Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
IETE —2020 Conference Proceedings

Improving Taxi Revenue using Reinforcement
Learning

Shahil Subham
Dept. of ECE
R. N. S. Institute of Technology
Bangalore, India

Farheen Fatima
Dept. of ECE
R. N. Shetty Institute of Technology
Bangalore, India

Abstract—Several advancements has been made recently in
the field of transportation system and taxis being a major part
of urban transportation has seen a tremendous growth in the
past few years through the use of online cab services such as
Uber, Ola etc. Relying on these advances these aggregation
systems such as Uber, Ola etc. was able to activate more cabs
and thereby improved customer experience by increasing
availability and by reducing wait times. A lot of studies were
made in the customer’s perspective to give improved customer
experience. But in this paper, the only focus is on improving
performance from a driver’s perspective by using current and
past movement trajectories and trips and thereby maximizing
the long-term revenue earned by the driver.

Keywords—Reinforcement Learning, Taxi Revenue, XG boost,
Regression, Random forest, K-neighbor, Gradient boosting.

. INTRODUCTION

Generally, when there is no customer on board taxis roam
around with no clear destination and this is referred to as
“cruising”. Such a cruising taxi may find customers either on
streets or due to being in proximity to customers who put in a
request to taxi aggregation systems such as Uber, Ola etc. In
such cases, it is necessary for the taxi to be in the right
location at the right time to increase revenue by reducing
cruising time. In this paper we focus on developing a
Reinforcement Learning approach with the aim of maximizing
long-term revenue by providing guidance to cruising taxi
drivers to be on the right locations to be at different times of
the day on different days of the week. Reinforcement learning
is an ideal approach for this problem due to the following
reasons: (a) In order to find customers during cruising we need
to make a sequence of decisions, say for example, the driver
can wait in current zone for 5 minutes, and if no customer
found, the driver can wait for 5 more minutes and if the driver
still fails to find a customer then move to another zone; (b)
Reinforcements are well-defined, i.e., cost from traveling
between locations and the sum of revenue earned from a

Saurabh Singh
Dept. of ECE
R. N. S Institute of Technology
Bangalore, India

Anusha Sunil Kumar
Dept. of ECE
R. N. S. Institute of Technology
Bangalore, India

Geetha G
Assistant Professor
Dept. of ECE
R. N. Shetty Institute of Technology
Bangalore, India

customer; (c) Customer demand is uncertain and RL
approaches can capture such uncertainty quite well; and
finally (d) Because of its learning focus, RL can adapt to any
changes in demand patterns.

1. DATA
A. Data Collection and Exploration
Data collection is the process of gathering and measuring
information on targeted variables. The dataset used in this
paper consist of 50000 rows and seven column attributes
containing information as longitude and latitude of pickup and
drop off locations, passenger count ,pickup date and time etc.
Training data has one more attribute for fare amount. Data
exploring being the first step in data analysis refers to view the
dataset in an organized way.

B. Data Pre-processing

This is the most important. part in the machine learning
workflow. It is the process of preparing the raw data and
transforming the raw data into an understandable format. The
algorithm is completely dependent on how the data is fed into
it. Therefore feature engineering being an integrated step in
data pre-processing should be given top priority for every
project. The advantages of the pre-processing of the data is
that it reduces Over-fitting i.e. redundancy of the data can be
reduced by which opportunity to make decisions based on
noise is minimized and fewer misleading data results in
improving modeling accuracy. Another advantage of data pre-
processing is that it reduces training time i.e. fewer data points
reduce algorithm complexity and algorithms train faster. In
this paper the dataset is divided into training set used for
training the model and test set used to test the trained model.
70% of the dataset is given as training set and the remaining
30% of the dataset forms the test set. The flowchart in Fig 1
gives the basic steps followed in the paper.

Volume 8, Issue 11

Published by, www.ijert.org 170

www.ijert.org

Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

IETE — 2020 Conference Proceedings

e] 'n\
{ Begin HI ,x’i{eal-time traffic /‘r
g yd Flow data

A
h 4 L

Select training
and testing dataset [*

Data pre-processing

|

/A training samples /
PNy

h J

Determine initial
network parameters
and learning rate

l

Outliner removal

!

