

 Incremental Information Extraction Using Dependency Parser

A.Carolin Arockia Mary
1
 S.Abirami

2
 A.Ajitha

3

PG Scholar, ME-Software

Engineering

PG Scholar, ME-Software

Engineering

Assistant Professor, Computer

Science and Engineering

Abstract

Information extraction is a technique to extract

particular kind of information from large volume of

information using the pipeline approach. Failure of

this approach is that whenever a new extraction goal

is needed or a module is changed, extraction is

applied from the initial to the whole text corpus.

Small changes in corpus might also affect the entire

process. In Information Extraction goals must be in

the form of database queries. This has been evaluated

and optimized by database system. Database queries

are responsible to perform generic extraction and

also reduce the reprocessing time by performing

incremental information extraction by identifying the

part of the data which is affected by the change.

Incremental information extraction generates the

queries automatically so that it reduces the user’s

time of learning the query language. Focus of

information extraction i.e., efficiency and quality of

extraction results is also achieved in incremental

information extraction. If a new module is deployed

then the incremental information extraction

approach reduces the 89.64 percent processing time

than the traditional pipeline approach.

Keywords- Dependency parser, information

extraction, information retrieval, query language,

relational database, Text mining.

1. Introduction

It is estimated that each year more than 6, 00,000

articles are published in the biomedical literature, with

close to 20 million publication entries being stored in

the Medline database. Extracting information from

such a large corpus of documents is very difficult. So it

is important to perform the extraction of information

by automaticity. Information Extraction (IE) is the

process of extracting structured information from the

unstructured information. Entities and the relationship

between the entities are the examples of the structured

information. Unstructured information means it‟s just a

random piece of information.

IE is a one-time process. It extracts the entities and

a specific type of relationships from the collection of

documents. IE is implemented as a pipeline of special-

purpose modules.

Due to the demand of information extraction in

several domains, the various frameworks such as

UIMA

[1] and GATE

[2] has been developed. These

kind extraction frameworks are usually file based and

the data which is processed in this are used between

components. In this Relational databases play a limited

role of storing the extracted relationships.

File-based frameworks are only applicable for one-

time extraction, because IE is performed continuously

on the same document collection even though a small

change in the extraction goal. Consider the scenario

that the processing of web documents with modified

content the availability of updated ontologies or

improved components for named entity recognition,

and the realization of new target relationships for

extraction. If the existing extraction framework is used

in any of the scenarios then it is necessary to reprocess

the entire text collection, which can be a large process

and also computationally expensive. If the extraction

goal is changed then it needs the unnecessary

reprocessing on the entire text collection. In another

scenario if the extraction goal remains same but an

updated ontology or an improved model based on

statistical learning approach becomes available for

named entity recognition. Changes in these scenarios

only affect a portion of the text corpus. So a framework

which has the capability of managing processed data

and performing incremental extraction to identify

which part of the data is affected by the change of

components or goals.

Incremental information extraction framework uses

database management system as an essential

component. Database management system serves the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

dynamic extraction needs over the file-based storage

systems. Text processing components of named entity

recognition and parsers are deployed for the entire text

corpus. The intermediate output of each text processing

component is stored in the relational databases called

as Parse Tree Database (PTDB). Database query which

is used to extract the information from the PTDB is in

the form of Parse Tree Query Language (PTQL).

If the extraction goal is changed or a module is

updated then the corresponded module is deployed and

the processed data is populated into the PTDB with the

previously processed data. Database queries are given

for the extraction and also to identify the sentences

with newly recognized mentions. If the changed

sentences are identified then extraction is performed

only on those sentences rather than the entire corpus.

Unlike the file-based pipeline approach, incremental

information extraction framework approach stores the

intermediate processed data of each component; this

avoids the need of reprocessing on the entire text

corpus. Avoiding such reprocessing of data is most

important for information extraction because it reduces

the extraction time tremendously.

The contribution of this is that:

Novel Database-Centric Framework for Information

Extraction: Unlike Traditional IE approaches, this new

extraction approach stores the intermediate text

processing data in the PTDB. Extraction is performed

by the PTQL queries. So it is not necessary to write

and run any special purpose programs for the

extraction need. Also it minimizes the reprocessing

time needed for the new extraction goal by the

deployment of the improved processing component.

Query Language for Information Extraction: Goals

are expressed as queries on parse tree database. XPath

[3] and XQuery [4] languages are not suitable for

extracting linguistic patterns because several important

expressive features required for linguistic queries are

missing or hard to express in this. So the query

language Parse Tree Query Language (PTQL) is

implemented.

