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Abstract—This paper discusses the various indexing 

structures for range queries. Attention is directed to point 

objects because of its correlation to tuples of the tables of 

relational databases. It discusses the structures in details and 

possible ways of implementing them in relational databases. A 

special attention is given to structures that are relatively 

efficient for range searching in multidimensional space. 

Keywords—Range; Searching; Query; Indexing; Structures; 

Multidimensional; Geometric Objects 

I.  INTRODUCTION  

Peripherally, it seems that databases have little or nothing in 

common with geometry (precisely, computational geometry). 

But a deeper look into these two seemingly unrelated 

concepts will produce a mapping between them as illustrated 

in Table 1. To this end, we regard records or tuples in a 

database as points in a space (precisely multi-dimensional). 

Queries on the records of the database can be translated to 

queries of the points on the multi-dimensional space. 

Generally, supposing our interest is to perform queries on k 

attributes (columns) of the records in the database, records in 

the database are regarded as points in k-dimensional space. A 

range query that reports all records whose attribute values lie 

between intervals of the database attributes can be translated 

to a query of all points within a k-dimensional axis-parallel 

volume. In computational geometry parlance, such a query is 

called a rectangular range query, or an orthogonal range 

query or simply a range query[1]. 
 

Table I: Duality of Space and Database 

DBMS Computational Geometric  

Database Space 

Tuples/Records/Rows Points 

Attributes Dimensions 

Values of attributes Coordinates of dimensions 

 

The main purpose of indexing a table of a database is to 

expedite query execution. This is achieved by utilizing the 

constraints imposed by a query in order to condense the 

number of disk accesses. The biggest challenge research in 

database community is to reduce the number of disk accesses 

since data cannot persist in the main memory. The quest is to 

develop efficient indexing structures. The b-Tree and its 

variants are the de facto structures used in most modern 

relation databases. Another challenge of the community is 

indexing structures for range queries spanning many 

attributes. This paper reviews structures that can aid efficient 

manipulation of range queries especially in relational 

databases utilizing computational geometric techniques. This 

paper is organized as follows: section I introduces the paper, 

section II discusses query and its various categories, section 

III discusses the selected and relevant indexing structures and 

section IV concludes our discussion.  

II. QUERING (SEARCHING) 

A. Queries and Query Types 

Relational queries are primarily expressed by operators of the 

relational algebra and they operate either with a single table 

or span multiple tables [2]. Single table queries restrict, re-

arrange or aggregate the tuples of one relation [3]. A query is 

a predicate (x) over the tuples of a relation R. The result set 

(RS) of a query is the subset of tuples of R sufficiently satisfy 

the query predicate in (1). The result set size is the cardinality 

of the result set as given in (2). 

 

RS(R,) = {xR |(x)}                     (1) 

         |RS(R,)|                                         (2) 
 

A restriction query is a predicate (x) on the tuples ‘x’ of a 
relation R. A restriction query can be to a point-exact match 
query or on some dimension-partial match or partial range 
query. A range query is a special case of query with 
restrictions on all the dimensions. Reference [4] categorizes 
queries into single table queries and multiple table queries. 
Multiple table queries specifically join single table queries of 
different tables. Single table queries are further categorized 
into restriction queries and queries of re-arrangement which 
can be sorting, projection , grouping and aggregation. Partial 
range query is a type that gives restriction on some 
dimensions of the query and some unrestricted. This can be 
further categorized as exact-match query or range query.   
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B. Range Queries 

Range queries give restriction on all dimensions (attributes) 

of the query. From the geometric perspective, let P be a set of 

n points in Ðk (i.e. k dimensional- Ðk= {d1, d2, d3, …, dk }) and 

let D be a family of subsets of Ðk
 ( i.e.D Ðk). Let ri represent 

a range of the ith dimension (ri  di). We call ri an interval 

represented by its lower and upper bound (ri =(l,h)). Elements 

of D are called ranges (i.e. D ={r1 , r2, …, rk}). Let Δ be 

points subsumed by the range set D. Given the above, the 

requirement is to build appropriate data structure that 

supports range reporting, range count (number of points in 

the result set or the cardinality of the result set), emptiness 

query (determining if the result set size is not zero) given in 

(3), (4) and (5) respectively. 