Revise network
parameters

l

Train DL
network

i

e ~—
//aluatlon error<Th l\\ No
cost value<\Th2 /

““\.
l Yes

Test the data and
r#eat training
for next station

Evaluate

TN
Prediction —H‘\ Terminate |

h J

|
results SE—

Fig 1: Flowchart showing the basic steps

I1l. TAXI DATASET

Datasets are an integral part in the field of machine
learning. The dataset used in this paper is a New-York taxi
dataset which is obtained from Kaggle. The taxi dataset used
in this paper has seven attributes namely key, pickup_date,
pickup_longitude, pickup_latitude, dropoff_longitude,
dropoff_latitude and passenger_count. The training set also
have a dependent attribute named fare_amount.

A. Defining boundaries

Since we need to work in a finite environment it is
important to define a boundary. For this a boundary box is
defined with the help of the minimum longitude and latitude,
and the maximum longitude and latitude. Now any location
data point with the corresponding longitude and latitude

values below the minimum value or above the maximum
value can be removed from the dataset since it is out of scope.
We will be considering only those points that lie inside the
defined boundary box.

B. Preparing dataset for model training

e In the dataset, there can be some rows where some of
the attribute values can be missing. Say for example,
the dropoff_longitude value is absent in some row. In
that case the model would not be able to give accurate
results. Hence it is important to remove all the missing
data from the dataset in order to give accurate
predictions.

e In the dataset there are longitude and latitudes that
corresponds to locations in water bodies. These data
points are considered as noise as it make nosense if the
drop off or pickup locations are in water because taxi
services cant be made available in water bodies. Hence
it is necessary to remove all the data points that lie in
water bodies.

C. Data analysis

. To further analyze the dataset we tried to visualize
traffic density by the hour (and year). Counting the
number of pickups in an area will give us some
impression of the traffic density. If the traffic is more
then there are chances that it would take a lot of time
for the driver to make a ride. Visualization of the
traffic density by the hour (and year) for two days
(Monday and Friday) for the year 2014 is given in the
Fig 2 and Fig 3.

o Before building any model it is important to test
some basic intuition. Visualization of distance time
relation and distance fare relation has to be done. It can
be observed that if distance between pickup and drop-
off location is longer, the fare amount will also be
high. It is to be noted that fare at night is different from
fare at day time. Also for some trips, like to/from an
airport, have fixed fee regardless of the pickup or drop
off location.

Fig 3: Pick up densnty year=2014, day— Friday

Volume 8, Issue 11

Published by, www.ijert.org 171

www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
IETE —2020 Conference Proceedings

IV. EVALUATING VARIOUS MODELS

Different models will be generated by using different
techniques-Linear Regression, Polynomial Regression, K-
neighbor regression, Random Forest, Gradient Boosting and
Extreme Gradient (XG) boost to generate the fare amount.
The generated models will be then evaluated and analyzed on
the basis of its RMSR values and the best among them will be
selected for the resourceful implementation of this project.
Lesser the RMSR value better will be the efficiency of our
model.

A. Linear Regression

This is a machine learning algorithm which is based on
supervised learning. This regression performs the task to
predict a dependent variable value based on given independent
variable. So this regression technique finds out a linear
relationship between input and output [9]. The following steps
have been used for generating linear regression model:

1) Import package and class: The first step is to import
the package numpy and class Pipeline from sklearn.pipeline,
class, LinearRegression from sklearn.linear_model and the
class StandardScaler from sklearn.preprocessing. Now we
have all the functionalities that we need to implement linear
regression model.

2) Provide data and create a model: The data is then
provided and eventually the appropriate transformations are
done. Then the regression model is created by using existing
data.

3) Checking the results and predicting the response: The
model is then fitted. After this we will get the results to check
whether the model works satisfactorily. Once there is a
satisfactory model, it will be then used for predictions with
either existing or new data.

