
Improving Taxi Revenue using Reinforcement

Learning

Shahil Subham
Dept. of ECE

R. N. S. Institute of Technology

Bangalore, India

Saurabh Singh
Dept. of ECE

R. N. S Institute of Technology

Bangalore, India

Anusha Sunil Kumar
Dept. of ECE

R. N. S. Institute of Technology

Bangalore, India

Farheen Fatima
Dept. of ECE

R. N. Shetty Institute of Technology

Bangalore, India

Geetha G

Assistant Professor

Dept. of ECE

R. N. Shetty Institute of Technology

Bangalore, India

Abstract—Several advancements has been made recently in

the field of transportation system and taxis being a major part

of urban transportation has seen a tremendous growth in the

past few years through the use of online cab services such as

Uber, Ola etc. Relying on these advances these aggregation

systems such as Uber, Ola etc. was able to activate more cabs

and thereby improved customer experience by increasing

availability and by reducing wait times. A lot of studies were

made in the customer’s perspective to give improved customer

experience. But in this paper, the only focus is on improving

performance from a driver’s perspective by using current and

past movement trajectories and trips and thereby maximizing

the long-term revenue earned by the driver.

Keywords—Reinforcement Learning, Taxi Revenue, XG boost,

Regression, Random forest, K-neighbor, Gradient boosting.

I. INTRODUCTION

Generally, when there is no customer on board taxis roam

around with no clear destination and this is referred to as

“cruising”. Such a cruising taxi may find customers either on

streets or due to being in proximity to customers who put in a

request to taxi aggregation systems such as Uber, Ola etc. In

such cases, it is necessary for the taxi to be in the right

location at the right time to increase revenue by reducing

cruising time. In this paper we focus on developing a

Reinforcement Learning approach with the aim of maximizing

long-term revenue by providing guidance to cruising taxi

drivers to be on the right locations to be at different times of

the day on different days of the week. Reinforcement learning

is an ideal approach for this problem due to the following

reasons: (a) In order to find customers during cruising we need

to make a sequence of decisions, say for example, the driver

can wait in current zone for 5 minutes, and if no customer

found, the driver can wait for 5 more minutes and if the driver

still fails to find a customer then move to another zone; (b)

Reinforcements are well-defined, i.e., cost from traveling

between locations and the sum of revenue earned from a

customer; (c) Customer demand is uncertain and RL

approaches can capture such uncertainty quite well; and

finally (d) Because of its learning focus, RL can adapt to any

changes in demand patterns.

II. DATA

A. Data Collection and Exploration

Data collection is the process of gathering and measuring

information on targeted variables. The dataset used in this

paper consist of 50000 rows and seven column attributes

containing information as longitude and latitude of pickup and

drop off locations, passenger count ,pickup date and time etc.

Training data has one more attribute for fare amount. Data

exploring being the first step in data analysis refers to view the

dataset in an organized way.

B. Data Pre-processing

This is the most important. part in the machine learning

workflow. It is the process of preparing the raw data and

transforming the raw data into an understandable format. The

algorithm is completely dependent on how the data is fed into

it. Therefore feature engineering being an integrated step in

data pre-processing should be given top priority for every

project. The advantages of the pre-processing of the data is

that it reduces Over-fitting i.e. redundancy of the data can be

reduced by which opportunity to make decisions based on

noise is minimized and fewer misleading data results in

improving modeling accuracy. Another advantage of data pre-

processing is that it reduces training time i.e. fewer data points

reduce algorithm complexity and algorithms train faster. In

this paper the dataset is divided into training set used for

training the model and test set used to test the trained model.

70% of the dataset is given as training set and the remaining

30% of the dataset forms the test set. The flowchart in Fig 1

gives the basic steps followed in the paper.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

170

www.ijert.org

Fig 1: Flowchart showing the basic steps

III. TAXI DATASET

Datasets are an integral part in the field of machine

learning. The dataset used in this paper is a New-York taxi

dataset which is obtained from Kaggle. The taxi dataset used

in this paper has seven attributes namely key, pickup_date,

pickup_longitude, pickup_latitude, dropoff_longitude,

dropoff_latitude and passenger_count. The training set also

have a dependent attribute named fare_amount.

A. Defining boundaries

Since we need to work in a finite environment it is

important to define a boundary. For this a boundary box is

defined with the help of the minimum longitude and latitude,

and the maximum longitude and latitude. Now any location

data point with the corresponding longitude and latitude

values below the minimum value or above the maximum

value can be removed from the dataset since it is out of scope.

