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Abstract  
 

Arithmetic coding is a very efficient and most popular 

entropy coding technique. Compression ratio cannot be 

improved as it is dependent on statistical probability 

model. An improvement that is possible is only with 

respect to time and space complexity. In arithmetic 

coding, for each symbol, it renormalize the interval and 

output code bits till an interval becomes 2b-2 wide, 

where b is number of bits used to store range. In 

conventional implementation of this algorithm, at each 

iteration, single bit is output in the coded message 

when most significant bits of low and high of a 

subinterval match. Thereafter it outputs its complement 

as many times as an underflow has occurred before.  In 

this paper, an algorithm is implemented by extracting 

more than one bit at a time instead of just one. Here it 

outputs one bit, then its complement for underflow 

number of times and then remaining number of bits. 

Doing so, execution speed is increased. As compared to 

conventional implementations, there is a performance 

17% gain in encoding and 10% in decoding, without 

affecting compression ratio. 

 

Index Terms: arithmetic coding, data compression, 

improved performance, lossless data compression, 

multi-bits output at a time 

 

1. Introduction  
rithmetic coding was introduced by Rissanen [1] 

in 1976. Arithmetic coding [2]-[5] is a very efficient 

entropy coding technique. It is optimal in theory and 

nearly optimal in practice, in that it encodes arbitrary 

data with minimal average code length. It works with 

any sample space so it can be used for the coding of 

text in arbitrary character sets as well as binary files. It 

encodes data using a variable number of bits. The 

number of bits used to encode each symbol varies 

according to the probability assigned to that symbol. 

The idea is to assign short codeword to more probable 

events and long codeword to less probable events [5]. 

Arithmetic coding has been developed extensively 

since its introduction several decades ago, and is 

notable for offering extremely high coding efficiency.  

That is why it is most popular for entropy coding and 

widely used in practice. There are many data 

compression methods that first transform input data by 

some algorithm, and then compress resulting data using 

arithmetic coding [18]. For instance, the run length 

code, many implementations of Lempel-Ziv codes, the 

context-tree weighting method [6], Grammar—based 

codes [7]-[8] and many methods of image compression, 

audio and video compression. While many earlier-

generation image and video coding standards such as 

JPEG, H.263, and MPEG-2, MPEG-4 relied heavily on 

Huffman coding for the entropy coding steps in 

compression, recent generation standards including 

JPEG2000 [9] and H.264 [10]-[13] utilize arithmetic 

coding.  It is also considered as a suitable candidate for 

a possible encryption-compression [14]-[16] combine 

providing security [17] and reduced size for internet 

applications.  

Arithmetic coding has a major advantage over other 

entropy coding methods, such as Huffman coding. 

Huffman coding uses an integer number of bits for each 

code, and therefore only has a chance of reaching 

entropy performance when probability of a symbol is a 

power of 2 for all the symbols. Arithmetic code 

encodes arbitrary data with minimal average code 

A 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T



  

 

 

  
 

length, so its coding efficiency is generally higher. The 

main disadvantage of arithmetic coding is its relatively 

high computational complexity. It is usually slower 

than Huffman coding and other fixed-length to 

variable-length coding schemes [19]. Compression 

ratio cannot be further improved as compression ratio 

that can be reached by any encoder under a given 

statistical model is actually bounded by the quality of 

that model. However one can optimize one’s 

algorithms in at least two dimensions: memory usage 

and speed [20]. Here we have worked to increase an 

execution speed. 

Existing conventional implementations [20]-[27] 

output one bit at a time whereas our implementation 

output multiple bits at a time. It has increased the 

performance drastically without any loss in 

compression ratio of conventional implementations. 

 

2. Statistical model in Arithmetic Coding 
Arithmetic coding method is based on the fact that 

the cumulative probability of a symbol sequence 

corresponds to a unique subinterval of the initial 

interval [0, 1). Before starting encoding process, 

symbols are assigned segments on interval [0, 1) 

according to their cumulative probabilities. It doesn’t 

matter which symbols are assigned which segment of 

the interval as long as it is done in the same manner by 

both the encoder and the decoder [24]. If S =  (S1, S2, . 

