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Abstract 
Map reduce has became an important distributed 

processing model for large scale data intensive 

application like dataminig, web indexing. Hadoop is 

an open source implementation of Mapreduce. For 

increasing the performance of parallelism, hadoop is 

having its own data placement algorithm, but we 

observe that many data intensive application exhibits 

interest locality, so hadoop data placement algorithm 

does not consider this interest locality. The default 

random placement algorithm does not perform well 

and is the way below the efficiency of optimal data 

distribution. So for this problem new Data-grouping-

Aware (DRAW) data placement scheme came into 

existence. Draw will increase the performance of map 

reduce by 36.4% in comparison with hardoop’s 

default random placement algorithm. Our aim is to 

still increase the performance of mapreduce. In 

Hadoop distributed file system the replication is done 

to entire file which requires more space, so this system 

uses the concept of replication of blocks know as data 

rebalancing scheme. Such a data rebalancing scheme 

can minimizes data transfer among slow and fast node 

in the cluster during the execution of Hadoop 

application. The data-replication approach has 

several limitations. Storing replica does require an 

unreasonably large amount of disks capacity, which in 

turn increases the cost of Hadoop clusters. So based 

on these limitations, we proposed data rebalancing 

scheme. In this scheme, only frequently accessed 

blocks should be replicated and it should be placed in  

a node which is not having the same block. In addition 

to Draw scheme, this proposed system implementing 

data rebalancing scheme. So that this will increase 

performance more than the previously used . 

 

Keywords: Hadoop, Data Rebalancing scheme, 

Mapreduce, DRAW. 

1. Introduction 

ApacheHadoop is an open-source software framework 

for storing and large scale processing of data-sets on 

clusters of commodity hardware. Hadoop is an Apache 

top level project being built and used by a global 

community of contributors and users. 

The Apache Hadoop framework is composed of the 

following modules: 

1. Hadoop Distributed File system (HDFS) – a 

distributed file –system that stores data on the 

commodity machines, providing very high 

aggregate bandwidth across the cluster. 

2. Hadoop Yarn – a resource-management 

platform responsible for managing compute 

resources in clusters and using them for 

scheduling of users application. 

3. Hadoop Mapreduce – programming model for 

large scale data processing. 

All the modules in hadoop are designed with a 

fundamental assumption that hardware failures are 

common and that should be automatically handled by 

the framework. Apache hadoop’s Mapreduce and hdfs 

components are originally derived respectively from 

Google’s Mapreduce and Google file system (GFS) 

papers. For the end-users, though Mapreduce Java code 

is common, any programming language can be used 

with "Hadoop Streaming" to implement the "map" and 

"reduce" parts of the user's program. Apache 

Pig, Apache Hive among other related projects expose 

higher level user interfaces like Pig Latin and a SQL 

variant respectively. The emerging data intensive 

application place a demand on high performance 

computing resources with massive storage. Academic 

and pioneers have been developing big data parallel 

computing frameworks and large scale distributed  file 

systems to facilitate high performance runs of data 
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intensive applications such as bio informatics[20]. 

Astronomy [19], and high-energy physics [17]. In 

practice, many scientific and engineering applications 

have interest locality: 1) domain scientists are only 

interested in a subset of the whole data set, and 2) 

scientists are likely to access one subset more 

frequently than others. For example, in the 

bioinformatics domain, X and Y chromosomes are 

related to the offspring’s gender. Both chromosomes 

are often analyzed together in generic research rather 

than all the 24 human chromosomes [11]. Regarding 

other mammal’s genome data pools, the chimpanzee is 

usually compared with human [14], Another example 

is, in the climate modeling and forecasting domain, 

some scientists are only interested in some specific 

time periods [23]. In summary, these co-related data 

have high possibility to be processed as a group by 

specific domain applications. Here, we formally define 

the “data grouping” to represent the possibility of two 

or more data (e.g., blocks in Hadoop) to be accessed as 

a group. Such data grouping can be quantified by a 

weight: a count that these data have already been 

accessed as a group. The potential assumption is that if 

two pieces of data have been already accessed together 

for many times, it is highly possible for them to be 

accessed as a group in future. 

 

Fig. 1. Simple  case showing the efficiency of data 

placement for MapReduce programs. 