 
Δ∩P                                                (3) 

|Δ∩P|                                        (4) 

Δ∩P=Φ or |Δ∩P|=0                       (5) 
 

We shall regard an exact point query as a special case of range query 

whose intervals are equal values on the various dimensions. i.e. l=h 

for all the k dimensions. No two points on the plane have the same 

address (no two points have the same x-and y-coordinates for 2-d 

space).                                                                                         
                                                                 

III. THE SURVEY 

A. Balanced Binary Search Tree (BST) 

A BST is a binary tree whose leaves are at the same level. 

This usually efficient for range queries in one dimension (one 

attribute). Let P = {p1 , p2, . . . , pn} be the given set of points 

on the real line. A solution that uses an array is of course also 

feasible for 1-D space. However, solution with array 

apparently does not give room for efficient update operations 

on the set P [1]. This is generally the limitation of array. The 

points in the set P are stored in the leaves of the BST. The 

internal nodes maintain splitting values to guide the traversal. 

Splitting value stored at a node ν is designated xv. By 

assumption, the subtree at the left of a node ν contains all the 

points smaller than or equal to xv, and all points strictly 

greater than xv are stored in the right subtree. To report points 

in a range [x:xʹ], we traverse the tree with the lower bound 

and upper bound i.e. x and xʹ respectively in BST. Supposing 

μ and μʹ be the two leaves where the searches terminate, 

respectively. The points in the interval [x:xʹ] are the points 

stored in the leaves in-between μ and μʹ,   μ and μʹ points 

possibly inclusive. Reference [1] summarizes as a theorem : 

“Let P be a set of n points in 1-dimensional space. The set P 

can be stored in a balanced binary search tree, which uses 

S(t)=O(n) storage and has P(t)=O(nlogn) construction time, 

such that the points in a query range can be reported in time 

Q(t)=O(k+logn), where k is the number of reported points.” 
 

 

B.  Quad-Tree 

The quad-tree was one of the early data structures for 

rectangle-parallel/orthogonal range searching first mentioned 

in [5]. The quad-tree was proposed as a data structure for 

composite key. The quad-tree, like kd-tree (subsection C) 

splits the space into iso-oriented hyper-planes. Although the 

term quad-tree in literatures mainly refers to the 2-d variant 

but the concept can be applied to any arbitrary d.  The 

original work of [5] was principally a multi-dimensional 

binary search tree for point data. It must not necessarily be a 

balanced tree. Since then, there has been hundreds of 

publications dealing with quad-trees. References [6,7,8,9,10] 

give a far-reaching synopsis of the various types of quad-

trees and their applications. Reference [11] introduced the 

region quad-trees which was based on regular (perfect-equal-

sized) decomposition of the space into 2d subspaces.  The 

uniform partitioning greatly impact the performance of 

searching. Reference [12] proposed the PM quad-tree which 

can store polygonal data directly. PM quad-trees divide the 

quad-tree regions (and the data objects in them) until they 

contain only a small number of polygon edges or vertices.  
 

C. Kd-Tree 

Regrettably, the worst-case behavior of quad-trees is quite 

bad. Barely a year after, the kd-tree which is an improved 

quad-tree was first mentioned by [13]. According to [13], the 

k-d-tree is a binary search tree that represents a recursive 

subdivision of the universe into subspaces by means of (d-1)-

dimensional hyper-planes. The hyper-planes are iso-oriented, 

and their direction interchanges among the d possibilities. 

Each splitting must contain at least one point. The Insertion 

and searching operations are quite simple and straightforward 

but the deletion operation is quite complicated which could 

result to reorganization of the sub-trees beneath the deleted 

point. The Kd-tree as proposed by [13] is mainly for point 

data. The main limitation of the original Kd-tree is its 

sensitivity to the order inwhich the points are inserted and 

points are strewn all over the universe. In 1979 [14] 

introduced the Adaptive Kd-tree. The Adaptive Kd-tree 

ameliorates the problems of the original Kd-tree by choosing 

a split of almost equal number of points on both sides of the 

plane. Splitting is continued recursively until each subspace 

holds only a certain number of points. The adaptive k-d-tree 

is static in principle; it is apparently difficult to keep the tree 

balanced where frequent insertions and deletions is the order. 

