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 Abstract —The rapid  technologica l develop ment of  the mod- ern

world brings a significant ch ange to our life. Everythingsurrounds

us has become smarter and makes our daily activ-ities more 
comfortable. Unfortunately, such rapidly developed technologies 
have caused negative consequences to humans. One of them is
indoor air pollution, which leads to various issues,such as 
cardiovascular and respiratory diseases. Consequently, air quality 
status knowledge is crucial since it affects well-being lives. 
Therefore, it is imperative to monitor indoor air quality to
measure the degree of danger to human health. IoT is widely used
as an application for the deployment of air quality monitoring
systems. When the data of indoor air quality are collected by
IoT low-cost and inaccurate sensors, the collected data will be
inaccurate and noisy and lead to decision errors. Therefore, the
air quality data are required to be improved and noise-free. This
paper employs Kalman filter to improve the indoor air quality
data collected by IoT low-cost sensors. The proposed system is
evaluated by the IoT paradigm to monitor indoor pollutants’
concentration, such as temperature, humidity, Carbon Dioxide
(CO2), Carbon Monoxide (CO), and Sulfur Dioxide (SO2). The
results indicate that the proposed system, based on the IoT
paradigm, can effectively and timely monitor indoor air quality.

Index Terms—Internet of Things (IoT); Indoor Air Quality; 
Data Improvement; Kalman Filter.

I. INTRODUCTION

Due to the expansion of civilization and rapidly increase

in the production of contaminated emissions from industrial

process of raw materials and automobiles exhausts, atmo-

spheric conditions keep deteriorating each year. In spite of the

fact that air is an essential element for life, a lot of people

are unconcerned about to the seriousness of air pollution or

only recently realized the problem [1]. Air pollution is

considered the most serious and most precarious cause of

climate emergency and mortal diseases than the other types

of pollutants such as noise, soil, water, and heat. As stated by

the World Health Organization (WHO), the very high portion

of the world population (90%) inhales contaminated air, and the

death of seven million persons every year are attributedto 

the air pollution [2]. Moreover, As stated by the American

Association for the Advancement of Science, Air pollution

is now the world’s crucial-leading fatal health risk factor [3]

[4], leading to lung cancer, asthma attacks, chronic bronchitis,

or heart disease. air pollution severely affects health, causing

stroke, lung cancer, and heart disease. Consistent with the

United States Environmental Protection Agency (EPA), the

contamination of indoor air is about one hundred times higher

than the outdoor air contamination [5]. Since the majority of

people spend most of their time inside, the indoor air pollution

has a superior negative effects on human health than outdoor

air pollution. Therefore, robust indoor air quality monitoring

plays a very vital role in preventing exposure through proactive

and preventive measures. However, it requires high-precision

monitoring system, which are often higher in terms of costs,

thus, there is a trade-off between the accuracy of air quality data 

and the cost of monitoring system. Therefore, low-cost and 

efficient indoor air quality monitoring is indispensable to

correctly and accurately manage air quality.

The indoor air quality relies on the various types of gases

presented or generated and particulate matter of pollutants in

semi-enclosed locations. There are diverse sources by which

pollutants are generated, such as chemical, biological, toxic,

and airborne particulates [6] [7] [8]. These pollutant sources

can cause health issues, discomfort, or lead to death in some

serious situations. Here, some examples are given. The level

of CO2 can be used to specify the exchange rate of air. A

high level of CO2 indicates a higher level of contaminants

owing to a lack of fresh air circulation. Monitoring SO2

deficiency is also important indoor. Increasing in the its level

can cause severe effects, such as respiratory issues, including

bronchitis, nose, throat, and lung irritation. It has a bond with

cardiovascular disease. Moreover, SO2 detection is 

indispensable in providing a safe and healthy working

environment [9] [10]. Moreover, CO has severe effects on

human life. Long exposure to CO causes vomiting, heart

irregularity, brain damage, breathing difficulties, abortion,

muscle, and even death. Moreover, monitoring indoor

temperature and humidity is not less important than monitoring 

other indoor gasses. Indoor air temperature monitoring is a vital 

procedure providing helpful information in numerous fields, 

including human being thermal comfort, food preservation, and 

energy reservation [11]. The indoor relative humidity

monitoring is also critical to the health of dwellers [12] [13]. A

lowhumidity level is considered one of the leading causes of

health problems, such as dry, bloody noses, cracked skin,

chapped lips, and dry sinuses [14]. Besides, it can aggravate

pre-existing health conditions, such as bronchitis, asthma. In

contrast, high humidity helps create a suitable environment for

many microorganisms to thrive, such as bacteria, dust mites,

and mold, which would increase the effects of respiratoryissues

and Legionnaires’ disease [15] [16].