 

By using hadoop’s default random placement strategy, 

the overall data distribution may be balanced, but there 

is no guarantee that the data accessed as a group is 

evenly distributed. For example if a group of data 

stored in a single node, then all the map task will assign 

on same node or they will schedule on the other node 

by accessing data remotely or they will schedule on the 

same node which they have to wait for some time 

because those blocks are already accessing by other  

Map tasks. This kind of situations will degrade the 

performance of map reduce, so to avoid this we have 

find the grouped data which were accessed by the Map 

tasks and should distribute those blocks in different 

nodes so that performance can be increased.  Dynamic 

data grouping is a effective for exploiting the 

predictability of data access patterns and improving the 

performance of distributed file systems [10]. We show 

an example in fig.1: if grouping data are distributed by 

hadoop’s random strategy, the shaded map tasks with 

either remote data access or queuing delay are the 

performance barriers;. Now we briefly analyze the 

possibility for random data distribution to evenly 

distribute the same data from the same group. Our 

observation shows this possibility is affected by three 

factors: 

1. The number of replica for each data block in 

each rack(NR); 

2. The maximum number of simultaneous map 

tasks on each node (NS) 

3. The data grouping access patterns. It is easy to 

conclude that the larger default random 

solution will achieve the optimal distribution: 

a) If suppose NR is extremely large, eg., the 

number of  replica for each data is same as number 

of nodes in cluster therefore we can achieve 

maximum parallelism but here there is a drawback 

that if NR is maximum then it will take more space  

b) Assume NS(maximum number of simultaneous 

map tasks) is extremely large, then waiting time 

will be more for e.g., Amazon’s EC2 and s3 

[1],[25]; is limited by the hardware capacity. 

Moreover, the data grouping is not considered in 

default Hadoop, which results in a non optimal 

data placement strategy for the data-intensive 

application. To achive optimality Data-Grouping-

Aware data placement scheme (DRAW)[26] was 

used . These Draw was proposed by jun wang, 

Qiangju Xiao, Jiangling Yin, Pengju Shang . The 

data grouping effects to significantly improve the 

performance for data-intensive applications with 

interest locality. Without loss of generality, we 

need to reduce the waiting time and also to  
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minimize total space usage without replicating all 

files. For this we proposed Data Rebalancing 

scheme i.e, only frequently accessed data blocks 

should be replicated.  Data rebalancing scheme 

was used. 

            With real world genome indexing [2] and 

astrophysics applications [9], DRAW is able to 

execute up to 59.8% more local map tasks in 

comparison with random placement. In addition, 

Data Rebalancing scheme reduces the completion 

time of map phase by more than 41.7% and the 

Map Reduce task more than 36.4% 

 

2. System Analysis 

2.1 Data –grouping aware data placement 

      algorithm 

In this we explained about how DRAW can be 

used at rack level, which optimizes the grouping-data 

distribution inside a rack. Before going to start DRAW 

we need to exploit the Name Node log file to analyze 

which task is accessing which data, so HDAG will help 

to analyze them. A data access history graph (HDAG) 

to exploit system log files to know the data grouping 

information. 

 

      A. History data access graph (HDAG) 

HDAG is a graph describing the access 

patterns among the files, which can be legend from the 

history of data accessed .In each hadoop cluster rack, 

Name Node maintains System logs recording every 

system operation including all files which have been 

accessed. By monitoring these files we can exploit 

mappings between tasks and files to accurately learn 

the file access Patterns. Note that in hadoop clusters, 

files are spilt in to blocks which is the basic data 

distribution unit; hence we need to translate the 

grouping information at file level in to block level 

fortunately, the mapping information between files and 

blocks can be found in the NameNode.Fig.2 shows an 

example of HDAG: given three Map Reduce tasks, t1 

access d1,d2,d3,d6,d7,d8 here d is block 

d2,d3,d4,d7,d9: t3 access d1,d2,d5,d6,d7,d10. 

 

 

Fig.2. Example showing HDAG. 

  

The accessing information initially generated from the 

log files is shown as Fig. 2(a). There after we can easily 

translate the table into the HDAG shown as Fig. 2(b). 

This translation step makes it easier to generate the 

grouping Matrix for the next step and also here with 

these HDAG we can know which task is accessing 

which data block .It will use full to replicate frequently 

accessed data block. 

 

 
Fig.2.(c) example showing the table of accessed blocks. 
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B.DGM (Data Grouping Matrix) 

 

Based on HDAG, we can generate a DGM 

showing the relation between every two data blocks. 

Given the same example as shown in Fig. 2, we can 

construct the DGM as shown in Fig. 2(d), where each 

element DGM i,j=grouping i,j can be calculated by 

counting the tasks in common between task sets of tsi 

and tsj. The elements in the diagonal of the DGM show 

the number of tasks that have used this data. In DRAW, 

DGM is a by matrix, where is the number of existing 

blocks. DGM will show the relationship among the data 

groups 

 

 
Fig 2(d) example for Data Grouping Matrix formed 

from HDAG 

at the same time; the grouping weight in the DGM 

denotes “how likely” one data should be grouped with 

another data. After knowing the DGM in Fig.2(c), we 

should form a cluster. For that Specifically, Bond 

Energy Algorithm (BEA) is used to transform the 

DGM to the clustered data grouping matrix (CDGM). 