We will be considering only those points that lie inside the

defined boundary box.

B. Preparing dataset for model training

• In the dataset, there can be some rows where some of

the attribute values can be missing. Say for example,

the dropoff_longitude value is absent in some row. In

that case the model would not be able to give accurate

results. Hence it is important to remove all the missing

data from the dataset in order to give accurate

predictions.

• In the dataset there are longitude and latitudes that

corresponds to locations in water bodies. These data

points are considered as noise as it make no sense if the

drop off or pickup locations are in water because taxi

services cant be made available in water bodies. Hence

it is necessary to remove all the data points that lie in

water bodies.

C. Data analysis

• To further analyze the dataset we tried to visualize

traffic density by the hour (and year). Counting the

number of pickups in an area will give us some

impression of the traffic density. If the traffic is more

then there are chances that it would take a lot of time

for the driver to make a ride. Visualization of the

traffic density by the hour (and year) for two days

(Monday and Friday) for the year 2014 is given in the

Fig 2 and Fig 3.

• Before building any model it is important to test

some basic intuition. Visualization of distance time

relation and distance fare relation has to be done. It can

be observed that if distance between pickup and drop-

off location is longer, the fare amount will also be

high. It is to be noted that fare at night is different from

fare at day time. Also for some trips, like to/from an

airport, have fixed fee regardless of the pickup or drop

off location.

Fig 2: Pick up density, year=2014,day= Monday

 Fig 3: Pick up density, year=2014,day= Friday

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

171

www.ijert.org

IV. EVALUATING VARIOUS MODELS

Different models will be generated by using different

techniques-Linear Regression, Polynomial Regression, K-

neighbor regression, Random Forest, Gradient Boosting and

Extreme Gradient (XG) boost to generate the fare amount.

The generated models will be then evaluated and analyzed on

the basis of its RMSR values and the best among them will be

selected for the resourceful implementation of this project.

Lesser the RMSR value better will be the efficiency of our

model.

A. Linear Regression

This is a machine learning algorithm which is based on

supervised learning. This regression performs the task to

predict a dependent variable value based on given independent

variable. So this regression technique finds out a linear

relationship between input and output [9]. The following steps

have been used for generating linear regression model:

1) Import package and class: The first step is to import

the package numpy and class Pipeline from sklearn.pipeline,

class, LinearRegression from sklearn.linear_model and the

class StandardScaler from sklearn.preprocessing. Now we

have all the functionalities that we need to implement linear

regression model.

2) Provide data and create a model: The data is then

provided and eventually the appropriate transformations are

done. Then the regression model is created by using existing

data.

3) Checking the results and predicting the response: The

model is then fitted. After this we will get the results to check

whether the model works satisfactorily. Once there is a

satisfactory model, it will be then used for predictions with

either existing or new data.

B. Polynomial Regression

This is a form of regression analysis in which relationship

between the independent variable x and the dependent

variable y is modeled as a nth degree polynomial. Some

polynomial terms will be added to the Multiple Linear

Regression equation to convert it into Polynomial regression.

This is a linear model with some modification in order to

increase the accuracy. The dataset used in Polynomial

regression for training is of non-linear in nature. It makes use

of Linear Regression model to fit the complicated and non-

linear functions and dataset. The original features are

converted into polynomial features of degree 2 and is then

modeled using a linear model. The main steps involved in

polynomial regression are given below:

1) Data pre-processing and building a Polynomial

regression model: In data pre-processing the data gets

encoded so that it can be brought to such a state that now the

machine can easily parse it. The features of data can now be

easily interpreted by the algorithm. Then the linear regression

model is built and fitted to the dataset. In building polynomial

regression model, linear regression model is taken as

reference. Once the polynomial regression model is built, it

will be different from the simple linear model. Here we are

using PolynomialFeatures class of pre-processing libraries.

2) Visualizing the result and predicting the output: The

result of polynomial regression model is then visualized and

then the final result with the polynomial regression model is

then predicted and compared with Linear Model.

C. K- Neighbor Regression

K Nearest Neighbor is an algorithm that stores all

available cases and predict the numerical target based on a

similarity measures. The main steps involved in K-

Neighbor Regression are given below:

1) Importing and splitting the data: First the class

KNeighbourRegressor is imported from sklearn.neighbours.