Air quality (AQ) is the most important in indoor environ
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ments. In fact, the prediction of AQ relies on the analysis

of the collected data from monitoring sensors. The accuracy

of collected data affects the accuracy of the decision-making

process to a certain extent. The indoor dwellers should take

appropriate protective measures when the monitored AQ is

going above a certain predefined threshold. However, when the 

data of AQ are collected by the low-cost and inaccurate sensors,

the produced data will be inaccurate and lead to decision errors.

To obtain highly accurate AQ data, various AQ monitoring

schemes utilize high-accuracy sensors. Conversely, high-

accuracy sensors are often more expensive. Under relatively

low-cost sensors, the collected data have various problems,

such as noisy, missing , and inaccuratedata. Different methods 

have been there for cleaning data, estimating a system current

state and predicting the futurestate. Among them is Kalman 

filter (KF). Over the past few decades, KF has been broadly 

exploited in different appli- cations, such as navigation and 

guidance application, radar tracking, floodgate control and 

multi-robot motion estimation,air pollution emission prediction 

etc. The KF algorithm works effectively on a series of 

measurements that are statistically noisy and/or accompanied 

with other inaccuracies; it produces the states of unknown 

variables that are likely to be more accurate than those that are 

single-measurement-based [17]. The algorithm of KF is based 

on two phases: prediction and update phases. In the prediction

phase, it makes estimates of the current state variables, 

accompanied by uncertainties. When the result of the next

measurement is obtained, the weighted average is used to 

update these estimates, giving more weight to the estimates

with more certainty [18]. Inorder to improve indoor air quality 

data collected by low-cost sensors flexibly arranged throughout 

the interested area, this paper employs the KF algorithm in 

developing a method for improving indoor air quality data. The 

developed method can be applied on the collected AQ data 

before performing data analysis and visualization.

The contributions of this paper are represented in two folds,

as follows:

• Proposing a solution for improving the air quality data

collected by IoT low-cost sensors, removing the noisy

data, and correcting incorrect data.

• Implementing, deploying, and testing the proposed solu-

tion on an IoT real-life scenario. The obtained results will

be analyzed to evaluate its performance.

The remainder of this paper is organized as follows: Section

II presents state-of-the-art approaches related to the proposed

solution. Section III introduces the methods of the proposed

solution. Section IV elaborates the evaluation of the proposed

solution and discusses the obtained results. Finally, Section VI

concludes this work.

II. RELATED WORK

In recent years, many researches have been conducted on

improving the quality of data collected by low-cost sensors. Air 

quality data has also been given such attention for improv-ing 

its quality to accurately assess the pollutant concentrationsand

air quality in a certain area.

Authors in [19] employed data fusion techniques and ma-

chine learning approaches to improve the data quality of IoT

sensor in environmental monitoring. In their study, the factors

affecting the data quality of low-cost IoT sensors are identified

using three features selection approaches, including Forward

Feature Selection (FFS), Forward Feature Selection (FFS) and

Exhaustive Feature Selection (EFS. Then, the sensor data

are fused with the identified factors and integrated into one

equation used to calibrate the given sensors using Artificial

Neural Networks (ANN) and Linear Regression (LR). Since

the proposed solution is based on machine learning techniques,

it suffers from computational overhead and requires more

resources and much for performing training. In addition, the

final fused data lacks interpretability of each pollutant. In [20],

the authors proposed air quality monitoring and prediction

system based on edge computing. The authors implemented

the Kalnam filter for improving to reduce the dependency of

IoT application on cloud computing. The designed system are

used to monitor outdoor pollutants such as SO2, NO2 and

PM2.5. The study is evaluated on outdoor air quality data.

This limit the proposed solution to improve the outdoor air

quality, which might be applicable to indoor air quality data.

