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Abstract—The rapid technological development of the mod- ern
world brings a significant change to our life. Everythingsurrounds
us has become smarter and makes our daily activ-ities more
comfortable. Unfortunately, such rapidly developed technologies
have caused negative consequences to humans. One of them is
indoor air pollution, which leads to various issues,such as
cardiovascular and respiratory diseases. Consequently, air quality
status knowledge is crucial since it affects well-being lives.
Therefore, it is imperative to monitor indoor air quality to
measure the degree of danger to human health. 10T is widely used
as an application for the deployment of air quality monitoring
systems. When the data of indoor air quality are collected by
10T low-cost and inaccurate sensors, the collected data will be
inaccurate and noisy and lead to decision errors. Therefore, the
air quality data are required to be improved and noise-free. This
paper employs Kalman filter to improve the indoor air quality
data collected by loT low-cost sensors. The proposed system is
evaluated by the IoT paradigm to monitor indoor pollutants’
concentration, such as temperature, humidity, Carbon Dioxide
(C0O2), Carbon Monoxide (CO), and Sulfur Dioxide (SO2). The
results indicate that the proposed system, based on the loT
paradigm, can effectively and timely monitor indoor air quality.

Index Terms—/Internet of Things (1oT); Indoor Air Quality;
Data Improvement; Kalman Filter.

. INTRODUCTION

Due to the expansion of civilization and rapidly increase
in the production of contaminated emissions from industrial
process of raw materials and automobiles exhausts, atmo-
spheric conditions keep deteriorating each year. In spite of the
fact that air is an essential element for life, a lot of people
are unconcerned about to the seriousness of air pollution or
only recently realized the problem [1]. Air pollution is
considered the most serious and most precarious cause of
climate emergency and mortal diseases than the other types
of pollutants such as noise, soil, water, and heat. As stated by
the World Health Organization (WHO), the very high portion
of the world population (90%) inhales contaminated air, and the
death of seven million persons every year are attributedto
the air pollution [2]. Moreover, As stated by the American
Association for the Advancement of Science, Air pollution
is now the world’s crucial-leading fatal health risk factor [3]
[4], leading to lung cancer, asthma attacks, chronic bronchitis,
or heart disease. air pollution severely affects health, causing
stroke, lung cancer, and heart disease. Consistent with the
United States Environmental Protection Agency (EPA), the
contamination of indoor air is about one hundred times higher
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than the outdoor air contamination [5]. Since the majority of
people spend most of their time inside, the indoor air pollution
has a superior negative effects on human health than outdoor
air pollution. Therefore, robust indoor air quality monitoring
plays a very vital role in preventing exposure through proactive
and preventive measures. However, it requires high-precision
monitoring system, which are often higher in terms of costs,
thus, there is a trade-off between the accuracy of air quality data
and the cost of monitoring system. Therefore, low-cost and
efficient indoor air quality monitoring is indispensable to
correctly and accurately manage air quality.

The indoor air quality relies on the various types of gases
presented or generated and particulate matter of pollutants in
semi-enclosed locations. There are diverse sources by which
pollutants are generated, such as chemical, biological, toxic,
and airborne particulates [6] [7] [8]. These pollutant sources
can cause health issues, discomfort, or lead to death in some
serious situations. Here, some examples are given. The level
of CO2 can be used to specify the exchange rate of air. A
high level of CO2 indicates a higher level of contaminants
owing to a lack of fresh air circulation. Monitoring SO2
deficiency is also important indoor. Increasing in the its level
can cause severe effects, such as respiratory issues, including
bronchitis, nose, throat, and lung irritation. It has a bond with
cardiovascular  disease. Moreover, SO2 detection is
indispensable in providing a safe and healthy working
environment [9] [10]. Moreover, CO has severe effects on
human life. Long exposure to CO causes vomiting, heart
irregularity, brain damage, breathing difficulties, abortion,
muscle, and even death. Moreover, monitoring indoor
temperature and humidity is not less important than monitoring
other indoor gasses. Indoor air temperature monitoring is a vital
procedure providing helpful information in numerous fields,
including human being thermal comfort, food preservation, and
energy reservation [11]. The indoor relative humidity
monitoring is also critical to the health of dwellers [12] [13]. A
lowhumidity level is considered one of the leading causes of
health problems, such as dry, bloody noses, cracked skin,
chapped lips, and dry sinuses [14]. Besides, it can aggravate
pre-existing health conditions, such as bronchitis, asthma. In
contrast, high humidity helps create a suitable environment for
many microorganisms to thrive, such as bacteria, dust mites,
and mold, which would increase the effects of respiratoryissues
and Legionnaires’ disease [15] [16].

