
Increment Software Reliability Using Bug Cycle And

Duplicate Detection

Miss. Poorva Sabnis

1
, Mr. Amol Kadam

2
, Dr. S. D. Joshi

3

1
Bharati Vidyapeeth Deemed University College of Engineering, Pune

2
 Bharati Vidyapeeth Deemed University College of Engineering, Pune

3
Bharati Vidyapeeth Deemed University College of Engineering, Pune

Abstract

Software Reliability is defined as the probability of

free-failure operation for a specified period of time in a

specified environment in a given period of time under

specified conditions. Software Reliability Growth

models (SRGM) have been developed to estimate

software reliability measures such as number of

remaining faults, software failure rate and software

reliability. Software testing can be defined as a process

to detect faults in the totality and worth of developed

computer software. Testing is very important in

assuring the quality of the software by identifying faults

in software, and possibly removing them. In this paper,

we are focusing on increasing the reliability of the

software using bug tracking system. In this bug

tracking system, we are including 2 methods as – bug

cycle for bug detection and bug duplication avoiding

technique. In bug cycle, we are going to investigate

that, when verification is performed, who performs the

verification and how verification performed. In

duplicate detection, we propose a system that

automatically classifies duplicate bug reports as they

arrive to save developer time. Our system is able to

reduce development cost by filtering out 8% of

duplicate bug reports.

Keywords: SDLC, SRGM, bug cycle, duplicate

detection

1. Introduction

Software Development Lifecycle Models

A software development lifecycle is a structure

imposed on the development of a software product.

Synonyms include development lifecycle and software

process. There are several models for such processes,

each describing approaches to a variety of tasks or

activities that take place during the process.

There are various models present in software

development as waterfall model, iterative model, spiral

model, RAD(Rapid Application Development)etc.

Generally these models contains various stages of

development as – Requirement analysis and

development, System and software design, Coding,

Testing, Quality Management, Maintenance etc. All

these phases are very important to develop any

software. We are here focusing on the most important

phase i.e. testing phase. The aim is to develop a

software in such a way that is should contain less

number of errors. Hence we are trying to minimize the

errors in the software in testing phase itself by using

software reliability growth model.

Software Reliability Growth Models

Software reliability is a field of testing which deals

with checking the ability of software to function under

given environmental conditions for a particular amount

of time, taking into account the precision of the

software. In software reliability testing, problems are

discovered regarding software design and functionality

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1890

and assurance is given that the system meets all

requirements. Software reliability is the probability that

software will work properly in a specified environment

and for a given time. Using the following formula, the

probability of failure is calculated by testing a sample

of all available input states.

Probability = Number of failing cases / Total number of

cases under consideration

Importance of reliability testing:

The application of computer software has crossed into

many different fields, with software being an essential

part of industrial, commercial and military systems.

Because of its many applications in safety critical

systems, software reliability is now an important

research area. Although software engineering is

becoming the fastest developing technology of the last

century, there is no complete, scientific, quantitative

measure to assess them. Software reliability testing is

being used as a tool to help assess these software

engineering technologies.

To improve the performance of software product and

software development process, a thorough assessment

of reliability is required. Testing software reliability is

important as it is of great use for software managers

and practitioners. We are going to use 2 methods for

reliability as- bug cycle and duplicate detection.

1.1 Bug Cycle

Bug repositories have for a long time been used in

software projects to support coordination among

stakeholders. They record discussion and progress of

software evolution activities, such as bug fixing and

software verification. Hence, bug repositories are an

opportunity for researchers who intend to investigate

issues related to the quality of both the product and the

process of a software development team. However,

mining bug repositories has its own risks.

Previous research has identified problems of missing

data (e.g., rationale, traceability links between reported

bug fixes and source code changes) [1], inaccurate data

(e.g., misclassification of bugs) [2], and biased data [3].

In previous research, we tried to assess the impact of

independent verification of bug fixes on software

quality, by mining data from bug repositories. We

relied on reported verifications tasks, as recorded in

bug reports, and interpreted the recorded data according

to the documentation for the specific bug tracking

system used. Hence, in this paper, we investigate the

following exploratory research questions regarding the

software verification process:

• When is the verification performed: is it performed

just after the fix, or is there a verification phase?