Adaptive Kd-tree works best if all the data are known 

beforehand (static) and if updates are infrequent. By this, the 

structure has a bad performance in dynamic cases.  

The Bintree due to [15] is another variant of the Kd-tree. This 

structure subdivides the universe recursively into d-

dimensional boxes of equal size until each contains only a 

certain number of points. Although it is apparent this kind of 

partitioning is less adaptive, it has several advantages, such as 

the implicit knowledge of the partitioning hyper planes [4].  

Other variants of Kd-tree worth mentioning are K-d-B-Trees 

due to [16], hB-Trees due to [17,18],  Extended Kd-tree due 

to [19], BD-Tree due to [20], SKD-Tree due to [21], GBD-

Tree due to [22], LSD-Tree due to  [23], KD2B-Tree due to 

[24], G-Tree due to [25]. 

The k-d-B-Trees exhibit a forced split effect, which does not 

allow one to give any space utilization guarantees. In worst 

case a large amount of pages may be completely empty. The 

hB-Trees have a complex organization and extremely 

difficult algorithms, since they are a hybrid data structure. In 

addition hB-Trees may store several references of a node to 

the same child node, which may result in a super linear 

growth of the index nodes with respect to the number of 

regions in space.The performance of Kd-trees is summarized 

in [1] which uses O(n) for storage, O(nlogn) for 
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preprocessing and O(√n + k) for rectangular range query 

reporting. Where k is the number of  points reported. For d-

dimesnsional space, the query time is bounded by O(n1-1/d+k).  

Common limitations of the kd-tree and its variants is that for 

some distributions and cases no hyper-plane can be found 

that splits/partitions the data points evenly and uniformly 

[18], they rely on the order of insertion (it’s not appropriate 

for ordered data), dead (empty immaterial) spaces are 

covered and as such it is not sufficiently adequate for 

secondary memory indexing [26]. 
 

D. Range Trees 

The Range tree was independently proposed by several 

researchers [27,28,29,30]. The range trees ameliorate the 

query time of a range query at the expense of storage time 

(speed and space tradeoff) compared to the Kd-trees. The 

range tree is a multi-level/layered structure. It handles the 

intervals of the dimensions independently by constructing 

canonical structures. The performance as summarized in [1] 

uses O(nlogn) for storage, preprocessing time of O(nlogn) 

and O(log2n + k) for range query. Where k is the number of 

points reported. Experience shows that the query time can be 

enhanced utilizing fractional cascading.  Reference [28,29] 

described an improved query time to O(logn+k) by fractional 

cascading. Fractional cascading applies in fact not only to 

range trees, but in many situations where many searches are 

done with the same search key [1].  Reference [31,32] discuss 

this technique in its full granularity. Reference [33] 

disscussed the usage of fractional cascading in a dynamic 

setting. 

Reference [34] described the modified and improved version 

of the layered range tree which is the most efficient data 

structure for 2-dimensional range queries; he enhanced the 

storage to O(nlogn/log logn) while keeping the query time 

O(logn+k). Reference [35,36] also verified the optimality of 

the modification. If the query range is unbounded to one side 

( i.e. [x : x’]×[y : +∞]), then O(logn) query time can be 

achieved with only linear space, using a priority search 

tree[1]. In higher dimensions the best result for orthogonal 

range searching (albeit in theory) is also due to [35] which 

proposes a structure for d-dimensional queries with 

O(n(logn/log logn)d-1) storage and polylogarithmic query 

time. This result is apparently optimal (albeit in theory). 

Storage and query time trade-offs are also possible [37, 38]. 
 

Reference [39] describes more efficient data structures for 

range searching when the points lie on a U×U grid, yielding 

query time bounds of O(loglogU +k) or O(√U +k), contingent 

on the preprocessing time allowed. The results use data 

structures described earlier [40,41]. With respect to general 

case, better time bounds can be attained for many 

computational geometry problems if the coordinates of the 

objects are restricted to lie on grid points. Examples are the 

nearest neighbor searching problem [41], point location, and 

line segment intersection [42]. For queries unbounded on one 

side, priority tree [43], interval trees [44,45] and segment 

trees are recommended structures for querying. Since our 

focus is on point data, we assume queries are bounded on all 

sides and thus we skip the discussion of these unbounded-

based structures in much detail.  

