
Improving Performance of Map Reduce by Using Draw and Data Rebalancing

Scheme

Naveen S
1
, Dr. E. Poovammal

2

1 Research scholar, Dept of Computer Science and Engineering, SRM University, Chennai, India,

 2 Professor& head, Dept of Computer Science and Engineering, SRM University, Chennai, India,

Abstract
Map reduce has became an important distributed

processing model for large scale data intensive

application like dataminig, web indexing. Hadoop is

an open source implementation of Mapreduce. For

increasing the performance of parallelism, hadoop is

having its own data placement algorithm, but we

observe that many data intensive application exhibits

interest locality, so hadoop data placement algorithm

does not consider this interest locality. The default

random placement algorithm does not perform well

and is the way below the efficiency of optimal data

distribution. So for this problem new Data-grouping-

Aware (DRAW) data placement scheme came into

existence. Draw will increase the performance of map

reduce by 36.4% in comparison with hardoop’s

default random placement algorithm. Our aim is to

still increase the performance of mapreduce. In

Hadoop distributed file system the replication is done

to entire file which requires more space, so this system

uses the concept of replication of blocks know as data

rebalancing scheme. Such a data rebalancing scheme

can minimizes data transfer among slow and fast node

in the cluster during the execution of Hadoop

application. The data-replication approach has

several limitations. Storing replica does require an

unreasonably large amount of disks capacity, which in

turn increases the cost of Hadoop clusters. So based

on these limitations, we proposed data rebalancing

scheme. In this scheme, only frequently accessed

blocks should be replicated and it should be placed in

a node which is not having the same block. In addition

to Draw scheme, this proposed system implementing

data rebalancing scheme. So that this will increase

performance more than the previously used .

Keywords: Hadoop, Data Rebalancing scheme,

Mapreduce, DRAW.

1. Introduction

ApacheHadoop is an open-source software framework

for storing and large scale processing of data-sets on

clusters of commodity hardware. Hadoop is an Apache

top level project being built and used by a global

community of contributors and users.

The Apache Hadoop framework is composed of the

following modules:

1. Hadoop Distributed File system (HDFS) – a

distributed file –system that stores data on the

commodity machines, providing very high

aggregate bandwidth across the cluster.

2. Hadoop Yarn – a resource-management

platform responsible for managing compute

resources in clusters and using them for

scheduling of users application.

3. Hadoop Mapreduce – programming model for

large scale data processing.

All the modules in hadoop are designed with a

fundamental assumption that hardware failures are

common and that should be automatically handled by

the framework. Apache hadoop’s Mapreduce and hdfs

components are originally derived respectively from

Google’s Mapreduce and Google file system (GFS)

papers. For the end-users, though Mapreduce Java code

is common, any programming language can be used

with "Hadoop Streaming" to implement the "map" and

"reduce" parts of the user's program. Apache

Pig, Apache Hive among other related projects expose

higher level user interfaces like Pig Latin and a SQL

variant respectively. The emerging data intensive

application place a demand on high performance

computing resources with massive storage. Academic

and pioneers have been developing big data parallel

computing frameworks and large scale distributed file

systems to facilitate high performance runs of data

2162

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

intensive applications such as bio informatics[20].

Astronomy [19], and high-energy physics [17]. In

practice, many scientific and engineering applications

have interest locality: 1) domain scientists are only

interested in a subset of the whole data set, and 2)

scientists are likely to access one subset more

frequently than others. For example, in the

bioinformatics domain, X and Y chromosomes are

related to the offspring’s gender. Both chromosomes

are often analyzed together in generic research rather

than all the 24 human chromosomes [11]. Regarding

other mammal’s genome data pools, the chimpanzee is

usually compared with human [14], Another example

is, in the climate modeling and forecasting domain,

some scientists are only interested in some specific

time periods [23]. In summary, these co-related data

have high possibility to be processed as a group by

specific domain applications. Here, we formally define

the “data grouping” to represent the possibility of two

or more data (e.g., blocks in Hadoop) to be accessed as

a group. Such data grouping can be quantified by a

weight: a count that these data have already been

accessed as a group. The potential assumption is that if

two pieces of data have been already accessed together

for many times, it is highly possible for them to be

accessed as a group in future.