. ., Sn) is the alphabet of a source having n symbols 

with an associated cumulative probability distribution P 

= ( P1, P2, … , Pn), an initial interval [0, 1) is divided 

into n subintervals as [0, P1), [P1, P2), [P2, P3), 

…,[Pn-1, Pn) where Pi is the cumulative probability of 

symbol Si. Each subinterval length is proportional to 

the probability of the symbols [22].  

When arithmetic coding is implemented using 

integer arithmetic, a coding interval is usually 

represented by [L,H), where L and H are two b-bit 

integers denoting the interval’s lower end and higher 

end, respectively. An initial interval is [0,1). 

Cumulative probability is a ratio of cumulative 

frequency and total frequency. So instead of using 

cumulative probability, cumulative frequencies are 

used in computation. Thus the probability model is 

described by an array, [F0, F1, F2, . . . ,Fn], where Fi (0 

≤ i ≤ n) is f-bit integer (f ≤ b − 2) representing the 

lower and upper bounds of cumulative frequency 

segments. For symbol Si, Fi-1 is lower bound and Fi is 

upper bound. 

 

3. Encoding and decoding algorithm 
 

Encoding Algorithm 

 Interval=[0,1) 

 Qtr1=range/4, Qtr2=2*Qtr1, Qtr3=3*Qtr1 

 cnt=0, cnt is count for occurrences of underflow 

 Repeat till not EOF 

- Read symbol 

- Compute corresponding new interval [low, high) 

- Repeat (renormalization loop)  

o Case 1: low and high falls in upper half, i.e. 

in [0.5,1). So low >= Qtr2. Here matching 

most significant bit (msb) is 1.  

 output bit 1 

 o/p bit 0 cnt times, cnt=0 

 left shift low and high by 1 position, i.e. 

double low and high ( padding on right: 

low with 0 and right with 1) 

o Case2: Both low and high falls in lower 

half, i.e. in [0, 0.5). So high < Qtr2. Here 

matching most significant bit is 0.  

 output bit 0 

 o/p bit 1 cnt times, cnt=0 

 left shift low and high by 1 position, i.e. 

double low and high ( padding on right: 

low with 0 and right with 1) 

o Case3: low falls in [Qtr1, Qtr2) and high 

falls in [Qtr2, Qtr3), i.e. (high < Qtr3) && 

(low ≥ Qtr1). Here msb is not matching and 

2nd bit differ by 1, thus underflow occurs. 

 cnt++ (underflow) 

 extract 2nd bit from low and high and 

then double, i.e subtract Qtr1 from low 

and high, double low and high 

o Other cases: (low<Qtr2) && (high ≥ Qtr3), 

i.e. interval is more than half 

  Break loop 

 At EOF 

- cnt++ 

- if  low < Qtr1, i.e. its most significant bit is 0, 

then output bit 0 and cnt times 1else output bit 1 

and cnt times 0 

 

During decoding, new interval is computed and bits 

are extracted from the coded message exactly the same 

way as done during encoding. 

 

4. Renormalizing Interval 
As explained in section 3, in arithmetic coding, 

while encoding and decoding each symbol, it output a 

bit and expands the current interval. This is considered 

as renormalization of an interval. An algorithm 

renormalizes an interval in a loop till interval length 

becomes more than half of the interval.  

 

5. Conventional Implementations 
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All integer implementations of arithmetic coding 

uses cumulative frequencies a statistical model as 

explained in section 2. As explained in section 3, while 

encoding and decoding each symbol, it renormalizes an 

interval in a loop till interval length becomes more than 

half of the interval. During renormalization (section 4), 

it performs two tasks: outputting code bits and 

expanding the current interval. 

In conventional implementations [20]-[27], 

renormalization is performed through the 

renormalization loop in a bitwise manner, i.e., during 

each execution of the renormalization loop, one code 

bit is generated and the current interval is doubled. 