Then the dataset is imported and split into training and testing

set.

2) Calculating the Euclidean distance: After finding the k

parameter which is the number of Neighbors we calculate the

distance between the query instances and all the training

samples. Based on the k-th minimum distance the nearest

neighbours are determined.

3) Prediction of the query instance: This is done by

simply taking the simple majority of the category of the

nearest neighbours.

D. Random Forest

This is a tree based algorithm which involves building

several decision trees, then their output is combined to

improve generalization ability of the model. Here a

combination of weak learners(individual decision trees)

produces a strong learner. In simple words you can say a

random forest is a collection of several decision trees. A

random forest works the following way:

1) First it uses the bagging algorithm to create random

samples. Given a dataset (n rows and p columns),it creates

new dataset by sampling cases at random with replacement

from the original data. About one third of the rows of the

given dataset are left out, known as Out Of Bag samples

(OOB).

2) Then the model trains on the new dataset. OOB

samples are used to determine unbiased estimate of the error.

Out of p columns, P<<p columns are selected at each node in

the dataset. The P columns are selected at random. The

default choice of P is p/3 for the regression tree.

3) Here unlike a decision tree, no pruning takes place

in random forest i.e. each tree is fully grown. In pruning a

subtree is selected that leads to the lowest test error rate.

Cross validation is used to determine the test error rate of a

subtree.

4) Several trees are grown and the final prediction is

obtained by averaging or voting.

Here each tree is grown on a different sample of original

data. The main advantage of random forest is that it is robust

to correlated predictors and takes care of missing data

internally in an effective manner.

E. Gradient Boosting

This is a machine learning technique for regression and

classification, which produces a prediction model in the form

of an ensemble of weak prediction models, typically decision

trees. It is a boosting technique. Boosting is an ensemble

technique of converting weak learners into strong learners.

Similar to random forest, gradient boosting is a set of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

172

www.ijert.org

decision trees. By using gradient descent and updating our

predictions based on a learning rate, we can find the values

where MSE(Mean Square Error) is minimum. Gradient

boosting trains the model gradual, additive and sequential

manner. It basically involves three elements which are

discussed below:

1) A loss function to be optimized: The loss function

depends on the type of problem being solved. A benefit of the

gradient boosting framework is that a new boosting algorithm

does not have to be derived for each loss function, instead it is

generic enough framework that any differentiable loss

function can be used.

2) A weak learner to make prediction: Decision trees are

used as the weak learner in gradient boosting. We can say the

gradient boosting technique reduces error sequentially. Trees

are constructed in a greedy manner in such a way that the loss

will be as minimum as possible. The weak learner is

constrained in specific ways, such as maximum number of

layers, nodes, splits or leaf nodes to ensure that the learners

remain weak, but can still be constructed in a greedy manner.

3) An additive model to add weak learners to minimize

the loss function: Trees are added one at a time, and existing

trees in a model are not changed. A gradient descent

procedure is used to minimize the loss when adding trees.

F. XG Boost

Extreme gradient boosting is similar to gradient

boosting framework but more efficient. It has both linear

model solver and tree learning algorithm. Its capacity to do

parallel computation on a single machine makes it very

fast. It is 10 times faster than existing gradient boosting

implementations. It supports various objective functions,

including regression, classification and ranking.

XG boost only works with numeric vectors. Therefore

all other forms of data are first converted into numeric

vectors. One Hot Encoding is a method which is used to

convert categorical variable into numeric vector. This step

will make a sparse matrix using flags on every possible

value of that variable. Sparse Matrix is a Matrix where

most of its values are zeroes. Conversely dense matrix is a

matrix where most of the values are non zeroes.

Fig 4 shows the different RMSR (Root Mean Square

Rate) values of the models generated by different

techniques. RMSR value shows how much percentage

factual output which is predicted by the model varies with

the ideal output.

 Fig 4: Different RMSR values of the models.

Lower values of RMSR indicates better fit. So, among

all the models generated by different techniques, XG boost

is best suited for the resourceful implementation of this

project.

Fig 5 shows the accuracy of the model when XG boost

is implemented. At the x axis we have the actual output and

at the y axis we have the obtained output. The red line is

the output of our agent and the blue dots indicates the

actual output values. The Root Mean Square Error(RMSE)

value obtained when XG boost is applied to our model is

3.75. This value gives the difference between actual output

and the predicted output.