• Who performs the verification: is there a QA

(quality assurance) team?

• How is the verification performed: are there

performed ad hoc tests, automated tests, code

inspection?

Bug tracking systems allow users and developers of a

software project to manage a list of bugs for the project,

along with information such as steps to reproduce the

bug and the operating system used. Developers choose

bugs to fix and report on the progress of the bug fixing

activities, ask for clarification, discuss causes for the

bug etc. One important feature of a bug that is recorded

on bug tracking systems is its status. The status records

the progress of the bug fixing activity. Figure 1 shows

each status that can be recorded, along with typical

transitions between status values, i.e., the workflow.

In simple cases, a bug is created and receive the status

UNCONFIRMED (when created by a regular user) or

NEW (when created by a developer). Next, it is

ASSIGNED to a developer, and then it is RESOLVED,

possibly by fixing it with a patch on the source code.

The solution is then

VERIFIED by someone in the quality assurance team,

if it is adequate, or otherwise it is REOPENED. When a

version of the software is released, all VERIFIED bugs

are CLOSED.

It states that, any bug is ‗VERIFIED‘ means that QA

[quality assurance team] has looked at the bug and the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1891

resolution and agrees that the appropriate resolution has

been taken‖. It does not specify how developers should

look at the resolution (e.g., by looking at the code, or

by running the patched software).

 1.2) Duplicate Detection

Also we are going to include one more facility as

―Duplicate detection‖ for bug tracking system.

Bug tracking systems are important tools that guide the

maintenance activities of software developers. The

utility of these systems is hampered by an excessive

number of duplicate bug reports–in some projects as

many as a quarter of all reports are duplicates.

Developers must manually identify duplicate bug

reports, but this identification process is time-

consuming and exacerbates the already high cost of

software maintenance. We propose a system that

automatically classifies duplicate bug reports as they

arrive to save developer time. Our system is able to

reduce development cost by filtering out 8% of

duplicate bug reports while allowing at least one report

for each real defect to reach developers. We propose a

technique to reduce bug report triage cost by detecting

duplicate bug reports as they are reported. We build a

classifier for incoming bug reports that combines the

surface features of the report [6], textual similarity

metrics [15], and graph clustering algorithms [10] to

identify duplicates. We attempt to predict whether

manual triage efforts would eventually resolve the

defect report as a duplicate or not. This prediction can

serve as a filter between developers and arriving defect

reports: a report predicted to be a duplicate is filed, for

future reference, with the bug reports it is likely to be a

duplicate of, but is not otherwise presented to

developers. As a result, no direct triage effort is spent

on it. Our classifier is based on a model that takes into

account easily-gathered surface features of a report as

well as historical context information about previous

reports.

2) Motivating example

Bug tracking systems allow users and developers of a

software project to manage a list of bugs for the project,

along with information such as steps to reproduce the

bug and the operating system used. Developers choose

bugs to fix and report on the progress of the bug fixing

activities, ask for clarification, discuss causes for the

bug etc. In this research, we focus on Bugzilla, an open

source bug tracking system used by software projects

such as Eclipse, Mozilla, Linux Kernel, NetBeans,

Apache, and companies such as NASA and Facebook.

The general concepts from Bugzilla should apply to

most other bug tracking systems.

Software verification techniques are classified in static

and dynamic [5]. Static techniques include source code

inspection, automated static analysis, and formal

verification. Dynamic techniques, or testing, involve

executing the software system under certain conditions

and comparing its actual behavior with the intended

behavior. Testing can be done in an improvised way

(ad hoc testing), or it can be structured as a list of test

cases, leading to automated testing.