Fig. 1. Simple case showing the efficiency of data

placement for MapReduce programs.

By using hadoop’s default random placement strategy,

the overall data distribution may be balanced, but there

is no guarantee that the data accessed as a group is

evenly distributed. For example if a group of data

stored in a single node, then all the map task will assign

on same node or they will schedule on the other node

by accessing data remotely or they will schedule on the

same node which they have to wait for some time

because those blocks are already accessing by other

Map tasks. This kind of situations will degrade the

performance of map reduce, so to avoid this we have

find the grouped data which were accessed by the Map

tasks and should distribute those blocks in different

nodes so that performance can be increased. Dynamic

data grouping is a effective for exploiting the

predictability of data access patterns and improving the

performance of distributed file systems [10]. We show

an example in fig.1: if grouping data are distributed by

hadoop’s random strategy, the shaded map tasks with

either remote data access or queuing delay are the

performance barriers;. Now we briefly analyze the

possibility for random data distribution to evenly

distribute the same data from the same group. Our

observation shows this possibility is affected by three

factors:

1. The number of replica for each data block in

each rack(NR);

2. The maximum number of simultaneous map

tasks on each node (NS)

3. The data grouping access patterns. It is easy to

conclude that the larger default random

solution will achieve the optimal distribution:

a) If suppose NR is extremely large, eg., the

number of replica for each data is same as number

of nodes in cluster therefore we can achieve

maximum parallelism but here there is a drawback

that if NR is maximum then it will take more space

b) Assume NS(maximum number of simultaneous

map tasks) is extremely large, then waiting time

will be more for e.g., Amazon’s EC2 and s3

[1],[25]; is limited by the hardware capacity.

Moreover, the data grouping is not considered in

default Hadoop, which results in a non optimal

data placement strategy for the data-intensive

application. To achive optimality Data-Grouping-

Aware data placement scheme (DRAW)[26] was

used . These Draw was proposed by jun wang,

Qiangju Xiao, Jiangling Yin, Pengju Shang . The

data grouping effects to significantly improve the

performance for data-intensive applications with

interest locality. Without loss of generality, we

need to reduce the waiting time and also to

2163

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

minimize total space usage without replicating all

files. For this we proposed Data Rebalancing

scheme i.e, only frequently accessed data blocks

should be replicated. Data rebalancing scheme

was used.

 With real world genome indexing [2] and

astrophysics applications [9], DRAW is able to

execute up to 59.8% more local map tasks in

comparison with random placement. In addition,

Data Rebalancing scheme reduces the completion

time of map phase by more than 41.7% and the

Map Reduce task more than 36.4%

2. System Analysis

2.1 Data –grouping aware data placement

 algorithm

In this we explained about how DRAW can be

used at rack level, which optimizes the grouping-data

distribution inside a rack. Before going to start DRAW

we need to exploit the Name Node log file to analyze

which task is accessing which data, so HDAG will help

to analyze them. A data access history graph (HDAG)

to exploit system log files to know the data grouping

information.

 A. History data access graph (HDAG)

HDAG is a graph describing the access

patterns among the files, which can be legend from the

history of data accessed .In each hadoop cluster rack,

Name Node maintains System logs recording every

system operation including all files which have been

accessed. By monitoring these files we can exploit

mappings between tasks and files to accurately learn

the file access Patterns. Note that in hadoop clusters,

files are spilt in to blocks which is the basic data

distribution unit; hence we need to translate the

grouping information at file level in to block level

fortunately, the mapping information between files and

blocks can be found in the NameNode.Fig.2 shows an

example of HDAG: given three Map Reduce tasks, t1

access d1,d2,d3,d6,d7,d8 here d is block

d2,d3,d4,d7,d9: t3 access d1,d2,d5,d6,d7,d10.