To improve the data quality of IoT low-cost sensors, the

authors in [21] introduced a data fusion method, known as

multi-sensor space-time data fusion framework. The proposed

method was build depending on the Optimum Linear Data

Fusion theory. For spatial-temporal estimation, their method

was also integrated with a multi-time step Kriging method. The

proposed method showed an ability in improving the estima-

tion of PM2.5 concentration in space and time. The proposed

method was only evaluated on PM2.5 concentrations, so that it

lack a comprehensive evaluation on the concentrations of other

gasses. Other authors applied statistical methods to correct air

quality data collected by low-cost sensors. The authors in [22]

conducted an investigation on random and linear forest models

for the purpose of correcting PM2.5 measurements collected

by network of low-cost sensors of the Denver Department of

Public Health and Environment (DDPHE) in comparison with

measurements from U.S. Environmental Protection Agency

Federal Equivalence Method (FEM) monitors. The prediction

models that are based on statistical methods are only ap-

plicable on single feature and are not suitable for complex

prediction process.

III. METHODS

Data Quality Improvement Module (DQIM)

DQIM is proposed to improve the quality of data collected

by low-cost sensors. It is based on the KF, which is math-

ematically described in Equation (1). Equation (1) describes the

implementation of the proposed system.

xt = Htxt−1 + Btut + wt (1)

where xt represents the signal value, which is a combination

of its prior value xt−1, a control signal ut , and a process noise

wt. ut is the control signal, which is a particular external factor

affecting the system. Ht represents a state transition matrix to

model xt−1, and Bt represents control matrix to model ut. wt
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t

denotes the process noise at time t, representing the effects
of influential external factors on the system. In the proposed

model, the statistical characteristics of wt are assumed to be

normally distributed with a normal mean (µ 0 ), and a

covariance matrix (ρ(wt)) follows the normal distribution of

Qt , as given by Equation (2).

ρ(wt) ∼ N (0, Qt) (2)

So that the sensor measured value zt to the real state at time

ẑt = zt −Htx̂t|t−1 (9)

where Ht is the identity matrix, Rt is the covariance matrix

of the observed noise, and Gt is Kalman gain. zt is the sensor

observation at time t, and ẑt is the observation margin,

calculated as the difference between zt and x̂t|t−1 obtained

by the a priori estimation. Based on the above equations, the

values of x̂t|t−1 and Pt|t−1 are updated to obtain the optimal 

estimates of x̂t|t and Pt|t of the estimation error of the system

t is mathematically represented by Equation (3).

zt = Htxt + vt (3)

In Equation (3), the value of zt whose accuracy is un-

known is a linear combination of the signal value xt and the

measurement noise vt. In the proposed model, the statistical

characteristics of vt are assumed to be normally distributed

with a normal mean (µ 0), and a covariance matrix (ρ(vt))

follows the normal distribution of Rt, as given by Equation

(4).

ρ(vt) ∼ N (0, Rt) (4)

where wt and vt are independent.

To obtain the system’s optimal state estimate at time t, a

linear combination of the system’s optimal estimated state at

time t-1 and the observation of the system state at time t. Since

the proposed model is based on the KF, the state of the KF is

denoted by x̂t|t, which is the estimated state of the system at

time t, and Pt|t, a covariance matrix of the estimated state error

at time t. The value of Pt|t is used to measure the accuracy of

the estimation.

The KF is represented in two phases: prediction and cor-

rection phases.

1) Time Update (Prediction): The time update phase isthe

first step in the KF algorithm. The state estimate andestimate 

error covariance matrix at time t is obtained based on the 

optimal estimation and estimated error covariance matrix of the

system state at time t-1. The following equations

mathematically describe this step:

x̂t|t−1 = Htx̂t−1|t−1 + Btut (5)

Pt|t−1 = HtPt|t−1Ht
T + Qt (6)

where Ht the state transition matrix, Bt is the control input

matrix, and Qt is the covariance matrix of the process noise,

respectively.

2) Measurement Update (Correction): To get the optimal

state of the system at time t, x̂t|t−1 is required to be corrected 

by combining it with the current sensor observation. To

achieve this objective, the correction phase is implemented.

The following equations mathematically describe this step:

Ft = HtPt|t−1HT + Rt (7)

Gt = Pt|t−1HT Ft
−1

(8)

state at time t.

x̂t|t = x̂t|t−1 + Gtẑt (10)

Pt|t = (1 − GtHt)Pt|t−1 (11)

The following algorithm outlines the proposed module for

improving the quality of sensor observation.

Algorithm 1: DQIM process.

Input: Sensors’ readings

Output: Estimated data

1 Initialize the system.

2 Perform system training

3 while true do

4 Perform system evaluation

5 if not reach the best values of the parameters then

6 Continue

7 else

8 Break

9 Apply prediction.

IV. EXPERIMENTS AND RESULTS

This section articulates the evaluation of the proposed

system in indoor air quality (IAQ) monitoring application

which architecture have been presented in Section III. Since the

proposed system is a real-time system, the system’s overall

performance is evaluated based on collection latency.