B. Polynomial Regression

This is a form of regression analysis in which relationship
between the independent variable x and the dependent
variable y is modeled as a n" degree polynomial. Some
polynomial terms will be added to the Multiple Linear
Regression equation to convert it into Polynomial regression.

This is a linear model with some modification in order to
increase the accuracy. The dataset used in Polynomial
regression for training is of non-linear in nature. It makes use
of Linear Regression model to fit the complicated and non-
linear functions and dataset. The original features are
converted into polynomial features of degree 2 and is then
modeled using a linear model. The main steps involved in
polynomial regression are given below:

1) Data pre-processing and building a Polynomial
regression model: In data pre-processing the data gets
encoded so that it can be brought to such a state that now the
machine can easily parse it. The features of data can now be
easily interpreted by the algorithm. Then the linear regression
model is built and fitted to the dataset. In building polynomial
regression model, linear regression model is taken as
reference. Once the polynomial regression model is built, it
will be different from the simple linear model. Here we are
using PolynomialFeatures class of pre-processing libraries.

2) Visualizing the result and predicting the output: The
result of polynomial regression model is then visualized and
then the final result with the polynomial regression model is
then predicted and compared with Linear Model.

C. K- Neighbor Regression
K Nearest Neighbor is an algorithm that stores all
available cases and predict the numerical target based on a
similarity measures. The main steps involved in K-
Neighbor Regression are given below:

1) Importing and splitting the data: First the class
KNeighbourRegressor is imported from sklearn.neighbours.
Then the dataset is imported and split into training and testing
set.

2) Calculating the Euclidean distance: After finding the k
parameter which is the number of Neighbors we calculate the
distance between the query instances and all the training
samples. Based on the k-th minimum distance the nearest
neighbours are determined.

3) Prediction of the query instance: This is done by
simply taking the simple majority of the category of the
nearest neighbours.

D. Random Forest

This is a tree based algorithm which involves building
several decision trees, then their output is combined to
improve generalization ability of the model. Here a
combination of weak learners(individual decision trees)
produces a strong learner. In simple words you can say a
random forest is a collection of several decision trees. A
random forest works the following way:

1) First it uses the bagging algorithm to create random
samples. Given a dataset (n rows and p columns),it creates
new dataset by sampling cases at random with replacement
from the original data. About one third of the rows of the
given dataset are left out, known as Out Of Bag samples
(O0B).

2) Then the model trains on the new dataset. OOB
samples are used to determine unbiased estimate of the error.
Out of p columns, P<<p columns are selected at each node in
the dataset. The P columns are selected at random. The
default choice of P is p/3 for the regression tree.

3) Here unlike a decision tree, no pruning takes place
in random forest i.e. each tree is fully grown. In pruning a
subtree is selected that leads to the lowest test error rate.
Cross validation is used to determine the test error rate of a
subtree.

4) Several trees are grown and the final prediction is
obtained by averaging or voting.

Here each tree is grown on a different sample of original
data. The main advantage of random forest is that it is robust
to correlated predictors and takes care of missing data
internally in an effective manner.

E. Gradient Boosting

This is a machine learning technique for regression and
classification, which produces a prediction model in the form
of an ensemble of weak prediction models, typically decision
trees. It is a boosting technique. Boosting is an ensemble
technique of converting weak learners into strong learners.
Similar to random forest, gradient boosting is a set of

Volume 8, Issue 11

Published by, www.ijert.org 172

www.ijert.org

Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
IETE —2020 Conference Proceedings

decision trees. By using gradient descent and updating our
predictions based on a learning rate, we can find the values
where MSE(Mean Square Error) is minimum. Gradient
boosting trains the model gradual, additive and sequential
manner. It basically involves three elements which are
discussed below:

1) A loss function to be optimized: The loss function
depends on the type of problem being solved. A benefit of the
gradient boosting framework is that a new boosting algorithm
does not have to be derived for each loss function, instead it is
generic enough framework that any differentiable loss
function can be used.