Duplicate bug reports are such a problem in practice

that many projects have special guidelines and websites

devoted to them. The ―Most Frequently Reported

Bugs‖ page of the Mozilla Project‘s Bugzilla bug

tracking system is one such example. This webpage

tracks the number of bug reports with known duplicates

and displays the most commonly reported bugs. Ten

bug equivalence classes have over 100 known

duplicates and over 900 other equivalence classes

have more than 10 known duplicates each. All of these

duplicates had to be identified by hand and represent

time developers spent administering the bug report

database and performing triage rather than actually

addressing defects.

Bug report #340535 is indicative of the problems

involved; we will consider it and three of its duplicates.

The body of bug report #340535, submitted on June 6,

2006, includes the text, ―when I click OK the updater

starts again and tries to do the same thing again and

again. It never stops. So I have to kill the task.‖ It was

reported with severity ―normal‖ on Windows XP and

included a log file.

Bug report #344134 was submitted on July 10, 2006

and includes the description, ―I got a software update of

Minefield, but it failed and I got in an endless loop.‖ It

was also reported with severity ―normal‖ on Windows

XP, but included no screenshots or log files. On August

29, 2006the report was identified as a duplicate of

#340535.

3) Method

 3.1) Bug Cycle : In order to answer the research

questions—when and how bug fixes are verified, and

who verifies them—, a three-part method was used:

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1892

1) Data extraction: we have obtained publicly

available raw data from the Bugzilla repositories.

2) Data sampling: for each project, two representative

subprojects were chosen for analysis.

3) Data analysis: for each research question, a distinct

analysis was required, as will be further described.

A. Data Extraction

In order to perform the desired analyses, we needed

access to the data recorded by Bugzilla for a specific

project, including status changes and comments.

Bugzilla is a particularly popular open

source bug tracking software system. Bugzilla bug

reports come with a number of pre-defined fields,

including categorical information such as the relevant

product, version, operating system and self-reported

incident severity, as well as free-form text fields such

as defect title and description. In addition, users and

developers can leave comments and submit

attachments, such as patches or screenshots.

B.Data Sampling

The Platform subprojects are the main subprojects for

the respective IDEs, so they are both important and

representative of each projects‘ philosophy. The other

two subprojects were chosen at random, restricted to

subprojects in which the proportion of verified bugs

was greater than the proportion observed in the

respective Platform subprojects. The reason is to avoid

selecting projects in which bugs are seldom marked as

VERIFIED.

C. Analysis: When Are Bugs Verified?

In order to determine if there is a well-defined

verification phase for the subprojects, we have selected

all reported verifications (i.e., status changes to

VERIFIED) over the lifetime of each subproject. Then,

we have plotted, for each day in the interval, the

accumulated number of verifications reported since the

first day available in the data. The curve is

monotonically increasing, with steeper ascents

representing periods of intense verification activity.

Also, we have obtained the release dates for multiple

versions of Eclipse and NetBeans. The information was

obtained from the respective websites. In cases in

which older information was not available, archived

versions of the web pages were accessed via the

website www.archive.org.

If a subproject presents a well-defined verification

phase, it is expected that the verification activity is

more intense a few days before a release. Such pattern

can be identified by visual inspection of the graph, by

looking for steeper ascents in the verification curve

preceding the release dates.

D. Analysis: Who Verifies Bugs?

In order to determine whether there is a team dedicated

to quality assurance (QA), we have counted how many

times each developer has marked a bug as FIXED or

VERIFIED. We considered that a developer is part of a

QA team if s/he verified at least 10 times (i.e., one

order of magnitude) more than s/he fixed bugs. Also,

we have computed the proportion of verifications that

was performed by the discovered QA team. It is

expected that, if the discovered set of developers is

actually a QA team, they should be responsible for the

majority of the verifications.

E. Analysis: How Are Bugs Verified?

In order to discover the verification techniques used by

the subprojects, we have selected the comments written

by developers when they mark a bug as VERIFIED

(meaning that the fix was accepted) or REOPENED

(meaning that the fix was rejected). The comments

were matched against five regular expressions, each

corresponding to one of the following verification

techniques: automated testing, source code inspection,

ad hoc testing, automated static analysis, and formal

testing.

