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Abstract—Several advancements has been made recently in 

the field of transportation system and taxis being a major part 

of urban transportation has seen a tremendous growth in the 

past few years through the use of online cab services such as 

Uber, Ola etc. Relying on these advances these aggregation 

systems such as Uber, Ola etc. was able to activate more cabs 

and thereby improved customer experience by increasing 

availability and by reducing wait times. A lot of studies were 

made in the customer’s perspective to give improved customer 

experience. But in this paper, the only focus is on improving 

performance from a driver’s perspective by using current and 

past movement trajectories and trips and thereby maximizing 

the long-term revenue earned by the driver. 

 

Keywords—Reinforcement Learning, Taxi Revenue, XG boost, 

Regression, Random forest, K-neighbor, Gradient boosting. 

 

I.  INTRODUCTION  

Generally, when there is no customer on board taxis roam 

around with no clear destination and this is referred to as 

“cruising”. Such a cruising taxi may find customers either on 

streets or due to being in proximity to customers who put in a 

request to taxi aggregation systems such as Uber, Ola etc. In 

such cases, it is necessary for the taxi to be in the right 

location at the right time to increase revenue by reducing 

cruising time. In this paper we focus on developing a 

Reinforcement Learning approach with the aim of maximizing 

long-term revenue by providing guidance to cruising taxi 

drivers to be on the right locations to be at different times of 

the day on different days of the week. Reinforcement learning 

is an ideal approach for this problem due to the following 

reasons: (a) In order to find customers during cruising we need 

to make a sequence of decisions, say for example, the driver 

can wait in current zone for 5 minutes, and if no customer 

found, the driver can wait for 5 more minutes and if the driver 

still fails to find a customer then move to another zone; (b) 

Reinforcements are well-defined, i.e., cost from traveling 

between locations and the sum of revenue earned from a 

customer; (c) Customer demand is uncertain and RL 

approaches can capture such uncertainty quite well; and 

finally (d) Because of its learning focus, RL can adapt to any 

changes in demand patterns. 

 

II. DATA 

A. Data Collection and Exploration 

Data collection is the process of gathering and measuring 

information on targeted variables. The dataset used in this 

paper consist of 50000 rows and seven column attributes 

containing information as longitude and latitude of pickup and 

drop off locations, passenger count ,pickup date and time etc. 

Training data has one more attribute for fare amount. Data 

exploring being the first step in data analysis refers to view the 

dataset in an organized way. 

 

B. Data Pre-processing 

This is the most important. part in the machine learning 

workflow. It is the process of preparing the raw data and 

transforming the raw data into an understandable format. The 

algorithm is completely dependent on how the data is fed into 

it. Therefore feature engineering being an integrated step in 

data pre-processing should be given top priority for every 

project. The advantages of the pre-processing of the data is 

that it reduces Over-fitting i.e. redundancy of the data can be 

reduced by which opportunity to make decisions based on 

noise is minimized and fewer misleading data results in 

improving modeling accuracy. Another advantage of data pre-

processing is that it reduces training time i.e. fewer data points 

reduce algorithm complexity and algorithms train faster. In 

this paper the dataset is divided into training set used for 

training the model and test set used to test the trained model. 

70% of the dataset is given as training set and the remaining 

30% of the dataset forms the test set. The flowchart in Fig 1 

gives the basic steps followed in the paper.  
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Fig 1: Flowchart showing the basic steps  

 

III. TAXI DATASET 

Datasets are an integral part in the field of machine 

learning. The dataset used in this paper is a New-York taxi 

dataset which is obtained from Kaggle. The taxi dataset used 

in this paper has seven attributes namely key, pickup_date, 

pickup_longitude, pickup_latitude, dropoff_longitude, 

dropoff_latitude and passenger_count. The training set also 

have a dependent attribute named fare_amount. 

 

A. Defining boundaries 

Since we need to work in a finite environment it is 

important to define a boundary. For this a boundary box is 

defined with the help of the minimum longitude and latitude, 

and the maximum longitude and latitude. Now any location 

data point with the corresponding longitude and latitude 

values below the minimum value or above the maximum 

value can be removed from the dataset since it is out of scope. 

We will be considering only those points that lie inside the 

defined boundary box. 