2) A weak learner to make prediction: Decision trees are
used as the weak learner in gradient boosting. We can say the
gradient boosting technique reduces error sequentially. Trees
are constructed in a greedy manner in such a way that the loss
will be as minimum as possible. The weak learner is
constrained in specific ways, such as maximum number of
layers, nodes, splits or leaf nodes to ensure that the learners
remain weak, but can still be constructed in a greedy manner.

3) An additive model to add weak learners to minimize
the loss function: Trees are added one at a time, and existing
trees in a model are not changed. A gradient descent
procedure is used to minimize the loss when adding trees.

F. XG Boost

Extreme gradient boosting is similar to gradient
boosting framework but more efficient. It has both linear
model solver and tree learning algorithm. Its capacity to do
parallel computation on a single machine makes it very
fast. It is 10 times faster than existing gradient boosting
implementations. It supports various objective functions,
including regression, classification and ranking.

XG boost only works with numeric vectors. Therefore
all other forms of data are first converted into numeric
vectors. One Hot Encoding is a method which is used to
convert categorical variable into numeric vector. This step
will make a sparse matrix using flags on every possible
value of that variable. Sparse Matrix is a Matrix where
most of its values are zeroes. Conversely dense matrix is a
matrix where most of the values are non zeroes.

Fig 4 shows the different RMSR (Root Mean Square
Rate) values of the models generated by different
techniques. RMSR value shows how much percentage
factual output which is predicted by the model varies with
the ideal output.

model (nfolds=18)

xgboost100
random_forest_regressor_n160
random_forest_regressor_n18
gradient_boosting_n160
kneighbors
gradient_boosting_n10
polynomial
linear_model
xgboost10

Fig 4: Different RMSR values of the models.

4.
4.
4.
4.
4.
4.
5.
5.
6.

Lower values of RMSR indicates better fit. So, among
all the models generated by different techniques, XG boost
is best suited for the resourceful implementation of this
project.

Fig 5 shows the accuracy of the model when XG boost
is implemented. At the x axis we have the actual output and
at the y axis we have the obtained output. The red line is
the output of our agent and the blue dots indicates the
actual output values. The Root Mean Square Error(RMSE)
value obtained when XG boost is applied to our model is
3.75. This value gives the difference between actual output
and the predicted output.

The Fig 6 is a histogram that gives an idea about the
accuracy of the model when XG boost is applied. The x
axis is the difference between actual output and the
predicted output and y axis shows the performance of the
model. It is understood from the histogram when the
difference between the actual and the predicted output is
zero, the system performs with maximum accuracy. This is
the ideal condition. As the difference between the actual
and predicted output become non-zero values then we can
say the agent is operating in a more practical condition.

rmse = 3.75, evs = 0.85

175 1

150 1

125 A

100 1

75 1

0 25 5 75 100 125 150 175
y
Fig 5: Accuracy of the model when XG boost is used

Volume 8, Issue 11 Published by, www.ijert.org

173

www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
IETE —2020 Conference Proceedings

Histrogram prediction error, = 0.00, 0 = 3.75

25000 A
20000
15000 A
10000 4
5000
0 T T T T T LJ T
-50 -25 0 25 50) 100 125
Y=y
Fig 6: Histogram prediction error
Type | Linear |Polynomial | KNN | Gradient | RF | XGB

Obtain| 5.77 5.12 4,70 445 [4.29| 4.25
ed
RMSR

Table 1:RMSR values for various techniques

Model with the least Root Mean Square Rate (RMSR)
value will be used to implement the agent discussed in the
paper. On comparing it is observed that Extreme Gradient
(XG) boost which is the more efficient version of Gradient
boosting is best suited for this model since it has the least
RMSR value. Table 1 shows the various RMSR values
obtained for different techniques.