Since a weighted matrix clustering problem is N-P 

hard, the time complexity to obtain the optimized 

solution is O(n^n). The BEA algorithm saves the 

computing cost by finding the suboptimal solution in 

time O(n^2)[13]; it has been widely utilized in 

distributed database systems for the vertical partition of 

large tables [18] and matrix clustering work [13]. The 

BEA (bond energy algorithm) algorithm clusters highly 

related data and helps the  data to  evenly distribute 

among nodes. 

 

Fig .2(e) example showing for CDGM(cluster data 

grouping matrix) 

 After generating CDGM, we can take OSM as 

group 2. In this case, group 1 and group 2 represent 

most related data sets. Assuming there are 5 Data 

Nodes in the Hadoop cluster, the CDGM in Fig.2 (e) 

shows data {6, 7, 2, 1, 3} as group 1 and {4, 9, 5, 10, 

8} as group 2 should be evenly distributed when placed 

on the 5 nodes. But in Fig2 (f) total we have only 10 

pieces of data in our example, after knowing that {6, 7, 

2, 1, 3} should be placed as a group (horizontally), it is 

natural to treat the left data {4, 9, 5, 10, 8} as another 

group.  Hence OSM are not necessary for our case, but 

when placing group 2 we can see that it s not evenly 

distribute you can see in fig 2(f) so for this we need 

another step to do i.e., ODPA. 

C. OPDA (Optimal Data Placement Algorithm) 

 

Knowing the data groups alone is not enough 

to achieve the optimal data placement. Given the same 

example from Fig.2 (f), random placing of each group, 

as shown in Fig. 2 (f), task 2 and task 3 can only run on 

4 nodes rather than 5, which is not optimal. This is 

because the above data grouping only considers the 

horizontal relationships among the data in DGM, So it 

is also necessary to make sure those blocks are on the 

same node that have minimal chance to be in the same 

group (vertical relationships). In order to obtain this 

information, we can use an algorithm named ODPA. 
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Fig 2(f) example random placing of each group  

  1. ODPA is based on sub matrix for ODPA 

(OSM) from CDGM. OSM indicates the dependencies 

among the data already placed and the ones being 

placed. For example, the OSM in Fig. 2(e) denotes the 

vertical relations between two different groups 

(group1:6, 7, 2, 1, 3 and group2:4, 9, 5, 10, 8). Take the 

OSM from Fig. 2(e) as an example, The ODPA 

algorithm starts from the first row in OSM, whose row 

index is 6. Because there is only one minimum value 0 

in column 9, we assign DP [6]={6,9} we assign , which 

means data 6 and 9 should be placed on the same data 

node because 9 is the least relevant data to 6. When 

checking row 7, there are five equal minimum values, 

which means any of these five data are equally related 

on data 7. To choose the optimal candidate among 

these five candidates, we need to examine their 

dependencies to other already placed data, which is 

performed by the for loop calculating the for these five 

columns In our case, sum [8]=5 is the largest value; by 

placing 8 with 7 on the same node, we can, to the 

maximum extent, reduce the possibility of assigning it 

onto another related data block. Hence, a new tuple {7, 

8} is added to DP. After doing the same processes to 

the rows with index 1,2,3 we have 

DP={{6,9}{7,8}{1,4}{2,5}{3,10}} indicating the data 

should be placed as shown in Fig.2 (g).Clearly, all the 

tasks can achieve the optimal. With the help of ODPA, 

DRAW can achieve the two goals:  

1. Maximize the parallel distribution of the 

grouping data  

2. Balance the overall storage loads. 

 

Fig.2(g) example for after applying OPDA. 

2.2. Data rebalancing scheme 

              DRAW is designed for the applications 

showing interest locality, in addition to these our Data 

Rebalancing Scheme will be implemented .To 

implement these we need two things. 

1. Information of frequently accessed data blocks 

by the users.  

2. Blocks information in which nodes they 

resides. 

                By using file system check (FSCK) in 

hadoop,  We can know the information of which block 

is resides in which data node and also by using HDAG 

we can analyze the name node log files to get the 

information of frequently accessed data blocks. In 

Fig.2(c) clearly its showing d1, d2, d3, d6, d7 are the 

blocks which are accessed more than 2 times,  so these 

data blocks should be replicated and placed in a node 

which is not having the same block by checking with 

FSCK .So if  more than two tasks came for same block 

it won’t wait for certain amount of time . Why because 

already we replicated those blocks in different nodes, 

so they will access those replicated blocks by this 

waiting time of Map tasks will be reduced. After doing 
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DRAW we should apply Data Rebalancing Scheme. 

Hence performance of Mapreduce increased. 