Automated Query Generation: Learning and writing

the extraction queries manually is a time consuming

and labor-intensive process. This may achieve an

unsatisfactory extraction performance. So to avoid this

two algorithms are used to generate extraction queries

automatically in the presence and absence of training

data respectively. This reduces the user‟s effort on

performing extraction.

2. Background

2.1. Stanford Dependency Parser

The Stanford typed dependencies representation

was designed to provide a simple description of the

grammatical relationships in a sentence that can easily

be understood and effectively used by people without

linguistic expertise who want to extract textual

relations. Stanford dependencies (SD) are triplets:

name of the relation, governor and dependent.
The Stanford Parser and the Link Grammar parser

produce a forest of parse trees. Each syntactic possible

interpretation of a sentence is called an analysis. The Link

Grammar and the Stanford parsers share the same

interfaces. They can return as many analyses as needed.

Differences between both parsers:
Both parsers share the same structure (i.e. constituents

and dependencies). Nevertheless, there must be some

subtle differences:

 If the constituents‟ labels are normalized (“NP”,

“VP”, “PP”…), that is not the case for the

dependencies labels; for instance, the „subject‟

dependency between a noun and a verb is

labelled „S‟ in the Link Grammar, and „nsubj‟ in

the Stanford Parser.

 Dependencies structure is far from being

identical in both systems.

Consider a sentence “John‟s arm is broken” as

example. The Parse tree structure for both parsers is

shown in the figure1.

Figure 1. Parser output for the sentence “John’s arm is

broken”

3. Related Work

Information extraction is one of the major research

areas over many past years. The objective of this is that

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

improving accuracy of the extraction systems. This

section, describes how this incremental information

extraction framework differs from traditional IE systems,

rule-based IE systems.

3.1. Traditional IE Approaches

Popular file-based frameworks of UIMA [1] and

GATE [2] IE frameworks have the ability to integrate

various NLP components for IE. These frameworks do

not store the intermediate processing data. QXtract [5],

Snowball [6] systems uses the RDBMS to store and

query the extracted results. Cimple [7], SystemT [8]

systems use the joint operations in RDBMS. This

extracts the results that are stored in various database

tables. All these frameworks do not store any

intermediate processed data, so if a component is

improved or extraction goal is changed then all

components have to be reprocessed from the initial.

This consumes more time and also has the high

computational cost. In order to reduce this high

computational cost the most common approach called

document filtering is used. Thus the filtered documents

are called as promising documents which are used in

[5], [9], and [10]. Extraction is performed on those

promising documents and then the relevant documents

are retrieved from this. This the filtering approach fully

based on the sentences that are selected individually

based on the lexical clues. These clues have been

provided by the parse tree query language. Also this

filtering process utilizes the efficiency of the IR

engines.

3.2. Rule-Based IE Approaches

Rule-based IE approaches used in [11], [12], [13],

and [14]. Avatar System [14] uses the AQL query

language; this has the capability of performing IE task

by matching it with regular expressions. But this query

language does not support the traversal on parser tree.

DIAL [12], TLM [13], KnowItNow [15] systems are

fully based on the relationship extraction. They use

their own query languages. But all these query

languages only supports querying of data from the

shallow parsing they do not provide the capability of

performing extraction using the rich grammatical

structures. Cimple [7], SystemT [8], Xlog [16] used the

declarative languages. Joins operations are performed

on the RDBMS and then rules are applied for the

integration of the different extracted results. However,

these rules are not capable of querying parse trees.

MEDIE [11] stores the parse tree in the database and it

allows the query language for the extraction over this

parse trees. The XML-like query languages such as

XPath [3], XQuery [4] are based on one kind of

dependency grammar called head driven phrase

structure (HPSG). Link types cannot be expressed in

this query language as in PTQL.

4. Problem Statement

File-based approaches to data storage are based on

relatively simple data structures, such as the Indexed

Sequential Access Method (ISAM), and are usually

implemented for a single application. Files are

generally created on an as needed basis to service the

data needs of an application. The files are associated

with an application.

The disadvantages founded in the file-based frame wok

are:

 File-based approaches do not recognize

relationships between entities until such

information is needed by an application.

 File-based frameworks are suitable for one-

time extraction, because IE has to be

performed repeatedly even on the same

document collection.

5. System Design

This new extraction frame work consists of two

phases. They are: Initial Phase used to processing the

text, Extraction Phase used to perform the extraction.