V. INTRODUCING RL TO THE MODEL

Reinforcement learning is defined as the study of decision-
making over time, that trains the algorithms using a system of
reward and punishment. A reinforcement learning algorithm,
or agent, interacts with its environment and the agent receives
rewards if correct actions are performed and receive
punishments if incorrect actions are performed. This way the
agent learn on its own without any human intervention and
tries to maximize the reward and reduce the penalty. In this
paper we assign various rewards for different actions. Say for
eg the agent receives a reward every time the revenue earned
by the driver is higher than the amount spent by the driver
during the time of the cruising, and receives a punishment
every time the revenue earned by the driver is lesser than
amount spent by the driver during the time of cruising, also if
the revenue is more than 1000 our agent receives a reward,
for every correct turn it gets a reward of 20 points and for
every incorrect decision it gets a negative reward of -1 points
etc.
Q learning is a model-free off policy reinforcement
algorithm that comes up with a policy that tells the agent to
take proper actions under various circumstances. Every
action that an agent takes has a q value which is the expected
discounted future reward. Now it is important for the agent
to have a memory. This is where the Bellman equation comes

to play. We use the Bellman equation to enable our agent
with a memory.

V(s)=max(R(s, a)ty V(s’)
1)

The equation (1) shown above is the original bellman
equation. In order to join the probabilities of the actions
that are taken in the above equation we need to associate a
probability with each of the terms to quantify our agent, if
it has any chance of taking a particular action. Then the

above equation has to be modified as:

V(s)=max(R(s,a) + Y Z s’ P(s, a, s)V(s)) (2
The equation (2) is the Bellman equation with Markov
decision process. Now we have to transition to Q learning .
We need to get an equation to quantify the quality of
particular action.

Q(s,)=(R(s, @) + y = (P(s, &, s) max Q(s’.a’)) (3)
The equation (3) shown above is the Bellman equation
with g values.

A. Working of RL based model

Let us consider a scenario where the taxi drivers cruising
trajectory started from a point A and ended at a point E.

In the beginning, assume that the driver made the decision
to go to a destination E at the point A itself. Without any
conscious reasoning, if the taxi driver had made a decision to
go to E at A, then the driver would have chosen a path such
that the chosen path is close to the shortest path distance
between the points A and E. In this case simply assume that, E
is not close to the shortest path distance. So now it is
important to identify the point on the cruising path which is
close to the shortest path distance to E. Say this point is D.
Then it is evaluated if the driver could make the decision to go
to point D at A itself. If this decision cannot be made, then the
point where the driver decided to go to point D is identified.
Assume that point C is that point. This computation is
repeated further until the final trajectory A, B, C, D, E is
obtained as shown in Fig. 7 [4]

° dl G d: ° ds c d4 e
Fig 7: Activity diagram for cruising path

B. Framework

When a taxi driver drops off a customer, and is looking for
a new customer, he can either choose to stay in the area and
wait for a new passenger there, or he can travel to a new
location. Traveling to a new location comes with an
associated cost, but if the new location is chosen correctly it
will impact future trips to improve the revenue for the day.
We can define the states, reward and value functions as:

e States: (z, t) a drop off zone at a corresponding time

e Reward: R(z1, t1) average trip fair of one trip for a
pickup zone z1 at time t1

e Value function: V (z, t) gives the expected total
revenue to the end of the day starting from state (s, t).

Volume 8, Issue 11

Published by, www.ijert.org 174

www.ijert.org

Special Issue - 2020

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
IETE —2020 Conference Proceedings

In a traditional reinforcement learning model the intention
of the driver would be an important feature. In practice,
although a driver may intend to drive to a particular location,
there are chances that he may find a customer along the way.
However, it is not possible to know a driver’s intention from
historical data because we only know where he ends up
picking the next customer. So in order to reduce the difficulty
in estimating the model parameters from historical data, we
consider a simplified policy:

Policy: m(z, t)=z1 the next pickup zip-code from state
(z,t).The driver goes to z; directly and will keep searching
inside z; until he picks up the next customer at z.