Air quality (AQ) is the most important in indoor environ
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ments. In fact, the prediction of AQ relies on the analysis
of the collected data from monitoring sensors. The accuracy
of collected data affects the accuracy of the decision-making
process to a certain extent. The indoor dwellers should take
appropriate protective measures when the monitored AQ is
going above a certain predefined threshold. However, when the
data of AQ are collected by the low-cost and inaccurate sensors,
the produced data will be inaccurate and lead to decision errors.
To obtain highly accurate AQ data, various AQ monitoring
schemes utilize high-accuracy sensors. Conversely, high-
accuracy sensors are often more expensive. Under relatively
low-cost sensors, the collected data have various problems,
such as noisy, missing, and inaccuratedata. Different methods
have been there for cleaning data, estimating a system current
state and predicting the futurestate. Among them is Kalman
filter (KF). Over the past few decades, KF has been broadly
exploited in different appli- cations, such as navigation and
guidance application, radar tracking, floodgate control and
multi-robot motion estimation,air pollution emission prediction
etc. The KF algorithm works effectively on a series of
measurements that are statistically noisy and/or accompanied
with other inaccuracies; it producesthe states of unknown
variables that are likely to be more accurate than those that are
single-measurement-based [17]. The algorithm of KF is based
on two phases: prediction and update phases. In the prediction
phase, it makes estimatesof the current state variables,
accompanied by uncertainties. When the result of the next
measurement is obtained, the weighted average is used to
update these estimates, giving more weight to the estimates
with more certainty [18]. Inorder to improve indoor air quality
data collected by low-cost sensors flexibly arranged throughout
the interested area, this paper employs the KF algorithm in
developing a method for improving indoor air quality data. The
developed method can be applied on the collected AQ data
before performing data analysis and visualization.

The contributions of this paper are represented in two folds,
as follows:

- Proposing a solution for improving the air quality data
collected by 10T low-cost sensors, removing the noisy
data, and correcting incorrect data.

- Implementing, deploying, and testing the proposed solu-
tion on an 10T real-life scenario. The obtained results will
be analyzed to evaluate its performance.

The remainder of this paper is organized as follows: Section
Il presents state-of-the-art approaches related to the proposed
solution. Section Il introduces the methods of the proposed
solution. Section 1V elaborates the evaluation of the proposed
solution and discusses the obtained results. Finally, Section VI
concludes this work.

Il. RELATED WORK

In recent years, many researches have been conducted on
improving the quality of data collected by low-cost sensors. Air
quality data has also been given such attention for improv-ing
its quality to accurately assess the pollutant concentrationsand
air quality in a certain area.

Authors in [19] employed data fusion techniques and ma-
chine learning approaches to improve the data quality of loT
sensor in environmental monitoring. In their study, the factors
affecting the data quality of low-cost 10T sensors are identified
using three features selection approaches, including Forward
Feature Selection (FFS), Forward Feature Selection (FFS) and

Exhaustive Feature Selection (EFS. Then, the sensor data
are fused with the identified factors and integrated into one
equation used to calibrate the given sensors using Artificial
Neural Networks (ANN) and Linear Regression (LR). Since
the proposed solution is based on machine learning techniques,

it suffers from computational overhead and requires more
resources and much for performing training. In addition, the
final fused data lacks interpretability of each pollutant. In [20],
the authors proposed air quality monitoring and prediction
system based on edge computing. The authors implemented
the Kalnam filter for improving to reduce the dependency of
10T application on cloud computing. The designed system are
used to monitor outdoor pollutants such as SO2, NO2 and
PM2.5. The study is evaluated on outdoor air quality data.
This limit the proposed solution to improve the outdoor air
quality, which might be applicable to indoor air quality data.
To improve the data quality of 10T low-cost sensors, the
authors in [21] introduced a data fusion method, known as
multi-sensor space-time data fusion framework. The proposed
method was build depending on the Optimum Linear Data
Fusion theory. For spatial-temporal estimation, their method
was also integrated with a multi-time step Kriging method. The
proposed method showed an ability in improving the estima-
tion of PM2.5 concentration in space and time. The proposed
method was only evaluated on PM2.5 concentrations, so that it
lack a comprehensive evaluation on the concentrations of other
gasses. Other authors applied statistical methods to correct air
quality data collected by low-cost sensors. The authors in [22]
conducted an investigation on random and linear forest models
for the purpose of correcting PM2.5 measurements collected
by network of low-cost sensors of the Denver Department of
Public Health and Environment (DDPHE) in comparison with
measurements from U.S. Environmental Protection Agency
Federal Equivalence Method (FEM) monitors. The prediction
models that are based on statistical methods are only ap-
plicable on single feature and are not suitable for complex
prediction process.