B. Preparing dataset for model training 

•  In the dataset, there can be some rows where some of 

the attribute values can be missing. Say for example, 

the dropoff_longitude value is absent in some row. In 

that case the model would not be able to give accurate 

results. Hence it is important to remove all the missing 

data from the dataset in order to give accurate 

predictions. 

•  In the dataset there are longitude and latitudes that 

corresponds to locations in water bodies. These data 

points are considered as noise as it make no sense if the 

drop off or pickup locations are in water because taxi 

services cant be made available in water bodies. Hence 

it is necessary to remove all the data points that lie in 

water bodies. 

 

C. Data analysis 

•   To further analyze the dataset we tried to visualize 

traffic density by the hour (and year). Counting the 

number of pickups in an area will give us some 

impression of the traffic density. If the traffic is more 

then there are chances that it would take a lot of time 

for the driver to make a ride. Visualization of the 

traffic density by the hour (and year) for two days 

(Monday and Friday) for the year 2014 is given in the 

Fig 2 and Fig 3. 

 

•   Before building any model it is important to test 

some basic intuition. Visualization of distance time 

relation and distance fare relation has to be done. It can 

be observed that if distance between pickup and drop-

off location is longer, the fare amount will also be 

high. It is to be noted that fare at night is different from 

fare at day time. Also for some trips, like to/from an 

airport, have fixed fee regardless of the pickup or drop 

off location. 

Fig 2: Pick up density, year=2014,day= Monday 

   Fig 3: Pick up density, year=2014,day= Friday 
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IV. EVALUATING VARIOUS MODELS 

Different models will be generated by using different 

techniques-Linear Regression, Polynomial Regression, K- 

neighbor regression, Random Forest, Gradient Boosting and 

Extreme Gradient (XG) boost to generate the fare amount. 

The generated models will be then evaluated and analyzed on 

the basis of its RMSR values and the best among them will be 

selected for the resourceful implementation of this project. 

Lesser the RMSR value better will be the efficiency of our 

model. 

 

A. Linear Regression 

This is a machine learning algorithm which is based on 

supervised learning. This regression performs the task to 

predict a dependent variable value based on given independent 

variable. So this regression technique finds out a linear 

relationship between input and output [9]. The following steps 

have been used for generating linear regression model: 

1) Import package and class: The first step is to import 

the package numpy and class Pipeline from sklearn.pipeline, 

class, LinearRegression from sklearn.linear_model and the 

class StandardScaler from sklearn.preprocessing. Now we 

have all the functionalities that we need to implement linear 

regression model. 

2) Provide data and create a model: The data is then 

provided and eventually the appropriate transformations are 

done. Then the regression model is created by using existing 

data. 

3) Checking the results and predicting the response: The 

model is then fitted. After this we will get the results to check 

whether the model works satisfactorily. Once there is a 

satisfactory model, it will be then used for predictions with 

either existing or new data. 

 

B. Polynomial Regression 

This is a form of regression analysis in which relationship 

between the independent variable x and the dependent 

variable y is modeled as a nth degree polynomial. Some 

polynomial terms will be added to the Multiple Linear 

Regression equation to convert it into Polynomial regression. 

This is a linear model with some modification in order to 

increase the accuracy. The dataset used in Polynomial 

regression for training is of non-linear in nature. It makes use 

of Linear Regression model to fit the complicated and non- 

linear functions and dataset. The original features are 

converted into polynomial features of degree 2 and is then 

modeled using a linear model. The main steps involved in 

polynomial regression are given below: 

1) Data pre-processing and building a Polynomial 

regression model: In data pre-processing the data gets 

encoded so that it can be brought to such a state that now the 

machine can easily parse it. The features of data can now be 

easily interpreted by the algorithm. Then the linear regression 

model is built and fitted to the dataset. In building polynomial 

regression model, linear regression model is taken as 

reference. Once the polynomial regression model is built, it 

will be different from the simple linear model. Here we are 

using PolynomialFeatures class of pre-processing libraries. 

2) Visualizing the result and predicting the output: The 

result of polynomial regression model is then visualized and 

then the final result with the polynomial regression model is 

then predicted and compared with Linear Model. 