A. Setup

After implementing the proposed system, the next step is

to evaluate the proposed system’s performance by deploying

the system in real-life scenarios. The selected scenario for

the deployment of the proposed system was the Dormitory

of Friendship Building, Second Life Zone, Zhejiang Sci-Tech

University, Xiasha District, Hangzhou City, Zhejiang Province.

The experiments have been held primarily on the 14th floor,

room No. 1405.

Based on the IoT paradigm, The proposed system is de-

ployed in real-life scenarios to evaluate its performance. The

following sections are dedicated to describing the architecture

of the proposed system.
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1) The Proposed System Architecture: The overall architec-

ture of the proposed indoor air quality monitoring system is

shown in Fig. 1. The system can simultaneously collect AQ

data from several sensors and transmit them an IoT server to be

made available to remote users both in graphical and tabular

forms. The system components are described as follows:

• Hardware Modules

• Cloud Platform

• Mobile App

a) Hardware Modules: The hardware module consists

of the sensors and the controller board. The sensors are used

to sense indoor air quality data. The controller mainly is to

collect data from given sensors and propagate the collected data 

via the Internet (TCP/IP) to the cloud platform for online

visualization and storage. Finally, the end-user can access the

stored data using a mobile App developed for real-time mon-

itoring. In the proposed system, three different MQ sensors

(MQ- 4, MQ-136, MQ-7) are used to measure CO2, SO2,

CO, respectively. For the total Air Quality Index, we use the

MQ-135 sensor, which is sensitive to a range of gases, along

with DHT sensors for temperature and relative humidity. We

used Arduino Ethernet Shield and Arduino Leonardo board.

The Arduino Ethernet Shield is used to enable connecting an

the Arduino Leonardo board to the Internet [22]. The Arduino

Leonardo Board is characterized by 20 digital I/O pins, 12 pins

of which as analog inputs. Its clock speed is up to 16 MHz.

It has a power jack, USB connection, and an ICSP header.

b) IoT Cloud Platform: We utilized the Thinger.io plat-

form for our proposed system, an open-source platform ded-

icated to providing an attainable scalable infrastructure for

linking things. The cloud platform facilitates the definition

of numerous resources for the sensors used by the proposed

system that can sense for making our device accessible over the 

Internet. Also, it facilitates the interaction with our devices

defined using API functionalities. Thus, the input sensors’

readings are timely uploaded to the cloud platform. Fig. 2 show 

online visualization of the collected data from the CO2, SO2, 

CO, and Temperature and Relative Humidity Sensors used for

the evaluation of the proposed system.

c) Mobile Application: The proposed system’s objective

is to enable the end-user to remotely monitor data produced

by indoor sensors using handheld devices to take protective

measures for time-sensitive emergencies happening indoors.

The mobile app is implemented using Cordova framework.

B. Experimental Dataset

Air quality data employed in this paper were collected by the 

sensors used in the design of the proposed system from May 1,

2021, to June 30, 2021. The whole data containsdifferent air

quality datasets: CO, CO2, SO2, Temperature, and relative 

humidity datasets. The gasses concentrations are mea-sured in 

reference to [34]. CO2, CO, and SO2 were measured by PPM 

while the temperature was measured by Celcius, and Relative 

Humidity was measured in percentage. The monthly average 

concentrations for CO2, CO, SO2, all together with

Temperature and Relative Humidity, were calculated using the

hourly and daily average concentrations. Datasets are supplied

in CSV files that are transformed into big datasets, which

are compiled in tables, and the related outlier-free data were

extracted and mathematically manipulated. The sampling rate

of the collected data sets is fixed to 30 seconds. The number of

samples used in this analysis is 4550 measurements for each

gas.

C. Result Analysis

In this section, the result analysis is performed based on the 

system performance the collected datasets for gasses: CO, CO2,

SO2, along with temperature and relative humidity.

1) System Performance: In this section, different experi-

ments with N gasses sensors were conducted varied from 1 to 5

sensors connected to Arduino board to calculate the difference

of data production time and the data visualization time to the

end-user.

a) Collection Latency: The performance of the proposed

system is estimated by measuring the time of data collection

from N sensors and the data visualization on the developed

mobile App to the end-user. Furthermore, the connection time 

between the Arduino board and the cloud platform, the

connection time between the developed mobile App and the

cloud platform, and receiving the data from all IoT devices

to be visualized on the mobile App is known as collection

latency. The experiments were conducted using Samsung

Galaxy 8 and iPhone 11pro max. The connection time taken

to establish a connection between the Arduino board and the

cloud platform is approximately 15 seconds. The collection

latency is calculated by Equation (1).