E. R-Tree 

The R-Tree is due to [46]. It is a height-balanced tree like the 

B-Trees. An R-tree corresponds to a hierarchy of nested d-

dimensional intervals (boxes). Each node n of the R-tree 

corresponds to a disk page and a d-dimensional interval Id(v). 

If v is an interior node then the intervals corresponding to the 

descendants vi of n are contained in Id(v). Intervals at the 

same tree level may overlap. If v is a leaf node, Id(v) is the d-

dimensional minimum bounding box of the objects stored in 

v. For each object in turn, v stores only its Minimum 

Bounding Box (MBB) and a reference to the complete object 

description. The following are the properties of R-Tree 

according to [46]. 
 

i. Every node contains between m and M entries unless it 

is the root. The lower bound m prevents the 

degeneration of trees and ensures an efficient storage 

utilization. Whenever the number of a node’s 

descendant’s drops below m, the node is deleted and its 

descendants are distributed among the sibling nodes 

(tree condensation). The upper bound M can be derived 

from the fact that each tree node corresponds to exactly 

one disk page.  

ii. The root node has at least two entries unless it is a leaf.  

iii. The R-tree is height-balanced; that is, all leaves are at 

the same level. The height of an R-tree is at most 

ceiling of logm (N) for N index records (N . 1). 
 

Searching in R-Tree is similar to the B-Tree. R-Trees cannot 

give any performance guarantee for the basic operations, 

since they do not partition the multidimensional space in 

disjoint parts, but allow overlapping rectangles. Successors of 

the R-Tree like the R*-Tree [47] and the X-Tree [48] use 

complicated algorithms or even introduce buckets of varying 

size to minimize overlaps. However, complicated algorithms 

cannot overcome this problem in general. Introducing buckets 

of varying size may cause the index to degenerate. So the 

basic problem of R-Trees still remains. 

F. Grid File 

The Grid File [49] is a typical representative of an access 

method based on hashing. The grid file superimposes a d-

dimensional orthogonal grid on the universe. Because the 

grid is not necessarily regular, the resulting cells may be of 

different shapes and sizes. A grid directory associates one or 

more of these cells with data buckets, which are stored on one 

disk page each. Each cell is associated with one bucket, but a 

bucket may contain several adjacent cells. Since the directory 

may grow large, it is usually kept on secondary storage. To 

guarantee that data items are always found with no more than 

two disk accesses for exact match queries, the grid itself is 

kept in main memory, represented by d one-dimensional 

arrays called scales. The grid file suffers from a super linear 

growth of the directory even for data that are uniformly 

distributed [50]. Grid-files give a two-access-guarantee for 

retrieval, but have an extremely bad worst-case behavior for 

updates: Inserting a point may result in a non-local split of 

the grid and thus require a reorganization of the grid-file. 

Furthermore, grid files have problems with dependencies in 

the multidimensional data distribution. For linearly dependent 

data the grid may require more storage than the tuples stored 

in the grid. 
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G. Bang File 

Reference [51] proposed a new structure called the BANG 

(Balanced and Nested Grid) file to obtain a better adaption to 

given data points. Albeit it differs from the grid file in many 

facets. Analogous to the grid file, it partitions the universe 

into intervals (boxes). However the difference is that in 

BANG file, bucket regions may intersect. This can’t occur in 

the regular grid file. Precisely, one can form nonrectangular 

bucket regions by taking the geometric difference of two or 

more intervals (nesting). To increase storage utilization, it is 

possible during insertion to reallocate points between 

different buckets. To manage the directory, the BANG file 

uses a balanced search tree structure. In combination with the 

hash-based partitioning of the universe, the BANG file can 

therefore be viewed as a hybrid structure. In order to achieve 

a high storage utilization, the BANG file performs spanning 

splits that may lead to the displacement of parts of the tree. 

As a result, a point search may in the worst case require the 

traversal of the entire directory in a depth-first manner. To 

address this problem, [52] later proposed different splitting 

strategies, including forced splits as used by the k-d-B-tree. 

These strategies avoid the spanning problem at the possible 

expense of lower storage utilization. Reference [25] made a 

similar proposal based on the BD-tree and called the resulting 

structure a G-tree (grid tree). The structure differs from the 

BD-tree in the way the partitions are mapped into buckets. To 

obtain a simpler mapping, the G-tree expenses the minimum 

storage utilization that holds for the BD-tree. 
 