The complete regular expressions are available in the

experimental package. It should be noted that regular

expressions may not be a reliable alternative to the

problem of identifying verification techniques in

comments. In future research, more advanced

information retrieval techniques should be explored.

Nevertheless, regular expressions enable an initial

study and help unveil insights about verification

techniques in bug reports.

 3.2) Duplicate detection

Our goal is to develop a model of bug report similarity

that uses easy-to-gather surface features and textual

semantics to predict if a newly-submitted report is

likely to be a duplicate of a previous report. Since many

defect reports are duplicates (e.g., 25.9% in our

dataset), automating this part of the bug triage process

would free up time for developers to focus on other

tasks, such as addressing defects and improving

software dependability.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1893

Our formal model is the backbone of our bug report

filtering system. We extract certain features from each

bug report in a bug tracker. When a new bug report

arrives, our model uses the values of those features to

predict the eventual duplicate status of that new report.

Duplicate bugs are not directly presented to developers

to save triage costs. We employ a linear regression over

properties of bug reports as the basis for our classifier.

Linear regression offers the advantages of (1) having

off-the-shelf software support, decreasing the barrier to

entry for using our system; (2)

supporting rapid classifications, allowing us to add

textual semantic information and still perform real-time

identification; and (3) easy component examination,

allowing for a qualitative analysis of the features in the

model. Linear regression produces continuous output

values as a function of continuously-valued features; to

make a binary classifier we need to specify those

features and an output value cutoff that distinguishes

between duplicate and non-duplicate status.

1) Textual Analysis

Bug reports include free-form textual descriptions and

titles, and most duplicate bug reports share many of the

same words. Our first step is to define a textual

distance metric for use on titles and descriptions. We

use this metric as a key component in our identification

of duplicates.

We adopt a ―bag of words‖ approach when defining

similarity between textual data. Each text is treated as a

set of words and their frequency: positional information

is not retained.

Since orderings are not preserved, some potentially

important semantic information is not available for later

use. The benefit gained is that the size of the

representation grows at most linearly with the size of

the description. This reduces processing load and is

thus desirable for a real-time system.

We treat bug report titles and bug report descriptions as

separate corpora. We hypothesize that the title and

description have different levels of importance when

used to classify duplicates. In our experience, bug

report titles are written more succinctly than general

descriptions and thus

are more likely to be similar for duplicate bug reports.

We would therefore lose some information if we

combined titles and descriptions together and treated

them as one corpus.

We pre-process raw textual data before analyzing it,

tokenizing the text into words and removing stems

from those words. We use basic scripting to obtain

tokenized, stemmed word lists of description and title

text from raw defect reports. Tokenization strips

punctuation, capitalization, numbers, and other non-

alphabetic constructs. Stemming removes

inflections(e.g.,―scrolls‖ and ―scrolling‖ both reduce to

―scroll‖).

Stemming allows for a more precise comparison

between bug reports by creating a more normalized

corpus; our experiments used the common Porter

stemming algorithm. We then filter each sequence

against a stoplist of common words. Stoplists remove

words such as ―a‖ and ―and‖ that are present in text but

contribute little to its comparative meaning. If such

words were allowed to remain, they would artificially

inflate the perceived similarity of defect reports with

long descriptions. Finally, we do not consider

submission-related information, such as the version of

the browser used by the reporter to submit the defect

report via a web form, to be part of the description text.

Such information is typically collocated with the

description in bug databases, but we include only

textual information explicitly entered by the reporter. In

this we are going to use 3 methods as following: 1)

Document Similarity 2) Weighting for duplicate defect

detection 3) clustering.