CL = DR − DP (12)

where CL is the collection latency. DR is the time of receiving

data by the developed mobile App, and DP is the time of data

production by N sensors.

Two experiments were conducted to measure the collection

latency. In the first experiment, the collection latency is

measured while the data propagated to the cloud platform

sequentially for N sensors. However, in the second experiment,

the collection latency is measured while data are propagated

simultaneously. The average values of a sequential connection

are depicted in Fig. 3. As it can be seen, both Samsung Galaxy

8 and iPhone 11pro max show the same trend. Still,the

connection established by iPhone 11 Pro max takes ashorter

time than Samsung Galaxy 8 owing to its relativelylow 

capacity. As observed in Fig. 4, the collection latency in

simultaneous connection is more considerable and faster than

the sequential connection.

Finally, the collection latency measurement in both sequen-

tial and simultaneous connection for both Samsung Galaxy 8

and iPhone 11pro max is subject to the device’s performance.

Therefore, it is recommended the devices with higher capacity

are preferable. We assume that there is no data loss in the

experiments, and the network bandwidth is fixed.

2) DQIM Performance: One of the critical points for eval-

uating the trustability of DQIM is the value of Q , which means

that if its value is small, it indicates the process noiseof the

system is less and trustable. However, if the value of
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Fig. 1: Proposed system architecture.

Fig. 2: Dashboard of the cloud platform.

Fig. 3: Collection latency for sequential connection.

Q is high, it indicates that the process noise of the system is

high, and the prediction system becomes untrustable. When the

value of Q is zero, the estimated value xt is more trustable

Fig. 4: Collection latency for simultaneous connection.

than the sensors’ observations. However, when the value of

is one, the sensors’ observations are more trustable than the

estimated value xt. In this paper, we applied the tuning

Controller
Data Quality

using mobile App)

TCP/IP

Monitoring Sensors
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≤

     i=0

N

TABLE I: Statistical summary statistics of CO2, CO, SO2, temperature, and Relative Humidity concentrations.

CO2 CO SO2 Temperature Relative Humidity

Samples Count 1183 1183 1183 1183 1183

Standard Dev. 123.2365 95.731961 36.56394 1.664489792 5.181274747

Average 297.3982 167.8639 208.7922 27.71851395 72.06706385

Coeff. of variation 41.43822 57.029512 17.51212 6.004974852 7.189518305

Minimum 173 116 133.75 22.20000076 46.25

Maximum 922.75 955.25 321.5 30.35000038 80.10000229

Stnd. skewness 3.853599 6.7418114 -0.0368 -0.844601963 -2.138055498

Stnd. kurtosis 15.88695 49.932513 -0.40763 -0.240041953 6.987424644

TABLE II: Pearson’s correlation coefficients matrix for CO2, CO, CO, Temperature, and Relative Humidity.

CO2 CO SO2 Temperature
Relative

Humidity

CO2
– -0.266392 0.210426 0.198774903 0.047736248

– p=6.59214799479572E-06 p=7.60741418093521E-13 p=1.3535224271778E-11 p=5.25381476661487E-12

CO
-0.26639 – 0.261419 -0.159277328 0.019543338

p=6.59214799479572E-06 – p=3.20287266558599E-19 p=6.68876076769264E-08 p=0.107663193847883

SO2
0.210426 0.2614193 – -0.051714505 0.688097868

p=7.60741418093521E-13 p=3.20287266558599E-19 – p=0.0813280256625801 p=0.510327222058107

Temperature
0.198775 -0.159277 -0.05171 – 0.688097868

p=1.3535224271778E-11 p=6.68876076769264E-08 p=0.0813280256625801 – p=2.75316830192132E-160

Relative

Humidity

0.047736 0.0195433 0.688098 0.688097868 –

p=5.25381476661487E-12 p=0.107663193847883 p=0.510327222058107 p=2.75316830192132E-160 –

model proposed by the authors in [23] for tuning the Q , in

which the predictive model reaches the best point of process

convergence. During the tuning process, RMSD (root mean

square deviation) between the predicted value x̂ produced by

the KF and its corresponding actual value x collected by

sensors, as given by Equation (13).

s
ΣN (x − x̂)

During the tuning process, when the state of the KF is non-

converged, the RMSD will be relatively large between the

predicted value x̂ and the actual value x ; the value is rather

large. Therefore, the RMSDs for CO2, CO, SO2, all together

with temperature and relative humidity values, respectively, are 

normalized by the min-max normalization method ranging

between (0,1). In this paper, we used the value of RMSD

to select the best optimal value of Q (global minimum). The

smaller value of RMSD indicates that the value of x̂ will be 

less unconverted, indicting faster convergence of the model.