H. B-Tree 

The B-Tree is due to [53] and its variants are the de-facto 

indexing structure for modern relational databases. They 

enjoy logarithmic performance of the basic operations of 

insertion, delete and exact match query with the exception of 

the range query. The performance setback of b-trees is that 

they work perfectly for indexing single attribute but 

performance deteriorate for multiple attributes. A popular 

approach to handling multidimensional search queries 

consists of the consecutive application of such single key 

structures, one per dimension. Unfortunately, this approach 

can be very inefficient [54]. Since each index is traversed 

independently of the others, we cannot exploit the possibly 

high selectivity in one dimension to narrow down the search 

in the remaining dimensions. In general, there is no easy and 

obvious way to extend single key structures in order to handle 

multidimensional data [4]. 

Instead of maintaining a single index structure for multiple 

attributes key, a total of d (d is the number of attributes of the 

table) indexes must be managed and updated upon insertion 

and deletion of objects. Also in a range query that requires 

these n attributes, the d indexing must be accessed. This is 

highly computationally expensive.  Also, Multidimensional 

searching with several indexes has additive behavior. B-Trees 

do not also guarantee physical proximity of tuples and pages 

with respect to the dimensions (attributes) [55,56, 57, 58]. 

I. Multidimensional Access Methods(MAMs) 

Loosely speaking, MAMs are set of methods to model spatial 

databases (stores spatial objects) for fast access. MAMs are 

categorized into Point Access Methods (PAMs) and Spatial 

Access Methods (SAMs). PAMs have primarily been 

designed to perform spatial searches on point databases (i.e., 

databases that store only points). The points may be 

embedded in two or more dimensions, but they do not have a 

spatial extension. Spatial access methods, however, manage 

extended objects, such as lines, polygons, or even higher-

dimensional polyhedra. In literature, one often finds the term 

spatial access method referring to what we call 

multidimensional access method. Other terms used for this 

purpose also includes spatial index or spatial index structure 

[4]. MAMs can also be categorized into primary and 

secondary storage structures. Primary memory structures are 

used to manage multidimensional data in the main memory 

whereas the secondary storage structures are used for 

efficient management of large database in the secondary 

storage [4]. 

Reference [4] gives a comprehensive survey of MAMs. This 

work focuses on PAMs. Reference [4] also categorizes PAMs 

into: Techniques based on hashing (grid files [59], EXCELL 

[60], multi-level grid files [61], twin grid files [62] and 

multidimensional hashing  [63,64]), hierarchical access 

methods (K-D-B-Tree [16], LSD-Tree [65], Buddy Tree [66], 

BANG File [51], hB-Tree  [17], R-Trees [46, 67,68,48]) and 

space filling curves in combination with one-dimensional 

access methods [69,70,71,72,73]. Another technique is to use 

a blend of several one-dimensional methods such as inverted 

files [74,75] or bitmap index intersection [76]. 

 Another paradigm that is quite promising in access methods 

is to map the multi-dimensional data onto a one-dimensional 

space filling curve (SFC) [77] like the Z-curve or the H-curve 

and use the properties of this curve for efficient retrieval. The 

thrilling thing about SFCs over the techniques described 

before is that they allow a disjoint partitioning of the 

multidimensional space (i.e. the partitions of the multi-

dimensional space do not overlap). Another advantage is that 

the storage requirements do not degenerate for any data 

distribution and also it preserves the spatial proximity of 

multidimensional points in one dimensional space. Well 

known one-dimensional indexing methods can be applied and 

multidimensional search problems are reduced to linear 

search problems. Hence multidimensional insertion, deletion 

and point query algorithms inherit the complexities of the 

corresponding one-dimensional access method. Using B-

Trees as one-dimensional access method allows to give 

logarithmic performance guarantees for the basic operations 

of insertion, deletion and point queries. 

Most approaches based on SFCs were designed for spatial 

data, e.g., the zk-d-B-Tree [70], XZ-Ordering [48], DOT 

[78]. 