 

C. K- Neighbor Regression 

K Nearest Neighbor is an algorithm that stores all 

available cases and predict the numerical target based on a 

similarity measures. The main steps involved in K- 

Neighbor Regression are given below: 

1) Importing and splitting the data: First the class 

KNeighbourRegressor is imported from sklearn.neighbours. 

Then the dataset is imported and split into training and testing 

set. 

2) Calculating the Euclidean distance: After finding the k 

parameter which is the number of Neighbors we calculate the 

distance between the query instances and all the training 

samples. Based on the k-th minimum distance the nearest 

neighbours are determined.  

3) Prediction of the query instance: This is done by 

simply taking the simple majority of the category of the 

nearest neighbours. 

 

D. Random Forest 

This is a tree based algorithm which involves building 

several decision trees, then their output is combined to 

improve generalization ability of the model. Here a 

combination of weak learners(individual decision trees) 

produces a strong learner. In simple words you can say a 

random forest is a collection of several decision trees. A 

random forest works the following way: 

1) First it uses the bagging algorithm to create random 

samples. Given a dataset (n rows and p columns),it creates 

new dataset by sampling cases at random with replacement 

from the original data. About one third of the rows of the 

given dataset are left out, known as Out Of Bag samples 

(OOB). 

2) Then the model trains on the new dataset. OOB 

samples are used to determine unbiased estimate of the error. 

Out of p columns, P<<p columns are selected at each node in 

the dataset. The P columns are selected at random. The 

default choice of P is p/3 for the regression tree.  

3) Here unlike a decision tree, no pruning takes place 

in random forest i.e. each tree is fully grown. In pruning a 

subtree is selected that leads to the lowest test error rate. 

Cross validation is used to determine the test error rate of a 

subtree. 

4) Several trees are grown and the final prediction is 

obtained by averaging or voting. 

Here each tree is grown on a different sample of original 

data. The main advantage of random forest is that it is robust 

to correlated predictors and takes care of missing data 

internally in an effective manner. 

E. Gradient Boosting 

This is a machine learning technique for regression and 

classification, which produces a prediction model in the form 

of an ensemble of weak prediction models, typically decision 

trees. It is a boosting technique. Boosting is an ensemble 

technique of converting weak learners into strong learners. 

Similar to random forest, gradient boosting is a set of 
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decision trees. By using gradient descent and updating our 

predictions based on a learning rate, we can find the values 

where MSE(Mean Square Error) is minimum. Gradient 

boosting trains the model gradual, additive and sequential 

manner. It basically involves three elements which are 

discussed below: 

1) A loss function to be optimized: The loss function 

depends on the type of problem being solved. A benefit of the 

gradient boosting framework is that a new boosting algorithm 

does not have to be derived for each loss function, instead it is 

generic enough framework that any differentiable loss 

function can be used. 

2) A weak learner to make prediction: Decision trees are 

used as the weak learner in gradient boosting. We can say the 

gradient boosting technique reduces error sequentially. Trees 

are constructed in a greedy manner in such a way that the loss 

will be as minimum as possible. The weak learner is 

constrained in specific ways, such as maximum number of 

layers, nodes, splits or leaf nodes to ensure that the learners 

remain weak, but can still be constructed in a greedy manner.  

3) An additive model to add weak learners to minimize 

the loss function: Trees are added one at a time, and existing 

trees in a model are not changed. A gradient descent 

procedure is used to minimize the loss when adding trees. 

 

F. XG Boost 

Extreme gradient boosting is similar to gradient 

boosting framework but more efficient. It has both linear 

model solver and tree learning algorithm. Its capacity to do 

parallel computation on a single machine makes it very 

fast. It is 10 times faster than existing gradient boosting 

implementations. It supports various objective functions, 

including regression, classification and ranking. 

XG boost only works with numeric vectors. Therefore 

all other forms of data are first converted into numeric 

vectors. One Hot Encoding is a method which is used to 

convert categorical variable into numeric vector. This step 

will make a sparse matrix using flags on every possible 

value of that variable. Sparse Matrix is a Matrix where 

most of its values are zeroes. Conversely dense matrix is a 

matrix where most of the values are non zeroes.  

Fig 4 shows the different RMSR (Root Mean Square 

Rate) values of the models generated by different 

techniques. RMSR value shows how much percentage 

factual output which is predicted by the model varies with 

the ideal output. 
 