Fig.2. Example showing HDAG.

The accessing information initially generated from the

log files is shown as Fig. 2(a). There after we can easily

translate the table into the HDAG shown as Fig. 2(b).

This translation step makes it easier to generate the

grouping Matrix for the next step and also here with

these HDAG we can know which task is accessing

which data block .It will use full to replicate frequently

accessed data block.

Fig.2.(c) example showing the table of accessed blocks.

2164

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

B.DGM (Data Grouping Matrix)

Based on HDAG, we can generate a DGM

showing the relation between every two data blocks.

Given the same example as shown in Fig. 2, we can

construct the DGM as shown in Fig. 2(d), where each

element DGM i,j=grouping i,j can be calculated by

counting the tasks in common between task sets of tsi

and tsj. The elements in the diagonal of the DGM show

the number of tasks that have used this data. In DRAW,

DGM is a by matrix, where is the number of existing

blocks. DGM will show the relationship among the data

groups

Fig 2(d) example for Data Grouping Matrix formed

from HDAG

at the same time; the grouping weight in the DGM

denotes “how likely” one data should be grouped with

another data. After knowing the DGM in Fig.2(c), we

should form a cluster. For that Specifically, Bond

Energy Algorithm (BEA) is used to transform the

DGM to the clustered data grouping matrix (CDGM).

Since a weighted matrix clustering problem is N-P

hard, the time complexity to obtain the optimized

solution is O(n^n). The BEA algorithm saves the

computing cost by finding the suboptimal solution in

time O(n^2)[13]; it has been widely utilized in

distributed database systems for the vertical partition of

large tables [18] and matrix clustering work [13]. The

BEA (bond energy algorithm) algorithm clusters highly

related data and helps the data to evenly distribute

among nodes.

Fig .2(e) example showing for CDGM(cluster data

grouping matrix)

 After generating CDGM, we can take OSM as

group 2. In this case, group 1 and group 2 represent

most related data sets. Assuming there are 5 Data

Nodes in the Hadoop cluster, the CDGM in Fig.2 (e)

shows data {6, 7, 2, 1, 3} as group 1 and {4, 9, 5, 10,

8} as group 2 should be evenly distributed when placed

on the 5 nodes. But in Fig2 (f) total we have only 10

pieces of data in our example, after knowing that {6, 7,

2, 1, 3} should be placed as a group (horizontally), it is

natural to treat the left data {4, 9, 5, 10, 8} as another

group. Hence OSM are not necessary for our case, but

when placing group 2 we can see that it s not evenly

distribute you can see in fig 2(f) so for this we need

another step to do i.e., ODPA.

C. OPDA (Optimal Data Placement Algorithm)

Knowing the data groups alone is not enough

to achieve the optimal data placement. Given the same

example from Fig.2 (f), random placing of each group,

as shown in Fig. 2 (f), task 2 and task 3 can only run on

4 nodes rather than 5, which is not optimal. This is

because the above data grouping only considers the

horizontal relationships among the data in DGM, So it

is also necessary to make sure those blocks are on the

same node that have minimal chance to be in the same

group (vertical relationships). In order to obtain this

information, we can use an algorithm named ODPA.