Case 1 and 2 of algorithm explained in section 3 are 

usually combined that output most significant matching 

bit (whether 0 or 1), output underflow cnt times 

complement of msb and then double the interval. 

 

6. Proposed Implementation 
As seen in conventional implementations, algorithm 

outputs only one bit at a time in single iteration. Here it 

is proposed to extract and output more than one bit in a 

single iteration and expand the interval accordingly. 

This reduces the number of iterations used in 

renormalization. It has resulted in tremendous 

improvement in the execution speed without 

compromising on compression ratio. 

 

6.1. Using Statistical Model 

Same as in conventional implementation (as in 

section 2) 

 

6.2. Renormalizing Interval 

Here is the difference between conventional and 

proposed implementations.  

Renormalization loop in proposed implementation: 

 Repeat till case 1 or 2 or 3 (renormalization loop) 

- Case 1, 2: nBits most significant bits are 

matching (Either 0 or 1) 

o Compute number of most significant bits 

matching, say nBits 

o output first most significant matching bit  

o o/p cnt times the complement of msb, cnt=0 

o o/p remaining nBits-1 most significant 

matching bits 

o expand interval shifting low and high to left 

by nBits position (padding on right: low 

with 0 and high with 1) 

- Case 3: low falls in [Qtr1, Qtr2) and high falls in 

[Qtr2, Qtr3), i.e. most significant bit is not 

matching and 2nd bit differ by 1 

o cnt++ (increment underflow counter) 

o extract 2nd bit from low and high and then 

double 

6.3. Computing number of matching most 

significant bits 

When bitwise xor operation is performed on bits, 

resulting bit is 0 when both operand bits are matching 

and 1 otherwise. Thus low xor high will have resulting 

bit 0 wherever bits of low and high are matching. Now 

the only task is to determine occurrences of leading 

consecutive zeros, i.e. the position of first occurrence of 

bit 1 from left. This can be done as shown below. 

 tmp=low XOR high 

 Determine 1st occurrence of bit 1 from left 

- Either using expression int(log2(tmp))  

- Or using shift in a loop  

 Assuming low and high are represented using b 

bits, nBits=b-int(log2(tmp))+1 will be number of 

consecutive zeros on left in tmp, i.e. number of 

matching most significant bits in high and low 

 

There might be a problem in using log2(x) function, 

as it is not be available in all C (ex. TurboC 3.0). In 

such cases, use log(tmp)/log(2) where log is natural 

logarithm. An alternative is to shift left in a loop and 

terminate it when first bit is 1. 

 

7. Experimental Results 
Both the conventional and proposed algorithms are 

implemented using 16 bit Turbo C compiler on Intel(R) 

Pentium (R) D, CPU 3.00 GHz, 1 GB RAM. Execution 

time is measured in seconds for 17 files with varying 

sizes and different file types. Some of the test files are 

selected from Calgary and Canterbury corpus, a widely 

used benchmark and also from web site 

compression.ca/act/act_files.html. Selected test files are 

of various types like text files, image files, audio files, 

excel files, power point files, word documents, 

executable files etc. Used benchmark files are: 

act2may2.xls, calbook2.txt, ca-obj2, cal-pic, frymire.tif, 

kennedy.xls, lena3.tif, monarch.tif, pine.bin, ptt5, 

world95.txt. 

Here terms ACEN and ACDE are used for existing 

conventional implementations of arithmetic coding for 

encoding and decoding respectively. Similarly terms 

ACEC_JS and ACDE_JS are used for proposed 

implementations. 