 

 

 

 

  

 

 

 

  

 

  Fig 4: Different RMSR values of the models. 

 

Lower values of RMSR indicates better fit. So, among 

all the models generated by different techniques, XG boost 

is best suited for the resourceful implementation of this 

project. 

Fig 5 shows the accuracy of the model when XG boost 

is implemented. At the x axis we have the actual output and 

at the y axis we have the obtained output. The red line is 

the output of our agent and the blue dots indicates the 

actual output values. The Root Mean Square Error(RMSE) 

value obtained when XG boost is applied to our model is 

3.75. This value gives the difference between actual output 

and the predicted output. 

 The Fig 6 is a histogram that gives an idea about the 

accuracy of the model when XG boost is applied. The x 

axis is the difference between actual output and the 

predicted output and y axis shows the performance of the 

model. It is understood from the histogram when the 

difference between the actual and the predicted output is 

zero, the system performs with maximum accuracy. This is 

the ideal condition. As the difference between the actual 

and predicted output become non-zero values then we can 

say the agent is operating in a more practical condition. 

Fig 5: Accuracy of the model when XG boost is used 
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         Fig 6: Histogram prediction error 

 

Type Linear Polynomial KNN Gradient RF XGB 

Obtain 

ed 

RMSR 

5.77 5.12 4.70 4.45 4.29 4.25 

Table 1:RMSR values for various techniques 

 

Model with the least Root Mean Square Rate (RMSR) 

value will be used to implement the agent discussed in the 

paper. On comparing it is observed that Extreme Gradient 

(XG) boost which is the more efficient version of Gradient 

boosting is best suited for this model since it has the least 

RMSR value. Table 1 shows the various RMSR values 

obtained for different techniques. 

 

V. INTRODUCING RL TO THE MODEL 

   Reinforcement learning is defined as the study of decision-

making over time, that trains the algorithms using a system of 

reward and punishment. A reinforcement learning algorithm, 

or agent, interacts with its environment and the agent receives 

rewards if correct actions are performed and receive 

punishments if incorrect actions are performed. This way the 

agent learn on its own without any human intervention and 

tries to maximize the reward and reduce the penalty. In this 

paper we assign various rewards for different actions. Say for 

eg the agent receives a reward every time the revenue earned 

by the driver is higher than the amount spent by the driver 

during the time of the cruising, and receives a punishment 

every time the revenue earned by the driver is lesser than 

amount spent by the driver during the time of cruising, also if 

the revenue is more than 1000 our agent receives a reward, 

for every correct turn it gets a reward of 20 points and for 

every  incorrect decision it gets a negative reward of -1 points 

etc. 

Q learning is a model-free off policy reinforcement 

algorithm that comes up with a policy that tells the agent to 

take proper actions under various circumstances. Every 

action that an agent takes has a q value which is the expected 

discounted future reward. Now it is important for the agent 

to have a memory. This is where the Bellman equation comes 

to play. We use the Bellman equation to enable our agent 

with a memory. 

                 V(s)=max(R(s, a)+γ V(s’))                           

(1) 

The equation (1) shown above is the original bellman 

equation. In order to join the probabilities of the actions 

that are taken in the above equation we need to associate a 

probability with each of the terms to quantify our agent, if 

it has any chance of taking a particular action. Then the 

above equation has to be modified as: 

V(s)=max(R(s, a) + γ Σ s’ P(s, a, s’)V(s’))       (2) 

The equation (2) is the Bellman equation with Markov 

decision process. Now we have to transition to Q learning . 

We need to get an equation to quantify the quality of 

particular action. 

Q(s, a)=(R(s, a) + γ Σ (P(s, a, s’) max Q(s’,a’))   (3) 

  The equation (3) shown above is the Bellman equation 

with q values. 

 

A. Working of RL based model 

Let us consider a scenario where the taxi drivers cruising 

trajectory started from a point A and ended at a point E. 

In the beginning, assume that the driver made the decision 

to go to a destination E at the point A itself. Without any 

conscious reasoning, if the taxi driver had made a decision to 

go to E at A, then the driver would have chosen a path such 

that the chosen path is close to the shortest path distance 

between the points A and E. In this case simply assume that, E 

is not close to the shortest path distance. So now it is 

important to identify the point on the cruising path which is 

close to the shortest path distance to E. Say this point is D. 

