

Improved Performance Of Arithmetic Coding By Extracting Multiple

Bits At A Time

Jyotika Doshi

GLS Inst.of Computer Technology

Opp. Law Garden, Ellisbridge

Ahmedabad-380006, INDIA

Savita Gandhi

Dept. of Computer Science; Gujarat University

Navrangpura Ahmedabad-380009, INDIA

Abstract

Arithmetic coding is a very efficient and most popular

entropy coding technique. Compression ratio cannot be

improved as it is dependent on statistical probability

model. An improvement that is possible is only with

respect to time and space complexity. In arithmetic

coding, for each symbol, it renormalize the interval and

output code bits till an interval becomes 2b-2 wide,

where b is number of bits used to store range. In

conventional implementation of this algorithm, at each

iteration, single bit is output in the coded message

when most significant bits of low and high of a

subinterval match. Thereafter it outputs its complement

as many times as an underflow has occurred before. In

this paper, an algorithm is implemented by extracting

more than one bit at a time instead of just one. Here it

outputs one bit, then its complement for underflow

number of times and then remaining number of bits.

Doing so, execution speed is increased. As compared to

conventional implementations, there is a performance

17% gain in encoding and 10% in decoding, without

affecting compression ratio.

Index Terms: arithmetic coding, data compression,

improved performance, lossless data compression,

multi-bits output at a time

1. Introduction
rithmetic coding was introduced by Rissanen [1]

in 1976. Arithmetic coding [2]-[5] is a very efficient

entropy coding technique. It is optimal in theory and

nearly optimal in practice, in that it encodes arbitrary

data with minimal average code length. It works with

any sample space so it can be used for the coding of

text in arbitrary character sets as well as binary files. It

encodes data using a variable number of bits. The

number of bits used to encode each symbol varies

according to the probability assigned to that symbol.

The idea is to assign short codeword to more probable

events and long codeword to less probable events [5].

Arithmetic coding has been developed extensively

since its introduction several decades ago, and is

notable for offering extremely high coding efficiency.

That is why it is most popular for entropy coding and

widely used in practice. There are many data

compression methods that first transform input data by

some algorithm, and then compress resulting data using

arithmetic coding [18]. For instance, the run length

code, many implementations of Lempel-Ziv codes, the

context-tree weighting method [6], Grammar—based

codes [7]-[8] and many methods of image compression,

audio and video compression. While many earlier-

generation image and video coding standards such as

JPEG, H.263, and MPEG-2, MPEG-4 relied heavily on

Huffman coding for the entropy coding steps in

compression, recent generation standards including

JPEG2000 [9] and H.264 [10]-[13] utilize arithmetic

coding. It is also considered as a suitable candidate for

a possible encryption-compression [14]-[16] combine

providing security [17] and reduced size for internet

applications.

Arithmetic coding has a major advantage over other

entropy coding methods, such as Huffman coding.

Huffman coding uses an integer number of bits for each

code, and therefore only has a chance of reaching

entropy performance when probability of a symbol is a

power of 2 for all the symbols. Arithmetic code

encodes arbitrary data with minimal average code

A

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

length, so its coding efficiency is generally higher. The

main disadvantage of arithmetic coding is its relatively

high computational complexity. It is usually slower

than Huffman coding and other fixed-length to

variable-length coding schemes [19]. Compression

ratio cannot be further improved as compression ratio

that can be reached by any encoder under a given

statistical model is actually bounded by the quality of

that model. However one can optimize one’s

algorithms in at least two dimensions: memory usage

and speed [20]. Here we have worked to increase an

execution speed.

Existing conventional implementations [20]-[27]

output one bit at a time whereas our implementation

output multiple bits at a time. It has increased the

performance drastically without any loss in

compression ratio of conventional implementations.

2. Statistical model in Arithmetic Coding
Arithmetic coding method is based on the fact that

the cumulative probability of a symbol sequence

corresponds to a unique subinterval of the initial

interval [0, 1). Before starting encoding process,

symbols are assigned segments on interval [0, 1)

according to their cumulative probabilities. It doesn’t

matter which symbols are assigned which segment of

the interval as long as it is done in the same manner by

both the encoder and the decoder [24]. If S = (S1, S2, .

. ., Sn) is the alphabet of a source having n symbols

with an associated cumulative probability distribution P

= (P1, P2, … , Pn), an initial interval [0, 1) is divided

into n subintervals as [0, P1), [P1, P2), [P2, P3),

…,[Pn-1, Pn) where Pi is the cumulative probability of

symbol Si. Each subinterval length is proportional to

the probability of the symbols [22].

When arithmetic coding is implemented using

integer arithmetic, a coding interval is usually

represented by [L,H), where L and H are two b-bit

integers denoting the interval’s lower end and higher

end, respectively. An initial interval is [0,1).

Cumulative probability is a ratio of cumulative

frequency and total frequency. So instead of using

cumulative probability, cumulative frequencies are

used in computation. Thus the probability model is

described by an array, [F0, F1, F2, . . . ,Fn], where Fi (0

≤ i ≤ n) is f-bit integer (f ≤ b − 2) representing the

lower and upper bounds of cumulative frequency

segments. For symbol Si, Fi-1 is lower bound and Fi is

upper bound.