Then, we can write down the value function as:

V7 (z, 1)
=E[f(n(z, 1),Z’, Tpick)*V*(Z’, Trext)]
=E[X(P(z1, Z', Tpiew) T (20,2, Tpiciy+ V(2 , Thext))]
=E[R(z1, Tpick)+ zP(Zl,Z’,Tpick)
4

The equation (4) shows the value function where Z', Tpick,
Thext represents the random zip-code that the customer at z;
and the random drop-off time at Z’ respectively. f(z1,2’, Tpick)
is the trip fare from z; to z' at the time t and P(z1,,Z’, Tpick) is @
customers transition probability from z; to z'The above
equation hold after assuming that all the random variables
are independent. To further quantify Tpick and Thex, We have

Tpick: t+AtraveI(Z,Zl)+Asearch(Zl)
(5)

Tnext:TpickJrAtrip(Zl,Z,)

(6)

From equation (5) and equation (6) it can be seen that Tpick
and Thex are further quantified. Awavel, Asearch and Agip are the
random time intervals for the time cost traveling from z to z;
without a passenger, searching for the next customer at z;,
and driving passenger from z; to z' respectively. Finally, we
replace all the random time with their expectations. As the
value function is almost linear in t and the estimates of
R(z4,t1) and P(z1,,2’,t) will be piece wise constant in hour, this
approximation should be accurate enough most of the time.
The optimal value function can be defined as shown below in
equation (7):

Vn(zq ,Tnext)]

V*(z, t)=max V7(z, t)

()
Then, it will satisfy the equation (8) shown below:

V*(z, t)=max{R(zi, tpick)-i-ZP(Zl,Z,, tpick)V*(Z’, thext) }
8

Where
tpick=t+Otravel (Z, Z1, t)T8search (Z1,tStravel (Z, Z1,t))
thext =tpick+Otrip(Z1,Z , tpick)

C. Agentclass

If this framework is used, then it is needed to fill the
following:

can define the states, reward and value functions as:

1) State and Action Size.
2) Hyper-parameters.

3) Create a neural-network model in function
'build_model()".
4) Define epsilon-greedy strategy in function

'get_action()".

5) Complete the function ‘append sample()’. This
function appends the recent experience tuple <state, action,
reward, new-state> to the memory.

6) Complete the ‘train_model()' function with following
logic:

e If the memory size is greater than mini-batch size,
then randomly sample experiences from memory as
per the mini-batch size and do the following:

e Initialize the input and output batch for training the
model.

e Calculate the target Q value for each sample: reward +
gamma*max(Q(s', a,)).

e Get Q(s', a) values from the last trained model.

e Update the input batch as the encoded state and output

batch as the Q-values.

Then fit the DQN model using the updated input and

output batch.

Q-network Architecture:
e Input: encoded state i.e. each vector is a combination
of locations + hours in a day + days in a week.
e output: g-values for all actions including (0, 0).

Hyper-parameters

e state_size: vector length of encoded states (humber of
neurons in input layer): (36 -> 5 zones + 24 hours + 7
days).

e action_size: vector length of predicted q_values for
all actions.

e learning_rate: amount that the weights are updated
during training.

e discount_factor: affects how much weight is given to
the future rewards in the value function.

e batch_size: batch size used in neural network for
training

e memory_length: replay memory buffer size

e nn_epochs: number of epochs for neural network

D. DQN block

Episodes: For implementing reinforcement learning we
need to convert activity graphs into episodes. Each node in
the activity graph shown in Fig. 7 represents a state and the
subsequent node represents the action taken. Activity graphs
are converted into a series of state-action pairs with the help
of zone structure of the map and spatio-temporal information
present in each node. The last node of the activity graph is
considered as terminal state of the episode. By applying a
fixed cost per km to the weight of the edge the cost of travel
between nodes is determined. If the cruising trajectory ends
with finding a passenger, a positive reward is awarded.

Volume 8, Issue 11

Published by, www.ijert.org 175

www.ijert.org

Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

IETE —2020 Conference Proceedings

The equation (9) given below[4] represents an episode for
activity graph shown in Fig. 7. Let S« be the state and Zy be
the zone of node X, Serm is the terminal state.

(Say Zb) - (Sby Zc) - (SCy Zd) - (Sd, Ze) - Sterm
(9)

The agent learns the Q values of state-action pairs from the
episodes. Once the Q values are obtained, the Q table is
updated with the new Q values and by referring to this Q
table the action with the highest Q value for a given state is
selected as the best action.