Figure 2. System Architecture

Initial Phase: Text processor is responsible to perform

a one-time parse, entity recognition, and tagging on the

whole corpus based on the current knowledge. This

processed text is stored in a relational database, called

parse tree database (PTDB).

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Extraction Phase: Extraction is then achieved by

PTQL. PTQL Query Evaluator transforms the PTQL

query into keyword-based queries and SQL queries.

These are evaluated by using the RDBMS and IR

engine. Inverted index is extended from the index

builder to speed up the query evaluation. This has been

done by indexing the sentences according to the words

and the corresponding entities. PTQL queries are

generated using two modes of operation. They are:

training set driven query generation and pseudo-

relevance feedback driven query generation.

5.1. Parse Tree Database and Inverted Index

Each document is represented as a hierarchical

representation called the parse tree of a document, and

collection of the parse trees of all documents forms the

parse tree database.

Figure 3. Parse tree for a document

Figure 3 shows an example of a parse tree. The

parse tree contains the root node labelled as DOC and

each node represents an element in the document

which can be a section (SEC), a sentence (STN), or a

parse tree for a sentence (PSTN). A node labelled as

STN may have more than one child labelled with

PSTN to allow the storage of multiple parse trees. The

node below the PSTN node indicates the start of the

parse tree. A solid line represents a parent child

relationship between two nodes in the constituent tree,

whereas a dotted line represents a link between two

words of the sentence. In the constituent tree, nodes S,

NP, VP, and ADVP stand for a sentence, a noun

phrase, a verb phrase, and an adverb phrase,

respectively. The linkage contains three different links:

the S link connects the subject noun to the transitive

verb, the O link connects the transitive verb to the

direct object and the E link connects the verb-

modifying adverb to the verb. The square box on a

dotted line indicates the link type between two words.

Each leaf node in a parse tree has value and tag

attributes. The value attribute stores the text

representation of a node, while the tag attribute

indicates the entity type of a leaf node.

Inverted index is an essential component which is

extended from the index builder also maintained by an

IR engine. This inverted index enables the efficient

processing of PTQL queries. Fig. 4, the index builder

relies on the text pre-processor to recognize entities

and replace the entities with identifiers in the

sentences. The index builder relies on the text

processor identifies the entities and replace those

entities with identifiers in the sentences. Each sentence

in the documents is indexed on its own so that each

keyword-based filtering query retrieves a sentence

rather than the entire document.

Figure 4. An extended inverted index

5.2. Parse Tree Query Language

Standard XML query languages of XPath [3] and

XQuery [4] does not have the ability of express

immediate following siblings and immediate-preceding

siblings. This issue leads to the development of LPath

[17], [18] as a query language for linguistic queries on

constituent trees. However, XQuery and LPath can

only express ancestor descendant and sibling relations

between nodes. PTQL has the ability to express links

and link types between pairs of nodes, so that PTQL

can be used to express linguistic patterns based on

constituent trees and links, as well as link types. PTQL

is an extension of the linguistic query language LPath

that allows queries to be performed not only on the

constituent trees but also the syntactic links between

words on linkages. A PTQL query is made up of four

components:

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

1. Tree patterns: describes the hierarchical structure

and the horizontal order between the nodes of the parse

tree.

2. Link conditions: describes the linking requirements

between nodes.

3. Proximity conditions: to find words that is within a

specified number of words.

4. Return expression: defines what to return.

5.3. Query evaluation

Evaluation of PTQL queries uses IR engine as

well as RDBMS. IR engine selects the sentences based

on the tokens, which are defined in PTQL queries, and

only the subset of sentences retrieved by the IR engine.

These sentences are considered for the evaluation of

the conditions specified in the PTQL queries by

RDBMS. The process of the evaluation of PTQL

queries as follows.

1. Translate the PTQL query into a filtering query.

2. Use the filtering query to retrieve relevant

documents D and the corresponding sentences S from

the inverted index.

3. Translate the PTQL query into an SQL query and

instantiate the query with document id d Є D and

sentence id s Є S.

4. Query PTDB using the SQL query generated in Step

3.

5. Return the results of the SQL query as the results of

the PTQL query.

In step 2, the process of finding relevant sentences

with respect to the given PTQL query requires the

translation of the PTQL query into the corresponding

filtering query. Here, the syntax of the keyword-based

filtering queries.

A query term t for a filtering query is a string that

can be preceded by the required operator +, as well as

the term <field>:, where <field> is the name of a field.