I1l. METHODS
Data Quality Improvement Module (DQIM)
DQIM is proposed to improve the quality of data collected
by low-cost sensors. It is based on the KF, which is math-
ematically described in Equation (1). Equation (1) describes the
implementation of the proposed system.
Xt = Hixe-1 + Brur + wr

€]

where x: represents the signal value, which is a combination
of its prior value x:-1, a control signal u: , and a process noise
wt. ut is the control signal, which is a particular external factor
affecting the system. H: represents a state transition matrix to
model x:-1, and B: represents control matrix to model u:. wt
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denotes the process noise at time t, representing the effects
of influential external factors on the system. In the proposed
model, the statistical characteristics of w: are assumed to be
normally distributed with a normal mean (.0 ), and a
covariance matrix (o(w:)) follows the normal distribution of
Q: , as given by Equation (2).

p(w:) ~ N(0, Q) @)
So that the sensor measured value z: to the real state at time

t is mathematically represented by Equation (3).

Zt = Hxe + vt

3

In Equation (3), the value of z: whose accuracy is un-
known is a linear combination of the signal value x: and the
measurement noise v:. In the proposed model, the statistical
characteristics of v: are assumed to be normally distributed
with a normal mean (u~0), and a covariance matrix (p(v:))
follows the normal distribution of R:, as given by Equation

(4).

o(ve) ~ N(O, Ry) @)

where w: and v: are independent.

To obtain the system’s optimal state estimate at time t, a
linear combination of the system’s optimal estimated state at
time t-1 and the observation of the system state at time t. Since
the proposed model is based on the KF, the state of the KF is
denoted by x¢¢, which is the estimated state of the system at
time t, and Py, a covariance matrix of the estimated state error
at time t. The value of Py is used to measure the accuracy of
the estimation.

The KF is represented in two phases: prediction and cor-
rection phases.

1) Time Update (Prediction): The time update phase isthe
first step in the KF algorithm. The state estimate andestimate
error covariance matrix at time t is obtained based onthe
optimal estimation and estimated error covariance matrix of the

system state at time t-1. The following equations
mathematically describe this step:
)A(t|t—1 = Ht)}t—1|t—1 + Bu: (5)
Pye-1 = HtPt|t—1HtT + Q; (6)

where H: the state transition matrix, B: is the control input
matrix, and Q: is the covariance matrix of the process noise,
respectively.

2) Measurement Update (Correction): To get the optimal
state of the system at time t, x¢j¢c—1 is required to be corrected
by combining it with the current sensor observation. To
achieve this objective, the correction phase is implemented.
The following equations mathematically describe this step:

21: = Zt — Ht)’\(t|t—1 (9)

where H: is the identity matrix, R: is the covariance matrix
of the observed noise, and G: is Kalman gain. z: is the sensor
observation at time t, and Zz: is the observation margin,
calculated as the difference between z: and x#j:—1 obtained
by the a priori estimation. Based on the above equations, the
values of x¢jz—1 and Pye—1 are updated to obtain the optimal
estimates of X« and Py + Of the estimation error of the system

state at time t.

Xt|t = Xt|t—1 + GeZt

(10)

Pyt = (1 — GeHt)Pyr-1 (112)

The following algorithm outlines the proposed module for
improving the quality of sensor observation.

Algorithm 1: DQIM process.
Input: Sensors’ readings
Output: Estimated data

1 Initialize the system.

2 Perform system training
3 while true do
4 Perform system evaluation

5 if not reach the best values of the parameters then
6 _ Continue

7 else

8 _ Break

9 ABpIy prediction.

IV. EXPERIMENTS AND RESULTS

This section articulates the evaluation of the proposed
system in indoor air quality (IAQ) monitoring application
which architecture have been presented in Section I11. Since the
proposed system is a real-time system, the system’s overall
performance is evaluated based on collection latency.