2) Model Features

We use textual similarity and the results of clustering

as features for a linear model. We keep description

similarity and title similarity separate. For the

incoming bug report under consideration, we

determine both the highest title similarity and highest

description similarity it shares with a report in our

historical data. Intuitively, if both of those values are

low then the incoming bug report is not textually

similar to any known bug report and is therefore

unlikely to

be a duplicate. We also use the clusters from Section

4.1.3 to define a feature that notes whether or not a

report was included in a cluster. Intuitively, a report

left alone as a singleton by the clustering algorithm is

less likely to be a duplicate. It is common for a given

bug to have multiple duplicates, and we hope to tease

out this structure using the graph clustering. Finally,

we complete our model with easily-obtained surface

features from the bug report. These features include

the self-reported severity, the relevant operating

system, and the number of associated patches or

screenshots. These features are neither as

semantically-rich nor as predictive as textual

similarity. Categorical features, such as relevant

operating system, were modeled using a one-hot

encoding.

So finally we conclude four empirical evaluations:

Text. Our first experiment demonstrates the lack of

correlation between sharing ―rare‖ words and duplicate

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1894

status. In our dataset, two bug reports describing the

same bug were no more likely to share ―rare‖ words

than were two non-duplicate bug reports. This finding

motivates the form

of the textual similarity metric used by our algorithm.

Recall. In this experiment, each algorithm is presented

with a known-duplicate bug report and a set of

historical bug reports and is asked to generate a list of

candidate originals for the duplicate. If the actual

original is on the list, the algorithm succeeds. We

perform no worse than the current state of the art.

Filtering. Our third and primary experiment involved

on-line duplicate detection. We tested the feasibility

and effectiveness of using our duplicate classifier as an

on-line filter. We trained our algorithm on the first half

of the defect reports and tested it on the second half.

Testing proceeded chronologically through the held-out

bug reports and predicted their duplicate status. We

measured both the time to process an incoming defect

report as well as the expected

savings and cost of such a filter. We measured cost and

benefit in terms of the number of real defects

mistakenly filtered as well as the number of duplicates

correctly filtered.

Features. Finally, we applied a leave-one-out analysis

and a principal component analysis to the features used

by our model. These analyses address the relative

predictive power and potential overlap of the features

we selected.

4) Conclusions
So we have found, using only data from bug

repositories, subprojects with and without QA teams,

with and without a well-defined verification phase. We

also have found weaker evidence of the application of

automated testing and source code inspection. Also,

there were cases in which marking a bug as VERIFIED

did not imply that any kind of software verification was

actually performed. We propose a system that

automatically classifies duplicate bug reports as they

arrive to save developer time. This system uses surface

features, textual semantics, and graph clustering to

predict duplicate status. We empirically evaluated our

approach using a dataset of 29,000 bug reports from the

Mozilla project, a larger dataset than has generally

previously been reported. We show that inverse

document frequency is not useful in this task, and we

simulate using our model as a filter in a real-time bug

reporting environment. Our system is able to reduce

development cost by filtering out 8% of duplicate bug

reports. It still allows at least one report for each real

defect to reach developers, and spends only 20 seconds

per incoming bug report to make a classification.

5) References
[1] Characterizing Verification of Bug Fixes in Two

Open Source IDEs

Rodrigo Souza and Christina Chavez Software

Engineering Labs

Department of Computer Science – IM, Universidade

Federal da Bahia (UFBA), Brazil,

{rodrigo,flach}@dcc.ufba.br 978-1-4673-1761-

0/12/$31.00 c 2012 IEEE

[2] Automated Duplicate Detection for Bug

Tracking Systems

Nicholas Jalbert. University of Virginia,

Charlottesville, Virginia 22904, jalbert@virginia.edu

 Westley Weimer University of Virginia,

Charlottesville, Virginia 22904,

weimer@cs.virginia.edu

International Conference on Dependable Systems &

Networks: Anchorage, Alaska, June 24-27 2008

[3] J. Aranda and G. Venolia, ―The secret life of bugs:

Going past the errors and omissions in software

repositories,‖ in Proc. Of the 31st Int. Conf. on Soft.

Engineering, 2009, pp. 298–308.

 [4] J. Anvik, L. Hiew, and G. C. Murphy. Who

should fix this bug? In International Conference on

Software Engineering (ICSE), pages 361–370, 2006.

 [5] I. Sommerville, Software engineering (5th ed.).

Addison Wesley Longman Publish. Co., Inc., 1995.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

1895