Accordingly, the value of Q will be more suitable for estimat-

ing more accurate values of CO2, CO, SO2, temperature, and

relative humidity. The best optimal values of Q obtained from

the experiment are 0.563, 0.079,0.453, 0.172, 0.144 for CO2,

CO, SO2, temperature, and relative humidity, respectively.

Figures 5-9 give an illustrative demonstration to the obtain

results of DQIM after its application on a portion of the col-

lected data of SO2, CO2, CO, Temp, and Relative Humidity.

3) Descriptive statistics and Correlation Analysis: Descrip-

tive statistics of CO2, CO, SO2, Temperature, and Relative

Humidity in the studied area have been carried out. Table

1 lists a statistical summary of these gasses, including the

measurements of variability, central tendency, and form. From

Table 1, we can observe that the maximum monthly averages

for CO2, CO, and SO2 are 297.398197 ppm, 167.8638962

ppm, and 208.7922164 ppm, respectively. These values ex-

ceeded the monthly standard average threshold of 100 ppm for

Fig. 5: The output of DQIM for CO2.

human health. Furthermore, the highest standard deviation was

found for CO2, and the highest variation coefficient was found

for CO. These values indicate heterogeneous concentrations of

CO2 and CO. However, SO2 showed a slight deviation and

variation. Moreover, CO2 and CO had shown higher skewness

of their probability distributions. Moreover, the averages of

Temperature and Relative Humidity are 27.71851395◦C and

72.06706385%, respectively. These indicate that Temperature

is moderate and Relative Humidity id very poor.

Correlations analysis enables the investigation of chemical

or environmental relations among the gasses concerned inthis 

research. It reflects the relationship possibility among the

gasses resources. Table 2 shows the analysis results using Pear-

son’s correlation coefficients with p values  0.05. CO2 shows

a negative correlation with CO (-0.266392) and a positive and

insignificant correlation with SO2 (0.210426). This suggests

that there is no good associations or common source among the

gasses. Furthermore, CO2 and CO show insignificant

correlation with Temperature and Relative Humidity, while

RMSD(x, x̂) = (13)
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Fig. 6: The output of DQIM for SO2.

Fig. 7: The output of DQIM for CO.

Fig. 8: The output of DQIM for Temperature.

Fig. 9: The output of DQIM for RH.

SO2 shows positive and significant correlation with Relative

Humidity. This indicates that increasing in Relative Humidity

helps increasing in SO2 concentration.

V. CONCLUSION

This paper focuses on developing an IoT-based system to

efficiently collect data from sensing IoT devices using a set

of sensors connected to the Arduino board to propagate the

collected data to the cloud for storage and analysis. A mobile

app also is developed to help the end-users to visualize the

collected data in real-time, anywhere, and anytime. For this

purpose, it selects the most cost-efficient devices to collect

data. Data analysis services are developed for the collected data

to measure the levels of indoor gasses and inform the end-users 

about their effect on human health. The proposed system

encompasses three layers: hardware, cloud, and mobile layers.

In the hardware layer, we developed our perception layer

consisting of a set of sensors for data collection connected to

a controller (Arduino board). The main task of the controller

is to propagate the collected data from the sensors to thecloud.

The second layer is the cloud, which is responsiblefor 

providing data analysis and data storage. The third layer is the 

mobile App, which is responsible for collecting data from the

cloud and visualizing it to the end-users in real-time.

The proposed system was implemented using a prototype

and evaluated based on the data collection and visualization

latency using different environments and different connec-tion 

modes (Sequential and simultaneous connections). The

proposed solution is based on the Kalman filter, which is

characterized by fast convergence and higher estimation ac-

curacy. This strengthens the performance and the accuracy of

our proposed solution. The obtained results showed that the

proposed system highlights good performance in improving the

indoor air quality data through cleaning the noisy dataand

correcting incorrect data.
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