A. Setup

After implementing the proposed system, the next step is
to evaluate the proposed system’s performance by deploying
the system in real-life scenarios. The selected scenario for
the deployment of the proposed system was the Dormitory
of Friendship Building, Second Life Zone, Zhejiang Sci-Tech
University, Xiasha District, Hangzhou City, Zhejiang Province.
The experiments have been held primarily on the 14th floor,
room No. 1405.

Based on the loT paradigm, The proposed system is de-

Fr = HtPy-1H”, + R 7 . . . h
' ey TR () ployed in real-life scenarios to evaluate its performance. The
following sections are dedicated to describing the architecture
Gt = Pt|t—1HTtFt_1 (8) of the proposed system.
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1) The Proposed System Architecture: The overall architec-
ture of the proposed indoor air quality monitoring system is
shown in Fig. 1. The system can simultaneously collect AQ
data from several sensors and transmit them an 10T server to be
made available to remote users both in graphical and tabular
forms. The system components are described as follows:

- Hardware Modules
- Cloud Platform
- Mobile App

a) Hardware Modules: The hardware module consists
of the sensors and the controller board. The sensors are used
to sense indoor air quality data. The controller mainly is to
collect data from given sensors and propagate the collected data
via the Internet (TCP/IP) to the cloud platform for online
visualization and storage. Finally, the end-user can access the
stored data using a mobile App developed for real-time mon-
itoring. In the proposed system, three different MQ sensors
(MQ- 4, MQ-136, MQ-7) are used to measure CO2, SO2,
CO, respectively. For the total Air Quality Index, we use the
MQ-135 sensor, which is sensitive to a range of gases, along
with DHT sensors for temperature and relative humidity. We
used Arduino Ethernet Shield and Arduino Leonardo board.
The Arduino Ethernet Shield is used to enable connecting an
the Arduino Leonardo board to the Internet [22]. The Arduino
Leonardo Board is characterized by 20 digital I/O pins, 12 pins
of which as analog inputs. Its clock speed is up to 16 MHz.
It has a power jack, USB connection, and an ICSP header.

b) 10T Cloud Platform: We utilized the Thinger.io plat-
form for our proposed system, an open-source platform ded-
icated to providing an attainable scalable infrastructure for
linking things. The cloud platform facilitates the definition
of numerous resources for the sensors used by the proposed
system that can sense for making our device accessible over the
Internet. Also, it facilitates the interaction with our devices
defined using API functionalities. Thus, the input sensors’
readings are timely uploaded to the cloud platform. Fig. 2 show
online visualization of the collected data from the CO2, SO2,
CO, and Temperature and Relative Humidity Sensors used for
the evaluation of the proposed system.

c) Mobile Application: The proposed system’s objective
is to enable the end-user to remotely monitor data produced
by indoor sensors using handheld devices to take protective
measures for time-sensitive emergencies happening indoors.
The mobile app is implemented using Cordova framework.

B. Experimental Dataset

Air quality data employed in this paper were collected by the
sensors used in the design of the proposed system from May 1,
2021, to June 30, 2021. The whole data containsdifferent air
quality datasets: CO, CO2, SO2, Temperature, and relative
humidity datasets. The gasses concentrations are mea-sured in
reference to [34]. CO2, CO, and SO2 were measured by PPM
while the temperature was measured by Celcius, and Relative
Humidity was measured in percentage. The monthly average
concentrations for CO2, CO, SO2, all together with
Temperature and Relative Humidity, were calculated using the
hourly and daily average concentrations. Datasets are supplied

in CSV files that are transformed into big datasets, which
are compiled in tables, and the related outlier-free data were
extracted and mathematically manipulated. The sampling rate
of the collected data sets is fixed to 30 seconds. The number of
samples used in this analysis is 4550 measurements for each
gas.

C. Result Analysis

In this section, the result analysis is performed based on the
system performance the collected datasets for gasses: CO, CO2,
S02, along with temperature and relative humidity.

1) System Performance: In this section, different experi-
ments with N gasses sensors were conducted varied from 1 to 5
sensors connected to Arduino board to calculate the difference
of data production time and the data visualization time to the
end-user.

a) Collection Latency: The performance of the proposed
system is estimated by measuring the time of data collection
from N sensors and the data visualization on the developed
mobile App to the end-user. Furthermore, the connection time
between the Arduino board and the cloud platform, the
connection time between the developed mobile App and the
cloud platform, and receiving the data from all 10T devices
to be visualized on the mobile App is known as collection
latency. The experiments were conducted using Samsung
Galaxy 8 and iPhone 11pro max. The connection time taken
to establish a connection between the Arduino board and the
cloud platform is approximately 15 seconds. The collection
latency is calculated by Equation (1).