2165

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

Fig 2(f) example random placing of each group

 1. ODPA is based on sub matrix for ODPA

(OSM) from CDGM. OSM indicates the dependencies

among the data already placed and the ones being

placed. For example, the OSM in Fig. 2(e) denotes the

vertical relations between two different groups

(group1:6, 7, 2, 1, 3 and group2:4, 9, 5, 10, 8). Take the

OSM from Fig. 2(e) as an example, The ODPA

algorithm starts from the first row in OSM, whose row

index is 6. Because there is only one minimum value 0

in column 9, we assign DP [6]={6,9} we assign , which

means data 6 and 9 should be placed on the same data

node because 9 is the least relevant data to 6. When

checking row 7, there are five equal minimum values,

which means any of these five data are equally related

on data 7. To choose the optimal candidate among

these five candidates, we need to examine their

dependencies to other already placed data, which is

performed by the for loop calculating the for these five

columns In our case, sum [8]=5 is the largest value; by

placing 8 with 7 on the same node, we can, to the

maximum extent, reduce the possibility of assigning it

onto another related data block. Hence, a new tuple {7,

8} is added to DP. After doing the same processes to

the rows with index 1,2,3 we have

DP={{6,9}{7,8}{1,4}{2,5}{3,10}} indicating the data

should be placed as shown in Fig.2 (g).Clearly, all the

tasks can achieve the optimal. With the help of ODPA,

DRAW can achieve the two goals:

1. Maximize the parallel distribution of the

grouping data

2. Balance the overall storage loads.

Fig.2(g) example for after applying OPDA.

2.2. Data rebalancing scheme

 DRAW is designed for the applications

showing interest locality, in addition to these our Data

Rebalancing Scheme will be implemented .To

implement these we need two things.

1. Information of frequently accessed data blocks

by the users.

2. Blocks information in which nodes they

resides.

 By using file system check (FSCK) in

hadoop, We can know the information of which block

is resides in which data node and also by using HDAG

we can analyze the name node log files to get the

information of frequently accessed data blocks. In

Fig.2(c) clearly its showing d1, d2, d3, d6, d7 are the

blocks which are accessed more than 2 times, so these

data blocks should be replicated and placed in a node

which is not having the same block by checking with

FSCK .So if more than two tasks came for same block

it won’t wait for certain amount of time . Why because

already we replicated those blocks in different nodes,

so they will access those replicated blocks by this

waiting time of Map tasks will be reduced. After doing

2166

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

DRAW we should apply Data Rebalancing Scheme.

Hence performance of Mapreduce increased.

3. System Architecture

Fig 3(a) System Architecture

 The Hadoop Distributed File System (HDFS) is

a distributed file system designed to run on commodity

hardware. It has many similarities with existing

distributed file systems. However, the differences from

other distributed file systems are significant. HDFS is

highly fault-tolerant and is designed to be deployed on

low-cost hardware. HDFS provides high throughput

access to application data and is suitable for

applications that have large data sets. Applications that

run on HDFS have large data sets. A typical file in

HDFS is gigabytes to terabytes in size. Thus, HDFS is

tuned to support large files. It should provide high

aggregate data bandwidth and scale to hundreds of

nodes in a single cluster. It should support tens of

millions of files in a single instance. HDFS will consist

of two components name node and Data Node. Name

Node is responsible for a master server that manages

the file system namespace and regulates access to files

by clients. In addition, there are a number of Data

Nodes, usually one per node in the cluster, which

manage storage attached to the nodes that they run on.

HDFS exposes a file system namespace and allows user

data to be stored in files. Internally, a file is split into

one or more blocks and these blocks are stored in a set

of Data Nodes. The Name Node executes file system

namespace operations like opening, closing, and

renaming files and directories. It also determines the

mapping of blocks to Data Nodes. The Data Nodes are

responsible for serving read and write requests from the

file system’s clients. The Data Nodes also perform

block creation, deletion, and replication upon

instruction from the Name Node.

The Name Node uses a transaction log called

the Edit Log to persistently record every change that

occurs to file system Meta data. So with the help of edit

log analysis by HDAG and FSCK frequently accessed

block names & also the information about which block

in which node can be extracted these will be stored and

compared. According to this replication matrix will be

formed.

 This replication matrix table will be as input

to the cluster data grouping matrix and it will form

cluster according to the weight of each block. To

calculate these weights bond energy algorithm should

be used. Still there is no optimal solution is obtained, so

optimal data placement algorithm will be used to

distribute those blocks and finally frequently accessed

blocks should be replicated by using Data Rebalancing

scheme which will increase the performance more than

previous one.