3. System Architecture 

 

 

Fig 3(a) System Architecture 

           The Hadoop Distributed File System (HDFS) is 

a distributed file system designed to run on commodity 

hardware. It has many similarities with existing 

distributed file systems. However, the differences from 

other distributed file systems are significant. HDFS is 

highly fault-tolerant and is designed to be deployed on 

low-cost hardware. HDFS provides high throughput 

access to application data and is suitable for 

applications that have large data sets. Applications that 

run on HDFS have large data sets. A typical file in 

HDFS is gigabytes to terabytes in size. Thus, HDFS is 

tuned to support large files. It should provide high 

aggregate data bandwidth and scale to hundreds of 

nodes in a single cluster. It should support tens of 

millions of files in a single instance. HDFS will consist 

of two components name node and Data Node. Name 

Node is responsible for a master server that manages 

the file system namespace and regulates access to files 

by clients. In addition, there are a number of Data 

Nodes, usually one per node in the cluster, which 

manage storage attached to the nodes that they run on. 

HDFS exposes a file system namespace and allows user 

data to be stored in files. Internally, a file is split into 

one or more blocks and these blocks are stored in a set 

of Data Nodes. The Name Node executes file system 

namespace operations like opening, closing, and 

renaming files and directories. It also determines the 

mapping of blocks to Data Nodes. The Data Nodes are 

responsible for serving read and write requests from the 

file system’s clients. The Data Nodes also perform 

block creation, deletion, and replication upon 

instruction from the Name Node.  

The Name Node uses a transaction log called 

the Edit Log to persistently record every change that 

occurs to file system Meta data. So with the help of edit 

log analysis by HDAG and FSCK frequently accessed 

block names & also the information about which block 

in which node can be extracted these will be stored and 

compared. According to this replication matrix will be 

formed. 

                  This replication matrix table will be as input 

to the cluster data grouping matrix and   it will form 

cluster according to the weight of each block. To 

calculate these weights bond energy algorithm should 

be used. Still there is no optimal solution is obtained, so 

optimal data placement algorithm will be used to  

distribute those blocks and finally frequently accessed 

blocks should be replicated by using Data Rebalancing 

scheme which will increase the performance more than 

previous one. 

4. Algorithms 

4.1. Bond Energy Algorithm 

1. Set i=1. Arbitrarily select any row from DGM 

and place it. 

2. Place each of the remaining n-i rows in each 

of the i+1 positions (i.e. above and below the 

previously placed i rows) and determine the 
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row bond energy for each placement using the 

formula 

 
3. Select the row that increases the bond energy 

the most and place it in the corresponding 

position. 

4. Set i =i+1. If i < n, go to step 2; otherwise go 

to step 4. 

5. Set j=1. Arbitrarily select any column and 

place it. 

6. Place each of the remaining m-j rows in each 

of the j+1 position (i.e. to the left and right of 

the previously placed j columns) and 

determine the column bond energy for each 

placement using the formula. 

 
7. Set j=j+1. If j < m, go to step 5; otherwise 

stop. 

4.2 Optimal Data Placement Algorithm 

Input: The sub-matrix (OSM) as shown in Fig. 2(d): 

M[n][n] where is the number of data nodes; 

Output: A matrix indicating the optimal data 

Placement: DP[2][n]; 

Steps: 

 1.  for each row from M[n] [n]do 

                  R= index of current row 

       Put this value and its corresponding column index 

into a set MinSet. 

2. There may be more than one minimum        value. 

Min set = (c1, v1) (C2, V2) 

If there are only one set (c1, v1) 

The data referred by C1 should be placed with the Data 

referred by R on the same node; 

3. Mark c1 column is invalid (already assigned) 

DP [0] [R] =R 

DP [1] [R] =C1 

4. For each column Ci from Min set do 

Calculate sum[i] = sum (M(*)Ci) all the items 

in column Ci 

5. Choose the largest value from sum array 

C= index of the chosen sum item 

DP [0] [R] =R 

DP [1] [R] =C 

Mark column c is invalid (already 

assigned); 

Conclusion: 
 

            The default random data placement in a Hadoop 

cluster does not take into account data grouping 

semantics. This could cluster many grouped data into a 

small number of nodes, which limits the data 

parallelism degree and results in performance 

bottleneck. In order to solve the problem, a new 

DRAW scheme is developed. DRAW captures runtime 

data grouping   patterns and distributes the grouped 

data as evenly as possible. There are three phases in 

DRAW: learning data grouping information from 

system logs, clustering the data-grouping matrix, and 

reorganizing the grouping data. In addition to this we 

proposed a Data Rebalancing scheme which will 

replicate frequently accessed blocks so that 

performance can be increased. We also theoretically 

prove that the inefficiency of hadoops random data 

placement algorithm. DRAW& Data rebalancing 

schemes can significantly improve the throughput of 

local map task execution and reduce the execution time 

of map phase. The overall Mapreduce job response 

time is reduced compare to previously used. 
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