CL = DR — DP (12)

where CL is the collection latency. DR is the time of receiving
data by the developed mobile App, and DP is the time of data
production by N sensors.

Two experiments were conducted to measure the collection
latency. In the first experiment, the collection latency is
measured while the data propagated to the cloud platform
sequentially for N sensors. However, in the second experiment,
the collection latency is measured while data are propagated
simultaneously. The average values of a sequential connection
are depicted in Fig. 3. As it can be seen, both Samsung Galaxy
8 and iPhone 1lpro max show the same trend. Still,the
connection established by iPhone 11 Pro max takes ashorter
time than Samsung Galaxy 8 owing to its relativelylow
capacity. As observed in Fig. 4, the collection latency in
simultaneous connection is more considerable and faster than
the sequential connection.

Finally, the collection latency measurement in both sequen-
tial and simultaneous connection for both Samsung Galaxy 8
and iPhone 11pro max is subject to the device’s performance.
Therefore, it is recommended the devices with higher capacity
are preferable. We assume that there is no data loss in the
experiments, and the network bandwidth is fixed.

2) DQIM Performance: One of the critical points for eval-
uating the trustability of DQIM is the value of Q , which means
that if its value is small, it indicates the process noiseof the
system is less and trustable. However, if the value of
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Q is high, it indicates that the process noise of the system is
high, and the prediction system becomes untrustable. When the
value of Q is zero, the estimated value x: is more trustable
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Fig. 4: Collection latency for simultaneous connection.

than the sensors’ observations. However, when the value of
is one, the sensors’ observations are more trustable than the
estimated value x:. In this paper, we applied the tuning
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TABLE I: Statistical summary statistics of CO2, CO, SO2, temperature, and Relative Humidity concentrations.

CO2 CO SO2 Temperature Relative Humidity

Samples Count 1183 1183 1183 1183 1183

Standard Dev. 123.2365 | 95.731961 | 36.56394 | 1.664489792 5.181274747
Average 297.3982 | 167.8639 | 208.7922 | 27.71851395 72.06706385
Coeff. of variation | 41.43822 | 57.029512 | 17.51212 | 6.004974852 7.189518305
Minimum 173 116 133.75 22.20000076 46.25

Maximum 922.75 955.25 3215 30.35000038 80.10000229
Stnd. skewness 3.853599 | 6.7418114 | -0.0368 | -0.844601963 -2.138055498
Stnd. kurtosis 15.88695 | 49.932513 | -0.40763 | -0.240041953 6.987424644

TABLE II: Pearson’s correlation coefficients matrix for CO2, CO, CO, Temperature, and Relative Humidity.

CO2 CcoO SO2 Temperature Ezlr?wtilt\j/i?y
co2 — -0.266392 0.210426 0.198774903 0.047736248
— p=6.59214799479572E-06 | p=7.60741418093521E-13 | p=1.3535224271778E-11 p=5.25381476661487E-12
co -0.26639 - 0.261419 -0.159277328 0.019543338
p=6.59214799479572E-06 | — p=3.20287266558599E-19 | p=6.68876076769264E-08 p=0.107663193847883
S02 0.210426 0.2614193 — -0.051714505 0.688097868
p=7.60741418093521E-13 | p=3.20287266558599E-19 | — p=0.0813280256625801 p=0.510327222058107
Temperature 0.198775 -0.159277 -0.05171 - 0.688097868
p=1.3535224271778E-11 p=6.68876076769264E-08 | p=0.08132802566253801 — p=2.75316830192132E-160
Relative 0.047736 0.0195433 0.688098 0.688097868 -
Humidity p=5.25381476661487E-12 | p=0.107663193847883 p=0.510327222058107 p=2.75316830192132E-160 | —

model proposed by the authors in [23] for tuning the Q , in
which the predictive model reaches the best point of process
convergence. During the tuning process, RMSD (root mean
square deviation) between the predicted value x produced by
the KF and its corresponding actual value x collected by
sensors, as given by Equation (13).
s

'I.\;o(x - X)