4. Algorithms

4.1. Bond Energy Algorithm

1. Set i=1. Arbitrarily select any row from DGM

and place it.

2. Place each of the remaining n-i rows in each

of the i+1 positions (i.e. above and below the

previously placed i rows) and determine the

2167

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

row bond energy for each placement using the

formula

3. Select the row that increases the bond energy

the most and place it in the corresponding

position.

4. Set i =i+1. If i < n, go to step 2; otherwise go

to step 4.

5. Set j=1. Arbitrarily select any column and

place it.

6. Place each of the remaining m-j rows in each

of the j+1 position (i.e. to the left and right of

the previously placed j columns) and

determine the column bond energy for each

placement using the formula.

7. Set j=j+1. If j < m, go to step 5; otherwise

stop.

4.2 Optimal Data Placement Algorithm

Input: The sub-matrix (OSM) as shown in Fig. 2(d):

M[n][n] where is the number of data nodes;

Output: A matrix indicating the optimal data

Placement: DP[2][n];

Steps:

 1. for each row from M[n] [n]do

 R= index of current row

 Put this value and its corresponding column index

into a set MinSet.

2. There may be more than one minimum value.

Min set = (c1, v1) (C2, V2)

If there are only one set (c1, v1)

The data referred by C1 should be placed with the Data

referred by R on the same node;

3. Mark c1 column is invalid (already assigned)

DP [0] [R] =R

DP [1] [R] =C1

4. For each column Ci from Min set do

Calculate sum[i] = sum (M(*)Ci) all the items

in column Ci

5. Choose the largest value from sum array

C= index of the chosen sum item

DP [0] [R] =R

DP [1] [R] =C

Mark column c is invalid (already

assigned);

Conclusion:

 The default random data placement in a Hadoop

cluster does not take into account data grouping

semantics. This could cluster many grouped data into a

small number of nodes, which limits the data

parallelism degree and results in performance

bottleneck. In order to solve the problem, a new

DRAW scheme is developed. DRAW captures runtime

data grouping patterns and distributes the grouped

data as evenly as possible. There are three phases in

DRAW: learning data grouping information from

system logs, clustering the data-grouping matrix, and

reorganizing the grouping data. In addition to this we

proposed a Data Rebalancing scheme which will

replicate frequently accessed blocks so that

performance can be increased. We also theoretically

prove that the inefficiency of hadoops random data

placement algorithm. DRAW& Data rebalancing

schemes can significantly improve the throughput of

local map task execution and reduce the execution time

of map phase. The overall Mapreduce job response

time is reduced compare to previously used.

REFERENCES:

[1][Online].Available:http://aws.amazon.com/s3/

[2][Online].Available:http://bowtiebio.sourceforge.net/index.

shtml

[3][Online].Available:http://developer.yahoo.com/hadoop/tut

orial/module1.html

[4][Online].Available:http://genome.ucsc.edu/

[5][Online].Available:http://hadoop.apache.org/common/docs

/r0.18.3/ hdfs_design.html

[6][Online].Available: http://michael.dipperstein.com/bwt/

[7][Online].Available:http://sector.sourceforge.net/benchmark

.html

[8][Online].Available:https://issues.apache.org/jira/browse/ha

doop-2559

[9][Online].Available:http://t8web.lanl.gov/people/heitmann/

arxiv/

[10] A. Amer,D.D. E. Long, and R. C.Burns, “Group-based

management of distributed file caches,” in Proc. 22nd

Int.Conf. Distrib. Compute. Syst. (ICDCS’02),Washington,

DC, USA, 2002, p. 525, IEEE Computer Soc.

2168

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

[11] A. Dumitriu,“X and y (number 5),” in Proc. ACM

SIGGRAPH 2004 Art Gallery SIGGRAPH’04, New York,

NY, USA, 2004, p. 28, ACM.