 The Fig 6 is a histogram that gives an idea about the

accuracy of the model when XG boost is applied. The x

axis is the difference between actual output and the

predicted output and y axis shows the performance of the

model. It is understood from the histogram when the

difference between the actual and the predicted output is

zero, the system performs with maximum accuracy. This is

the ideal condition. As the difference between the actual

and predicted output become non-zero values then we can

say the agent is operating in a more practical condition.

Fig 5: Accuracy of the model when XG boost is used

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

173

www.ijert.org

 Fig 6: Histogram prediction error

Type Linear Polynomial KNN Gradient RF XGB

Obtain

ed

RMSR

5.77 5.12 4.70 4.45 4.29 4.25

Table 1:RMSR values for various techniques

Model with the least Root Mean Square Rate (RMSR)

value will be used to implement the agent discussed in the

paper. On comparing it is observed that Extreme Gradient

(XG) boost which is the more efficient version of Gradient

boosting is best suited for this model since it has the least

RMSR value. Table 1 shows the various RMSR values

obtained for different techniques.

V. INTRODUCING RL TO THE MODEL

 Reinforcement learning is defined as the study of decision-

making over time, that trains the algorithms using a system of

reward and punishment. A reinforcement learning algorithm,

or agent, interacts with its environment and the agent receives

rewards if correct actions are performed and receive

punishments if incorrect actions are performed. This way the

agent learn on its own without any human intervention and

tries to maximize the reward and reduce the penalty. In this

paper we assign various rewards for different actions. Say for

eg the agent receives a reward every time the revenue earned

by the driver is higher than the amount spent by the driver

during the time of the cruising, and receives a punishment

every time the revenue earned by the driver is lesser than

amount spent by the driver during the time of cruising, also if

the revenue is more than 1000 our agent receives a reward,

for every correct turn it gets a reward of 20 points and for

every incorrect decision it gets a negative reward of -1 points

etc.

Q learning is a model-free off policy reinforcement

algorithm that comes up with a policy that tells the agent to

take proper actions under various circumstances. Every

action that an agent takes has a q value which is the expected

discounted future reward. Now it is important for the agent

to have a memory. This is where the Bellman equation comes

to play. We use the Bellman equation to enable our agent

with a memory.

 V(s)=max(R(s, a)+γ V(s’))

(1)

The equation (1) shown above is the original bellman

equation. In order to join the probabilities of the actions

that are taken in the above equation we need to associate a

probability with each of the terms to quantify our agent, if

it has any chance of taking a particular action. Then the

above equation has to be modified as:

V(s)=max(R(s, a) + γ Σ s’ P(s, a, s’)V(s’)) (2)

The equation (2) is the Bellman equation with Markov

decision process. Now we have to transition to Q learning .

We need to get an equation to quantify the quality of

particular action.

Q(s, a)=(R(s, a) + γ Σ (P(s, a, s’) max Q(s’,a’)) (3)

 The equation (3) shown above is the Bellman equation

with q values.

A. Working of RL based model

Let us consider a scenario where the taxi drivers cruising

trajectory started from a point A and ended at a point E.

In the beginning, assume that the driver made the decision

to go to a destination E at the point A itself. Without any

conscious reasoning, if the taxi driver had made a decision to

go to E at A, then the driver would have chosen a path such

that the chosen path is close to the shortest path distance

between the points A and E. In this case simply assume that, E

is not close to the shortest path distance. So now it is

important to identify the point on the cruising path which is

close to the shortest path distance to E. Say this point is D.

Then it is evaluated if the driver could make the decision to go

to point D at A itself. If this decision cannot be made, then the

point where the driver decided to go to point D is identified.

Assume that point C is that point. This computation is

repeated further until the final trajectory A, B, C, D, E is

obtained as shown in Fig. 7 [4]

Fig 7: Activity diagram for cruising path

B. Framework

 When a taxi driver drops off a customer, and is looking for

a new customer, he can either choose to stay in the area and

wait for a new passenger there, or he can travel to a new

location. Traveling to a new location comes with an

associated cost, but if the new location is chosen correctly it

will impact future trips to improve the revenue for the day.

We can define the states, reward and value functions as:

.

• States: (z, t) a drop off zone at a corresponding time

• Reward: R(z1, t1) average trip fair of one trip for a

pickup zone z1 at time t1

• Value function: V (z, t) gives the expected total

revenue to the end of the day starting from state (s, t).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

174

www.ijert.org

 In a traditional reinforcement learning model the intention

of the driver would be an important feature. In practice,

although a driver may intend to drive to a particular location,

there are chances that he may find a customer along the way.