 

Reference [79] applies the Hilbert curve for indexing of 

multidimensional data and provides algorithms for the basic 

operations. It also analyses all basic curves and operations 

required for query processing. He provides alternative and 

optimized algorithms for the calculation of Z-curve, Gray-

Code-curve, and Hilbert-curve. For the Hilbert-curve he 

proposes compressed state diagrams which work for up to 8 

dimensions in order to speed up the calculation of the curve. 

For higher dimensional universes they are not suitable 

anymore due to their size requirements. Performance 
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measurements was also carried out with three million 

randomly generated data points in 3 to 16 dimensional spaces 

with a grid size of 232 points. The page size was adapted to 

have the same capacity with respect to the number of records 

for each dimensionality. In practice there were 8450+/-150 

pages which result in ≈355 tuples per page. He measured data 

file creation by random inserts, partial match queries, and 

range queries for the Hilbert-curve, the Moores Curve (a 

variation of the Hilbert-curve, [80]), Gray-Code-curve, Z-

curve, and Grid-file [59]. 

The simple design of the Z-curve shows a considerable 

advantage over the Hilbert curve and Gray-Code-curve for 

both classes of address calculations and retains its cost linear 

to the address length with growing dimensionality. His 

preliminary measurements also show that the Z-curve is 

superior with respect to elapsed time for all measured queries, 

being faster by a factor of up to 4 for some cases. However it 

was loading up to 15% more pages in some case and ≈10% in 

average for these queries. 

J. UB-Tree 

The UB-tree is due to Rudolf and Markl [82] in their work on 

Mistral [81]. The UB-tree as described in [82] is a structure to 

index multi-dimensional data with linear complexities i.e. 

using a structure that has linear complexities. The UB-Tree 

exploits the capabilities of B-tree and Z-curve [79]. Each 

multi-dimensional data tuple is transformed into an integer 

(Z-address), which is inserted into the B-tree. Each node is a 

pair of integer ([:]) denoting the lower bound () and the 

upper bound () of a region on the plane respectively. It 

suffices to note at this point that the entire plane is regarded 

as a Z-region (Super-Z-region). For consistency, all regions 

will be regarded as simply Z-region. A leaf of the UB-tree 

which is mapped to a Z-region of the curve holds data 

(points) or link to the data. Usually, a region mapped to a disk 

block (or page). Range query can be handled by retrieval 

points in regions that are perfectly subsumed by the query 

box or that intersect the query box. Figure 1 shows (a) typical 

2-D 8by8 space with 6 Z-regions (b) UB-tree-nodes 

corresponding to the z-regions in the space. The inner nodes 

of UB-tree recursively divides the space, such that a 

hierarchy of nested Z-regions is formed. 

 

The original UB-Tree range query algorithm is exponential 

albeit it was ameliorated to a linear time. Reference [82] 

argued that the best underling B-Tree for the UB-Tree is the 

B+Tree because of the chaining of the leaves for range query. 

He also proposed a new split point algorithm which displaces 

the redundancy introduced by the split point tree as used in 

the original UB-Tree algorithm. Analysis shows that the bit 

interleaving operation is negligible and that the UB-Tree and 

most structures that utilizes SFC do not suffer of the curse of 

dimensionality. The Z-curve is preferred above other SFCs 

because the computation of point addresses is pretty cheap.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1: Z-curve with Z-regions and UB-Tree 

The cost of insertion, deletion and point query operations of 

the UB-tree is the same as the underlying one-dimensional 

index structure (B-tree) but the address of the tuples in 

question must first be calculated. The range query is a more 

time-intensive operation of the UB-tree. Proposed algorithms 

to minimize the cost of range query operation can be found in 

[82,84]. Bit-interleaving is used to calculate the Z-address 

from the coordinates. 
 

IV. CONCLUDING REMARKS 

The paper discusses various structures that are used for 
indexing data in databases utilizing computational geometric 
techniques. Most of the structures from A to H either are main 
memory structures or single attribute structures. Most of the 
main memory structures have been extended to secondary 
storage structures but suffer of the curse of dimensionality (i.e. 
they deteriorate by increase in the number of attributes in the 
query). Most structures that utilizes SFCs do not suffer of the 
curse of dimensionality. Therefore they are the next 
generation indexing structures for OLAP applications that are 
characterized with complex queries spanning several 
dimensions.  
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