[12]G.Ganger and M. Frans Kaashoek, “Embedded I nodes

and explicit grouping: Exploiting disk bandwidth for small

files,” in Proc. 1997 USENIX Technol. Conf., 1997, pp. 1–17.

[13] N. Gorla and K. Zhang, “Deriving program physical

structures using bond energy algorithm,” in Proc. 6th Asia

Pacific Software Eng.Conf. APSEC’99,Washington, DC,

USA, 1999, p. 359, IEEE Computer Soc.

[14] Y. Hahn and B. Lee, “Identification of nine human-

specific frame shift mutations by comparative analysis of the

human and the chimpanzeegenomesequences”Bioinformatics,

vol. 21, pp. 186–194, Jan. 2005.

[15]X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J.

Majors, A. Manzanares, and q.xiao , “improving Mapreduce

performance of through data placement in heterogeneous

hadoop clusters,” april 2010.

 [16] G. H.Kuenning andG. J. Popek, “Automated hoarding

for mobile computers,” in Proc. 16th ACM Symp. Operat.

Syst. Principles, SOSP’97, NewYork, 1997, pp. 264–275,

ACM.

[17] J. G. Liu, M. Ghanem, V. Curcin, C. Haselwimmer, Y.

Guo,G.Morgan, and K. Mish, “Achievements and experiences

from a grid-based earthquake analysis and modelling study,”

in Proc. 2nd IEEE Int. Conf. e-Science and Grid Computing,

E-SCIENCE’06, Washington, DC, USA, 2006, p. 35-, IEEE

Computer Soc.

[18] M. T. Özsu and P. Valduriez, Principles of Distributed

Database Systems , 2nd ed. Upper Saddle River, NJ, USA:

Prentice-Hall, 1999.

[19] M. Rodriguez-Martinez, J. Seguel, and M. Greer, “Open

source cloud computing tools: A case study with a weather

application,” in Proc. 2010 IEEE 3rd Int. conf.cloud comput,

cloud’10 Washington, DC, USA, 2010, pp. 443–449, IEEE

Computer Soc.

[20]M.C.Schatz,“Cloudburst,” Bioinformatics, vol. 25, pp.

1363–1369, Jun. 2009.

[21] Jun Wang, Qiangju Xiao, Jiangling Yin, and Pengju

Shang ,“ DRAW: A New Data-gRouping-AWare Data

Placement Scheme for DataIntensive Applications With

Interest Locality,” IEEE trancactions in magnetics, Vol. 49,

NO. 6, June 2013

 [22] M.Specht, R.Lebrun, and C. P.E.Zollikofer,

“Visualizing shape transformation between chimpanzee and

human braincases,” Vis. Comput., vol. 23, pp. 743–751, Aug.

2007.

[23] S. Tripathi and R. S. Govindaraju, “Change detection in

rainfall and temperature patterns over india,” in Proc. 3rd Int.

Workshop on Knowledge Discover. Sens. Data,

SensorKDD’09, NewYork, NY, USA, 2009, pp. 133–141,

ACM.

[24] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data

placement strategy in scientific cloud workflows,” Future

Gener. Comput. Syst., vol. 26, pp. 1200–1214, Oct. 2010.

[25] B. Zhang, N. Zhang, H. Li, F. Liu, and K. Miao, “An

efficient cloud computing-based architecture for freight

system application in china railway,” in Proc. 1st Int. Conf.

Cloud Comput. CloudCom’09, Berlin, Germany, 2009, pp.

359–368, Springer-Verlag.

 [26] S. Sehrish, G. Mackey, J. Wang, and J. Bent, “Mrap: A

novel mapreduce- based framework to support HPC analytics

applications with access patterns,” in Proc. 19th ACM Int.

Symp. High Perform. Distrib. Comput. HPDC’10, New York,

NY, USA, 2010, pp. 107–118, ACM.

2169

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10826