Then it is evaluated if the driver could make the decision to go 

to point D at A itself. If this decision cannot be made, then the 

point where the driver decided to go to point D is identified. 

Assume that point C is that point. This computation is 

repeated further until the final trajectory A, B, C, D, E is 

obtained as shown in Fig. 7 [4] 

 

 

Fig 7: Activity diagram for cruising path 

 

B. Framework 

     When a taxi driver drops off a customer, and is looking for 

a new customer, he can either choose to stay in the area and 

wait for a new passenger there, or he can travel to a new 

location. Traveling to a new location comes with an 

associated cost, but if the new location is chosen correctly it 

will impact future trips to improve the revenue for the day. 

We can define the states, reward and value functions as: 

. 

• States: (z, t) a drop off zone at a corresponding time 

• Reward: R(z1, t1) average trip fair of one trip for a 

pickup zone z1 at time t1 

• Value function: V (z, t) gives the expected total 

revenue to the end of the day starting from state (s, t). 
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    In a traditional reinforcement learning model the intention 

of the driver would be an important feature. In practice, 

although a driver may intend to drive to a particular location, 

there are chances that he may find a customer along the way. 

However, it is not possible to know a driver’s intention from 

historical data because we only know where he ends up 

picking the next customer. So in order to reduce the difficulty 

in estimating the model parameters from historical data, we 

consider a simplified policy: 

   Policy: π(z, t)=z1 the next pickup zip-code from state 

(z,t).The driver goes to z1 directly and will keep searching 

inside z1 until he picks up the next customer at z1. 

Then, we can write down the value function as: 

 

     Vπ (z, t) 

=E[f(π(z, t),Z’, Tpick)+Vπ (Z’, Tnext)] 

=E[∑(P(z1, z’, Tpick) f (z1,z’, Tpick)+ Vπ(z’,Tnext))] 

=E[R(z1,Tpick)+ ∑P(z1,z’,Tpick) Vπ(z’,Tnext)]                            

(4) 

 

  The equation (4) shows the value function where Z’, Tpick, 

Tnext represents the random zip-code that the customer at z1 

and the random drop-off time at Z’ respectively. f(z1,z’,Tpick) 

is the trip fare from z1 to z’ at the time t and P(z1,,z’,Tpick) is a 

customers transition probability from z1 to z’.The above 

equation hold after assuming that all the random variables 

are independent. To further quantify Tpick and Tnext, we have 

Tpick= t+∆travel(z,z1)+∆search(z1)                                                   

(5) 

Tnext=Tpick+∆trip(z1,z’)                                                                

(6) 

 From equation (5) and equation (6) it can be seen that Tpick 

and Tnext are further quantified. ∆travel, ∆search and ∆trip are the 

random time intervals for the time cost traveling from z to z1 

without a passenger, searching for the next customer at z1, 

and driving passenger from z1 to z’ respectively. Finally, we 

replace all the random time with their expectations. As the 

value function is almost linear in t and the estimates of 

R(z1,t1) and P(z1,,z’,t) will be piece wise constant in hour, this 

approximation should be accurate enough most of the time. 

The optimal value function can be defined as shown below in 

equation (7): 

 

                         V*(z, t)=max Vπ(z, t)                                     

(7) 

 

Then, it will satisfy the equation (8) shown below: 

 

         V*(z, t)=max{R(z1, tpick)+∑P(z1,z’, tpick)V*(z’, tnext)}     

(8) 

 

Where 

tpick=t+δtravel (z, z1, t)+δsearch (z1,t+δtravel (z, z1,t))                           

tnext =tpick+δtrip(z1,z’,tpick)                                                            

 

C. Agent class 

  If this framework is used, then it is needed to fill the 

following: 

can define the states, reward and value functions as: 

 

1) State and Action Size. 

2) Hyper-parameters. 

3) Create a neural-network model in function 

'build_model()'. 

4) Define epsilon-greedy strategy in function 

'get_action()'. 

5) Complete the function 'append_sample()'. This 

function appends the recent experience tuple <state, action, 

reward, new-state> to the memory. 

6) Complete the 'train_model()' function with following 

logic: 

 

• If the memory size is greater than mini-batch size, 

then randomly sample experiences from memory as 

per the mini-batch size and do the following: 

• Initialize the input and output batch for training the 

model. 