However, it is not possible to know a driver’s intention from

historical data because we only know where he ends up

picking the next customer. So in order to reduce the difficulty

in estimating the model parameters from historical data, we

consider a simplified policy:

 Policy: π(z, t)=z1 the next pickup zip-code from state

(z,t).The driver goes to z1 directly and will keep searching

inside z1 until he picks up the next customer at z1.

Then, we can write down the value function as:

 Vπ (z, t)

=E[f(π(z, t),Z’, Tpick)+Vπ (Z’, Tnext)]

=E[∑(P(z1, z’, Tpick) f (z1,z’, Tpick)+ Vπ(z’,Tnext))]

=E[R(z1,Tpick)+ ∑P(z1,z’,Tpick) Vπ(z’,Tnext)]

(4)

 The equation (4) shows the value function where Z’, Tpick,

Tnext represents the random zip-code that the customer at z1

and the random drop-off time at Z’ respectively. f(z1,z’,Tpick)

is the trip fare from z1 to z’ at the time t and P(z1,,z’,Tpick) is a

customers transition probability from z1 to z’.The above

equation hold after assuming that all the random variables

are independent. To further quantify Tpick and Tnext, we have

Tpick= t+∆travel(z,z1)+∆search(z1)

(5)

Tnext=Tpick+∆trip(z1,z’)

(6)

 From equation (5) and equation (6) it can be seen that Tpick

and Tnext are further quantified. ∆travel, ∆search and ∆trip are the

random time intervals for the time cost traveling from z to z1

without a passenger, searching for the next customer at z1,

and driving passenger from z1 to z’ respectively. Finally, we

replace all the random time with their expectations. As the

value function is almost linear in t and the estimates of

R(z1,t1) and P(z1,,z’,t) will be piece wise constant in hour, this

approximation should be accurate enough most of the time.

The optimal value function can be defined as shown below in

equation (7):

 V*(z, t)=max Vπ(z, t)

(7)

Then, it will satisfy the equation (8) shown below:

 V*(z, t)=max{R(z1, tpick)+∑P(z1,z’, tpick)V*(z’, tnext)}

(8)

Where

tpick=t+δtravel (z, z1, t)+δsearch (z1,t+δtravel (z, z1,t))

tnext =tpick+δtrip(z1,z’,tpick)

C. Agent class

 If this framework is used, then it is needed to fill the

following:

can define the states, reward and value functions as:

1) State and Action Size.

2) Hyper-parameters.

3) Create a neural-network model in function

'build_model()'.

4) Define epsilon-greedy strategy in function

'get_action()'.

5) Complete the function 'append_sample()'. This

function appends the recent experience tuple <state, action,

reward, new-state> to the memory.

6) Complete the 'train_model()' function with following

logic:

• If the memory size is greater than mini-batch size,

then randomly sample experiences from memory as

per the mini-batch size and do the following:

• Initialize the input and output batch for training the

model.

• Calculate the target Q value for each sample: reward +

gamma*max(Q(s', a,)).

• Get Q(s', a) values from the last trained model.

• Update the input batch as the encoded state and output

batch as the Q-values.

• Then fit the DQN model using the updated input and

output batch.

Q-network Architecture:

• Input: encoded state i.e. each vector is a combination

of locations + hours in a day + days in a week.

• output: q-values for all actions including (0, 0).

Hyper-parameters

• state_size: vector length of encoded states (number of

neurons in input layer): (36 -> 5 zones + 24 hours + 7

days).

• action_size: vector length of predicted q_values for

all actions.

• learning_rate: amount that the weights are updated

during training.

• discount_factor: affects how much weight is given to

the future rewards in the value function.

• batch_size: batch size used in neural network for

training

• memory_length: replay memory buffer size

• nn_epochs: number of epochs for neural network

D. DQN block

 Episodes: For implementing reinforcement learning we

need to convert activity graphs into episodes. Each node in

the activity graph shown in Fig. 7 represents a state and the

subsequent node represents the action taken. Activity graphs

are converted into a series of state-action pairs with the help

of zone structure of the map and spatio-temporal information

present in each node. The last node of the activity graph is

considered as terminal state of the episode. By applying a

fixed cost per km to the weight of the edge the cost of travel

between nodes is determined. If the cruising trajectory ends

with finding a passenger, a positive reward is awarded.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

175

www.ijert.org

 The equation (9) given below[4] represents an episode for

activity graph shown in Fig. 7. Let Sx be the state and Zx be

the zone of node X, Sterm is the terminal state.