A phrase p is in the form “t1 . . . tn,” where t1,…,tn are

query terms. P can be followed by a proximity operator

in the form of p~<number>. A parenthesis expression

is composed of query terms and phrases, enclosed by

parentheses, and it can be preceded by the required

operator. A keyword-based filtering query is a list of

query terms, phrases, and parenthesis expressions. A

PTQL query q is translated into a keyword-based

filtering query using the following steps:

1. Generate query terms for each of the node

expressions that are in the tree pattern of q.

2. Form phrases if consecutive node expressions are

connected by “immediate following” horizontal axes.

3. Form phrases followed by the proximity operator if

the corresponding nodes are defined in the proximity

condition of q.

6. Query Generation

IE system must have the ability to extract high-

quality results. In incremental information extraction

approach PTQL queries automatically generated using

two methods. They are: training set driven query

generation and pseudo-relevance feedback driven

query generation.

6.1. Training Set Driven Query Generation

The unlabeled document collections under a

particular problem-specific database are annotated

using the annotator component. This is very necessary

step for precise recognition and normalization. Pattern

generator identifies the phrases from the labelled data

which refers the interaction to generate the patterns.

These initial patterns are used to compute the conesus

patterns through the pattern generator component.

PTQL queries are then formed by the query generator

to perform extraction from the parse tree database.

6.2. Pseudo-Relevance Feedback Driven Query

Generation

Training data are not always available. At this

situation the Pseudo-Relevance Feedback Driven

Query Generation approach identifies the linguistic

structures to generate the PTQL queries. The basic idea

behind this is that, it generates the PTQL queries by

considering the constituent trees of the top-k sentences

retrieved with the Boolean keyword based query. This

constituent tree for the retrieved relevant sentence‟s

generated pattern is identified and interaction

extraction is performed by using the PTQL queries

translated from the generated extraction patterns. A

boolean keyword-based query q is composed of query

terms t1 . . . tn, where a query term ti can be a keyword,

or an identifier for an entity type. With q, a ranked list

of sentences S is retrieved and the constituent trees of

the top-k sentences of S (denoted as Sk) are retrieved

from PTDB. To find common grammatical patterns

among the constituent trees of Sk, string encodings are

generated for each of the sentence in Sk. A 0th level

string encoding records the labels of the lowest

common ancestor lca of the query terms and the query

terms themselves in a pre-order tree traverse order. A

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

mth level string encoding is defined as the string

encoding that includes at most m descendants of lca on

each of the paths connecting lca and a query term ti. If

two sentences are grammatically similar also they have

the same mth level string encoding. Grammatically

similar sentences are grouped together to form a

cluster. A PTQL query is then generated for each of the

clusters of string encodings. The steps of generating

PTQL queries can be outlined as follows. Let Cm be a

set of clusters with mth level string encodings. Given a

boolean keyword-based query q and parameter k,

1. Retrieve sentences using q from the inverted index

and retrieve the constituent trees of the top-k sentences

Sk from PTDB.

2. For each sentence in Sk extract the subtree that is

rooted at the lca of all the query terms t1, . . . ,tn with

the query terms as leaf nodes from the constituent tree.

3. Generate mth level string encodings for each of the

subtrees.

4. Sentences that are grammatically similar based on

their mth level string encodings are grouped together to

form clusters of common grammatical patterns Cm.

5. A PTQL query is generated for each common

grammatical pattern Cm.

Interactions are extracted through the evaluation of

the generated PTQL queries.

7. Conclusion

Existing extraction frameworks do not provide the

capability to manage the intermediate processed data.

This leads to the unnecessary reprocessing of the entire

text collection when the extraction goal is modified or

improved, which can be computationally expensive

and time consuming one. To reduce this reprocessing

time, the intermediate processed data is stored in the

database as in novel framework. The database is in the

form of parse tree. To extract information from this

parse tree the extraction goal written by the user in

natural language text is converted into PTQL and then

extraction is performed on text corpus. This increment

extraction approach saves much more time compared

to performing extraction by first processing each

sentence one-at-a time with linguistic parsers and then

other components.

8. Future Enhancement

PTQL also does not provide the ability to compute

statistics across multiple extractions. For future work,

this has been extended to the support of other parsers

by providing wrappers of other dependency parsers and

scheme, such as Pro3Gres, so that they can be stored in

PTDB and queried using PTQL. Also the capability of

PTQL is expanded, such as the support of regular

expression and the utilization of redundancy to

compute confidence of the extracted information.