• Calculate the target Q value for each sample: reward + 

gamma*max(Q(s', a,)). 

• Get Q(s', a) values from the last trained model. 

• Update the input batch as the encoded state and output 

batch as the Q-values. 

• Then fit the DQN model using the updated input and 

output batch. 

 

Q-network Architecture: 

• Input: encoded state i.e. each vector is a combination 

of locations + hours in a day + days in a week. 

• output: q-values for all actions including (0, 0). 

 

Hyper-parameters 

• state_size: vector length of encoded states (number of 

neurons in input layer): (36 -> 5 zones + 24 hours + 7 

days). 

• action_size: vector length of predicted q_values for 

all actions. 

• learning_rate: amount that the weights are updated 

during training. 

• discount_factor: affects how much weight is given to 

the future rewards in the value function. 

• batch_size: batch size used in neural network for 

training 

• memory_length: replay memory buffer size 

• nn_epochs: number of epochs for neural network 

 

D. DQN block 

    Episodes: For implementing reinforcement learning we 

need to convert activity graphs into episodes. Each node in 

the activity graph shown in Fig. 7 represents a state and the 

subsequent node represents the action taken. Activity graphs 

are converted into a series of state-action pairs with the help 

of zone structure of the map and spatio-temporal information 

present in each node. The last node of the activity graph is 

considered as terminal state of the episode. By applying a 

fixed cost per km to the weight of the edge the cost of travel 

between nodes is determined. If the cruising trajectory ends 

with finding a passenger, a positive reward is awarded.  
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     The equation (9) given below[4] represents an episode for 

activity graph shown in Fig. 7. Let Sx be the state and Zx be 

the zone of node X, Sterm is the terminal state. 

(Sa, Zb)  → (Sb, Zc)  → (Sc, Zd)  → (Sd, Ze) → Sterm                                

(9) 

The agent learns the Q values of state-action pairs from the 

episodes. Once the Q values are obtained, the Q table is 

updated with the new Q values and by referring to this Q 

table the action with the highest Q value for a given state is 

selected as the best action. 

 

VI. RESULTS 

On performing all these operation on a daily basis, the 

model trains itself and makes itself more efficient with every 

decision it makes. The model learns to predict the better 

place and route to be on at any given instant. This data can 

further be used by other taxi drivers or taxi company as 

reference so that they can implement it in their daily lives 

and thus a better functioning system is established for the 

cab drivers. 

The Fig 8 and Fig 9 are the snapshot of the simulation 

obtained. Here R, G, B, Y are four different locations that 

can be either pickup or drop off locations and A represents 

the obstacles. The rectangular slab represents the location 

of the taxi at any given time. In Fig 8 our agent gets a 

negative reward of -1 points for taking a wrong action. In 

Fig 9 our agent was able to successfully drop the passenger 

to the right location and hence a positive reward of 1000 

points was assigned to our agent. 

 

 

 

 

 

 

 

 

 

 

 
Fig 8: When negative reward is received  

 

 

 

 

 

 

 

 

 

 
 

Fig 9: When positive reward is received 

 
Fig 10: Reward graph 

 

 The graph shown in Fig 10 shows the exponential growth 

of the revenue of the driver as the data value and number of 

decisions made by the model increases. The x axis gives the 

number of hundreds of episodes and the y axis gives the 

average reward after episodes. From the graph we can see 

that initially when the number of episodes is zero or in other 

words when we first start to train our agent, the agent gets 

negative rewards. But as the episodes increases the agent 

starts to learn about its environment and as a result the 

average reward assigned to the agent increases. After 

training the agent for approximately around fifteen thousand 

episodes the average reward value attains a maximum value 

and remains constant after that. The accuracy of the agent 

discussed in this paper is 83.36%. The driver will have to 

download the app to keep the track of the customers. 

Developing an app suitable for this work is kept as future 

work. 
 

VII. CONCLUSION  

 The paper talks about the enhancements that can be made 

in the field of taxi services so that it is user friendly and 

make more accurate predictions. In this paper, an RL agent, 

with no knowledge of the environment or taxi demand 

scenario, is capable of obtaining revenue which is 

comparable to (and in some cases higher than) revenue 

earned by top 10 percentile of drivers. 
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