RMSD(x, x) =
N

(13)

During the tuning process, when the state of the KF is non-
converged, the RMSD will be relatively large between the
predicted value x and the actual value x ; the value is rather
large. Therefore, the RMSDs for CO2, CO, SO2, all together
with temperature and relative humidity values, respectively, are
normalized by the min-max normalization method ranging
between (0,1). In this paper, we used the value of RMSD
to select the best optimal value of Q (global minimum). The
smaller value of RMSD indicates that the value of x will be
less unconverted, indicting faster convergence of the model.
Accordingly, the value of Q will be more suitable for estimat-
ing more accurate values of CO2, CO, SO2, temperature, and
relative humidity. The best optimal values of Q obtained from
the experiment are 0.563, 0.079,0.453, 0.172, 0.144 for CO2,
CO, SO2, temperature, and relative humidity, respectively.

Figures 5-9 give an illustrative demonstration to the obtain
results of DQIM after its application on a portion of the col-
lected data of SO2, CO2, CO, Temp, and Relative Humidity.

3) Descriptive statistics and Correlation Analysis: Descrip-
tive statistics of CO2, CO, SO2, Temperature, and Relative
Humidity in the studied area have been carried out. Table
1 lists a statistical summary of these gasses, including the
measurements of variability, central tendency, and form. From
Table 1, we can observe that the maximum monthly averages
for CO2, CO, and SO2 are 297.398197 ppm, 167.8638962
ppm, and 208.7922164 ppm, respectively. These values ex-
ceeded the monthly standard average threshold of 100 ppm for

235
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N

~

w
L

Measurements

220

2154

+ Actual CO2 Measurements (Noisy Data)
—— Estimated Data +

T T T T T T T T T
0 20 40 60 80 100 120 140 160
Samples

Fig. 5: The output of DQIM for CO2.

human health. Furthermore, the highest standard deviation was
found for CO2, and the highest variation coefficient was found
for CO. These values indicate heterogeneous concentrations of
CO2 and CO. However, SO2 showed a slight deviation and
variation. Moreover, CO2 and CO had shown higher skewness
of their probability distributions. Moreover, the averages of
Temperature and Relative Humidity are 27.71851395°C and
72.06706385%, respectively. These indicate that Temperature
is moderate and Relative Humidity id very poor.
Correlations analysis enables the investigation of chemical
or environmental relations among the gasses concerned inthis
research. It reflects the relationship possibility among the
gasses resources. Table 2 shows the analysis results using Pear-
son’s correlation coefficients with p values< 0.05. CO2 shows
a negative correlation with CO (-0.266392) and a positive and
insignificant correlation with SO2 (0.210426). This suggests
that there is no good associations or common source among the
gasses. Furthermore, CO2 and CO show insignificant
correlation with Temperature and Relative Humidity, while
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Fig. 9: The output of DQIM for RH.

SO2 shows positive and significant correlation with Relative
Humidity. This indicates that increasing in Relative Humidity
helps increasing in SO2 concentration.

V. CONCLUSION

This paper focuses on developing an loT-based system to
efficiently collect data from sensing 10T devices using a set
of sensors connected to the Arduino board to propagate the
collected data to the cloud for storage and analysis. A mobile
app also is developed to help the end-users to visualize the
collected data in real-time, anywhere, and anytime. For this
purpose, it selects the most cost-efficient devices to collect
data. Data analysis services are developed for the collected data
to measure the levels of indoor gasses and inform the end-users
about their effect on human health. The proposed system
encompasses three layers: hardware, cloud, and mobile layers.
In the hardware layer, we developed our perception layer
consisting of a set of sensors for data collection connected to
a controller (Arduino board). The main task of the controller
is to propagate the collected data from the sensors to thecloud.
The second layer is the cloud, which is responsiblefor
providing data analysis and data storage. The third layer is the
mobile App, which is responsible for collecting data from the
cloud and visualizing it to the end-users in real-time.

The proposed system was implemented using a prototype
and evaluated based on the data collection and visualization
latency using different environments and different connec-tion
modes (Sequential and simultaneous connections). The
proposed solution is based on the Kalman filter, which is
characterized by fast convergence and higher estimation ac-
curacy. This strengthens the performance and the accuracy of
our proposed solution. The obtained results showed that the
proposed system highlights good performance in improving the
indoor air quality data through cleaning the noisy dataand
correcting incorrect data.
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