Table 1 lists files used for testing of both existing 

and proposed implementations. Table 2 and Table 3 

presents compression and decompression time 

(seconds) respectively and gain (in percentage) in speed 

using proposed implementation. Figure 1 and 2 shows 

comparison of execution time of encoding and 

decoding respectively. 
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TABLE I 

TEST FILES USED 
No File name     Size (Bytes) 

1 act2may2.xls 1348036 

2 calbook2.txt 610856 

3 cal-obj2 246814 

4 cal-pic 513216 

5 cycle.doc 1483264 

 6 every.wav 6994092 

7 family1.jpg 198372 

8 frymire.tif 3706306 

9 kennedy.xls 1029744 

10 lena3.tif 786568 

11 linuxfil.ppt 246272 

12 monarch.tif 1179784 

13 pine.bin 1566200 

14 ptt5 513216 

15 sadvchar.pps 1797632 

16 shriji.jpg 4493896 

17 world95.txt 3005020 

 

 

TABLE II 

COMPRESSION (ENCODING) TIME 
 

  

  ACEN ACEN-JS %Gain 

No File name Sec Sec   

1 act2may2.xls 2.307 2.0329 11.8812 

2 calbook2.txt 1.099 0.989 10.0091 

3 cal-obj2 0.495 0.3846 22.3030 

4 cal-pic 0.6593 0.6044 8.3270 

5 cycle.doc 2.637 2.3077 12.4877 

6 every.wav 15.000 12.0329 19.7807 

7 family1.jpg 0.439 0.3297 24.8975 

8 frymire.tif 6.648 5.4945 17.3511 

9 kennedy.xls 1.640 1.4835 9.5427 

10 lena3.tif 1.703 1.3187 22.5661 

11 linuxfil.ppt 0.439 0.3846 12.3918 

12 monarch.tif 2.528 1.978 21.7563 

13 pine.bin 3.077 2.5824 16.0741 

14 ptt5 0.604 0.6044 0.0000 

15 sadvchar.pps 3.791 3.0769 18.8367 

16 shriji.jpg 9.505 7.6923 19.0710 

17 world95.txt 5.604 4.8351 13.7206 

 

Overall Performance  17.2805 

 

 

 

 

 

 

TABLE III 

DECOMPRESSION (DECODING) TIME 
    ACEN ACEN-JS %Gain 

No File name Sec Sec   

1 act2may2.xls 6.868 6.0989 11.1983 

2 calbook2.txt 3.351 3.1319 6.5383 

3 cal-obj2 1.374 1.2637 8.0277 

4 cal-pic 2.362 1.5384 34.8688 

5 cycle.doc 7.912 7.1429 9.7207 

6 every.wav 40.769 36.7582 9.8379 

7 family1.jpg 1.154 1.0989 4.7747 

8 frymire.tif 19.615 18.3516 6.4410 

9 kennedy.xls 5.270 3.8462 27.0171 

10 lena3.tif 4.560 4.1209 9.6373 

11 linuxfil.ppt 1.31 1.1542 11.8931 

12 monarch.tif 6.868 6.1538 10.3990 

13 pine.bin 8.791 8.1319 7.4974 

14 ptt5 2.362 1.5385 34.8645 

15 sadvchar.pps 10.384 9.4505 8.9898 

16 shriji.jpg 26.099 23.6264 9.4739 

17 world95.txt 16.648 13.6813 17.8202 

  Overall Performance   11.2401 

 

 
                         Fig. 1.  Encoding execution time  
 

 

 
                         Fig. 2.  Decoding execution time  
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8. Conclusion 
As compared to existing conventional 

implementations of arithmetic coding, proposed 

implementation has resulted into a tremendous gain 

in execution speed of about 17% while encoding 

and 11% while decoding, without any compromise 

in compression ratio. 

9. Further enhancement 
Both encoding and decoding can be further 

improved in execution speed by determining how 

many times consecutive underflow will occur. 

When underflow occurs, most significant bit (msb) 

is not matching and next bit differs by 1. So msb is 

1 and next bit is 0 in high bound of interval, 

whereas msb is 0 and next bit is 1 in low bound. 

Our interest is to find number of leading 0s (say n0) 

after msb in high and how many leading 1s (say n1) 

after msb in low. Using this, consecutive 

occurrences of underflow can be computed 

minimum of these two numbers n0 and n1. 
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