(Sa, Zb) → (Sb, Zc) → (Sc, Zd) → (Sd, Ze) → Sterm

(9)

The agent learns the Q values of state-action pairs from the

episodes. Once the Q values are obtained, the Q table is

updated with the new Q values and by referring to this Q

table the action with the highest Q value for a given state is

selected as the best action.

VI. RESULTS

On performing all these operation on a daily basis, the

model trains itself and makes itself more efficient with every

decision it makes. The model learns to predict the better

place and route to be on at any given instant. This data can

further be used by other taxi drivers or taxi company as

reference so that they can implement it in their daily lives

and thus a better functioning system is established for the

cab drivers.

The Fig 8 and Fig 9 are the snapshot of the simulation

obtained. Here R, G, B, Y are four different locations that

can be either pickup or drop off locations and A represents

the obstacles. The rectangular slab represents the location

of the taxi at any given time. In Fig 8 our agent gets a

negative reward of -1 points for taking a wrong action. In

Fig 9 our agent was able to successfully drop the passenger

to the right location and hence a positive reward of 1000

points was assigned to our agent.

Fig 8: When negative reward is received

Fig 9: When positive reward is received

Fig 10: Reward graph

 The graph shown in Fig 10 shows the exponential growth

of the revenue of the driver as the data value and number of

decisions made by the model increases. The x axis gives the

number of hundreds of episodes and the y axis gives the

average reward after episodes. From the graph we can see

that initially when the number of episodes is zero or in other

words when we first start to train our agent, the agent gets

negative rewards. But as the episodes increases the agent

starts to learn about its environment and as a result the

average reward assigned to the agent increases. After

training the agent for approximately around fifteen thousand

episodes the average reward value attains a maximum value

and remains constant after that. The accuracy of the agent

discussed in this paper is 83.36%. The driver will have to

download the app to keep the track of the customers.

Developing an app suitable for this work is kept as future

work.

VII. CONCLUSION

 The paper talks about the enhancements that can be made

in the field of taxi services so that it is user friendly and

make more accurate predictions. In this paper, an RL agent,

with no knowledge of the environment or taxi demand

scenario, is capable of obtaining revenue which is

comparable to (and in some cases higher than) revenue

earned by top 10 percentile of drivers.

REFERENCES
[1] Samuel Daulton, Sethu Rmamn, Tijl Kindt, “NYC taxi data prediction
[2] Aishwarya Ramachandran “Machine Learning to predict taxi fare -Part

one: Exporatory Analysis” 18 Aug 2018.

[3] Aishwarya Ramachandran “Machine Learning to predict taxi fare -Part
two: Predictive modeling” 22 Sept 2018.

[4] Tanvi Verma, Pradeep Varakantham, Sarit Kraus, Hoong Chuin Lau

“Augmenting Decision of Taxi Drivers through reinforcement Learning
For Improving Revenue” 2017.

[5] Whong, Chris. ”FOILing NYCs Taxi Trip Data. N.p., 18 Mar. 2014.

Web. 11 Dec. 2014..
[6] Andre, D., and Russell, S. J. 2002. State abstraction for programmable

reinforcement learning agents. In AAAI/IAAI, 119–125.

[7] Reuters. 2016. Uber debuts self-driving vehicles in landmark pittsburgh
trial. Reuters, 14 September 2016. Available:

http://www.reuters.com/article/us-uberautonomous- idUSKCN11K12Y

[Last accessed: November 2016].
[8] Straitstimes. 2016. World’s first driverless taxi trial kicks off in

singapore. The Straits Times, 26 August 2016. Available:
http://www.straitstimes.com/singapore/transport/worldsfirst- driverless-

taxi-trial-kicks-off-in-singapore [Last accessed: November 2016].

[9] Parameshachari B D et. al “Big Data Analytics on Weather Data:
Predictive Analysis Using Multi Node Cluster Architecture”,

International Journal of Computer Applications (0975 – 8887)

proceedings of National Conference on Electronics, Signals and
Communication – 2017, pp 12-17,2017

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IETE – 2020 Conference Proceedings

Volume 8, Issue 11

Special Issue - 2020

176

www.ijert.org