VI. RESULTS

On performing all these operation on a daily basis, the
model trains itself and makes itself more efficient with every
decision it makes. The model learns to predict the better
place and route to be on at any given instant. This data can
further be used by other taxi drivers or taxi company as
reference so that they can implement it in their daily lives
and thus a better functioning system is established for the
cab drivers.

The Fig 8 and Fig 9 are the snapshot of the simulation
obtained. Here R, G, B, Y are four different locations that
can be either pickup or drop off locations and A represents
the obstacles. The rectangular slab represents the location
of the taxi at any given time. In Fig 8 our agent gets a
negative reward of -1 points for taking a wrong action. In
Fig 9 our agent was able to successfully drop the passenger
to the right location and hence a positive reward of 1000
points was assigned to our agent.

Episode: 5
Timestep: 8
State: 319
Reward: -1

Fig 8: When negative reward is received

Episode:
Timestep: 12

State:
Rewards:

418
1000

Fig 9: When positive reward is received

Fig 10: Reward graph

The graph shown in Fig 10 shows the exponential growth
of the revenue of the driver as the data value and number of
decisions made by the model increases. The x axis gives the
number of hundreds of episodes and the y axis gives the
average reward after episodes. From the graph we can see
that initially when the number of episodes is zero or in other
words when we first start to train our agent, the agent gets
negative rewards. But as the episodes increases the agent
starts to learn about its environment and as a result the
average reward assigned to the agent increases. After
training the agent for approximately around fifteen thousand
episodes the average reward value attains a maximum value
and remains constant after that. The accuracy of the agent
discussed in this paper is 83.36%. The driver will have to
download the app to keep the track of the customers.
Developing an app suitable for this work is kept as future
work.

VIl. CONCLUSION

The paper talks about the enhancements that can be made
in the field of taxi services so that it is user friendly and
make more accurate predictions. In this paper, an RL agent,
with no knowledge of the environment or taxi demand
scenario, is capable of obtaining revenue which is
comparable to (and in some cases higher than) revenue
earned by top 10 percentile of drivers.

REFERENCES

[1] Samuel Daulton, Sethu Rmamn, Tijl Kindt, “NYC taxi data prediction

[2] Aishwarya Ramachandran “Machine Learning to predict taxi fare -Part
one: Exporatory Analysis” 18 Aug 2018.

[3] Aishwarya Ramachandran “Machine Learning to predict taxi fare -Part
two: Predictive modeling” 22 Sept 2018.

[4] Tanvi Verma, Pradeep Varakantham, Sarit Kraus, Hoong Chuin Lau
“Augmenting Decision of Taxi Drivers through reinforcement Learning
For Improving Revenue” 2017.

[5] Whong, Chris. ”FOILing NYCs Taxi Trip Data. N.p., 18 Mar. 2014.
Web. 11 Dec. 2014..

[6] Andre, D., and Russell, S. J. 2002. State abstraction for programmable
reinforcement learning agents. In AAAI/IAAI, 119-125.

[7]1 Reuters. 2016. Uber debuts self-driving vehicles in landmark pittsburgh
trial. Reuters, 14 September 2016. Available:
http://www.reuters.com/article/us-uberautonomous- idUSKCN11K12Y
[Last accessed: November 2016].

[8] Straitstimes. 2016. World’s first driverless taxi trial kicks off in
singapore. The Straits Times, 26 August 2016. Available:
http://www.straitstimes.com/singapore/transport/worldsfirst- driverless-
taxi-trial-kicks-off-in-singapore [Last accessed: November 2016].

[9] Parameshachari B D et. al “Big Data Analytics on Weather Data:
Predictive Analysis Using Multi Node Cluster Architecture”,
International Journal of Computer Applications (0975 - 8887)
proceedings of National Conference on Electronics, Signals and
Communication — 2017, pp 12-17,2017

Volume 8, Issue 11

Published by, www.ijert.org 176

www.ijert.org

