Storage and Retrieval of
Multi-dimensional Data," London, 1999.

[80] D. Moore, "Hilbert Curve," 2000.

[81] "MISTRAL Project," 1999. [Online]. Available:
http://mistral.informatik.tu-muenchen.de.

[82] V. Markl, "Processing relational queries using a multidimensional
acces technique," Dissertations in Database and Information Systems-
Infix,, vol. 59, 1999.

[83] P.Z. Piah, “An Efficient Range Searching Algorithm in Complex
Geometric Space”, PhD thesis, University of Port Harcourt, 2015.

[84] T. Skopala, M. Kratkyb, J. Pokornya and V. Snaselb, "A new range
query algorithm for Universal B-trees," Information Systems, vol. 31, p.
489–511, 2006.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS010388

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 01, January-2016

641