REFERENCES

[1] D. Ferrucci and A. Lally, “UIMA: An Architectural

Approach to Unstructured Information Processing in the

Corporate Research Environment,” Natural Language

Eng., vol. 10, nos. 3/4, pp. 327- 348, 2004.

[2] H. Cunningham, D. Maynard, K. Bontcheva, and V.

Tablan, “GATE: A Framework and Graphical

Development Environment for Robust NLP Tools and

Applications,” Proc. 40th Ann. Meeting of the ACL,

2002.

[3] J. Clark and S. DeRose, “XML Path Language

(XPath),” http://www.w3.org/TR/xpath, Nov. 1999.

[4] “XQuery 1.0: An XML Query Language,”

http://www.w3.org/ XML/Query, June 2001.

[5] E. Agichtein and L. Gravano, “Querying Text Databases

for Efficient Information Extraction,” Proc. Int‟l Conf.

Data Eng. (ICDE), pp. 113-124, 2003.

[6] E. Agichtein and L. Gravano, “Snowball: Extracting

Relations from Large Plain-Text Collections,” Proc.

Fifth ACM Conf. Digital Libraries, pp. 85-94, 2000.

[7] A. Doan, J.F. Naughton, R. Ramakrishnan, A. Baid, X.

Chai, F. Chen, T. Chen, E. Chu, P. DeRose, B. Gao, C.

Gokhale, J. Huang, W. Shen, and B.-Q. Vuong,

“Information Extraction Challenges in Managing

Unstructured Data,” ACM SIGMOD Record, vol. 37,

no. 4, pp. 14-20, 2008.

[8] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S.

Vaithyanathan, and H. Zhu, “SystemT: A System for

Declarative Information Extraction,” ACM SIGMOD

Record, vol. 37, no. 4, pp. 7-13, 2009.

[9] P.G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano,

“Towards a Query Optimizer for Text-Centric Tasks,”

ACM Trans. Database Systems, vol. 32, no. 4, p. 21,

2007.

[10] A. Jain, A. Doan, and L. Gravano, “Optimizing SQL

Queries over Text Databases,” Proc. IEEE 24th Int‟l

Conf. Data Eng. (ICDE ‟08), pp. 636-645, 2008.

[11] Y. Miyao, T. Ohta, K. Masuda, Y. Tsuruoka, K.

Yoshida, T. Ninomiya, and J. Tsujii, “Semantic

Retrieval for the Accurate Identification of Relational

Concepts in Massive Textbases,” Proc. 21st Int‟l Conf.

Computational Linguistics and the 44th Ann. Meeting

of the Assoc. for Computational Linguistics (ACL ‟06),

pp. 1017-1024, 2006.

[12] R. Feldman, Y. Regev, E. Hurvitz, and M. Finkelstein-

Landau, “Mining the Biomedical Literature Using

Semantic Analysis and Natural Language Processing

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Techniques,” Information Technology in Drug

Discovery Today, vol. 1, no. 2, pp. 69-80, 2003.

[13] J.D. Martin, “Fast and Furious Text Mining,” IEEE

Data Eng. Bull., vol. 28, no. 4, pp. 11-20, 2005.

[14] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and

S. Vaithyanathan, “An Algebraic Approach to Rule-

Based Information Extraction,” Proc IEEE 24th Int‟l

Conf. Data Eng. (ICDE ‟08), 2008.

[15] M. Cafarella, D. Downey, S. Soderland, and O. Etzioni,

“Knowitnow: Fast, Scalable Information Extraction

from the Web,” Proc. Conf. Human Language

Technology and Empirical Methods in Natural

Language Processing (HLT ‟05), pp. 563-570, 2005.

[16] W. Shen, A. Doan, J.F. Naughton, and R. Raghu,

“Declarative Information Extraction Using Datalog with

Embedded Extraction Predicates,” Proc 33rd Int‟l Conf.

Very Large Data Bases (VLDB ‟07), pp. 1033-1044,

2007.

[17] S. Bird, Y. Chen, S.B. Davidson, H. Lee, and Y. Zheng,

“Extending XPath to Support Linguistic Queries,” Proc.

Workshop Programming Language Technologies for

XML (PLAN-X), 2005.

[18] S. Bird et al., “Designing and Evaluating an XPath

Dialect for Linguistic Queries,” Proc 22nd Int‟l Conf.

Data Eng. (ICDE ‟06), 2006.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