3. Encoding and decoding algorithm

Encoding Algorithm

 Interval=[0,1)

 Qtr1=range/4, Qtr2=2*Qtr1, Qtr3=3*Qtr1

 cnt=0, cnt is count for occurrences of underflow

 Repeat till not EOF

- Read symbol

- Compute corresponding new interval [low, high)

- Repeat (renormalization loop)

o Case 1: low and high falls in upper half, i.e.

in [0.5,1). So low >= Qtr2. Here matching

most significant bit (msb) is 1.

 output bit 1

 o/p bit 0 cnt times, cnt=0

 left shift low and high by 1 position, i.e.

double low and high (padding on right:

low with 0 and right with 1)

o Case2: Both low and high falls in lower

half, i.e. in [0, 0.5). So high < Qtr2. Here

matching most significant bit is 0.

 output bit 0

 o/p bit 1 cnt times, cnt=0

 left shift low and high by 1 position, i.e.

double low and high (padding on right:

low with 0 and right with 1)

o Case3: low falls in [Qtr1, Qtr2) and high

falls in [Qtr2, Qtr3), i.e. (high < Qtr3) &&

(low ≥ Qtr1). Here msb is not matching and

2nd bit differ by 1, thus underflow occurs.

 cnt++ (underflow)

 extract 2nd bit from low and high and

then double, i.e subtract Qtr1 from low

and high, double low and high

o Other cases: (low<Qtr2) && (high ≥ Qtr3),

i.e. interval is more than half

 Break loop

 At EOF

- cnt++

- if low < Qtr1, i.e. its most significant bit is 0,

then output bit 0 and cnt times 1else output bit 1

and cnt times 0

During decoding, new interval is computed and bits

are extracted from the coded message exactly the same

way as done during encoding.

4. Renormalizing Interval
As explained in section 3, in arithmetic coding,

while encoding and decoding each symbol, it output a

bit and expands the current interval. This is considered

as renormalization of an interval. An algorithm

renormalizes an interval in a loop till interval length

becomes more than half of the interval.

5. Conventional Implementations

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

All integer implementations of arithmetic coding

uses cumulative frequencies a statistical model as

explained in section 2. As explained in section 3, while

encoding and decoding each symbol, it renormalizes an

interval in a loop till interval length becomes more than

half of the interval. During renormalization (section 4),

it performs two tasks: outputting code bits and

expanding the current interval.

In conventional implementations [20]-[27],

renormalization is performed through the

renormalization loop in a bitwise manner, i.e., during

each execution of the renormalization loop, one code

bit is generated and the current interval is doubled.

Case 1 and 2 of algorithm explained in section 3 are

usually combined that output most significant matching

bit (whether 0 or 1), output underflow cnt times

complement of msb and then double the interval.

6. Proposed Implementation
As seen in conventional implementations, algorithm

outputs only one bit at a time in single iteration. Here it

is proposed to extract and output more than one bit in a

single iteration and expand the interval accordingly.

This reduces the number of iterations used in

renormalization. It has resulted in tremendous

improvement in the execution speed without

compromising on compression ratio.

6.1. Using Statistical Model

Same as in conventional implementation (as in

section 2)

6.2. Renormalizing Interval

Here is the difference between conventional and

proposed implementations.

Renormalization loop in proposed implementation:

 Repeat till case 1 or 2 or 3 (renormalization loop)

- Case 1, 2: nBits most significant bits are

matching (Either 0 or 1)

o Compute number of most significant bits

matching, say nBits

o output first most significant matching bit

o o/p cnt times the complement of msb, cnt=0

o o/p remaining nBits-1 most significant

matching bits

o expand interval shifting low and high to left

by nBits position (padding on right: low

with 0 and high with 1)

- Case 3: low falls in [Qtr1, Qtr2) and high falls in

[Qtr2, Qtr3), i.e. most significant bit is not

matching and 2nd bit differ by 1

o cnt++ (increment underflow counter)

o extract 2nd bit from low and high and then

double

6.3. Computing number of matching most

significant bits

When bitwise xor operation is performed on bits,

resulting bit is 0 when both operand bits are matching

and 1 otherwise. Thus low xor high will have resulting

bit 0 wherever bits of low and high are matching. Now

the only task is to determine occurrences of leading

consecutive zeros, i.e. the position of first occurrence of

bit 1 from left. This can be done as shown below.

 tmp=low XOR high

 Determine 1st occurrence of bit 1 from left

- Either using expression int(log2(tmp))

- Or using shift in a loop

 Assuming low and high are represented using b

bits, nBits=b-int(log2(tmp))+1 will be number of

consecutive zeros on left in tmp, i.e. number of

matching most significant bits in high and low

There might be a problem in using log2(x) function,

as it is not be available in all C (ex. TurboC 3.0). In

such cases, use log(tmp)/log(2) where log is natural

logarithm. An alternative is to shift left in a loop and

terminate it when first bit is 1.

7. Experimental Results
Both the conventional and proposed algorithms are

implemented using 16 bit Turbo C compiler on Intel(R)

Pentium (R) D, CPU 3.00 GHz, 1 GB RAM. Execution

time is measured in seconds for 17 files with varying

sizes and different file types. Some of the test files are

selected from Calgary and Canterbury corpus, a widely

used benchmark and also from web site

compression.ca/act/act_files.html. Selected test files are

of various types like text files, image files, audio files,

excel files, power point files, word documents,

executable files etc. Used benchmark files are:

act2may2.xls, calbook2.txt, ca-obj2, cal-pic, frymire.tif,

kennedy.xls, lena3.tif, monarch.tif, pine.bin, ptt5,

world95.txt.

Here terms ACEN and ACDE are used for existing

conventional implementations of arithmetic coding for

encoding and decoding respectively. Similarly terms

ACEC_JS and ACDE_JS are used for proposed

implementations.

Table 1 lists files used for testing of both existing

and proposed implementations. Table 2 and Table 3

presents compression and decompression time

(seconds) respectively and gain (in percentage) in speed

using proposed implementation. Figure 1 and 2 shows

comparison of execution time of encoding and

decoding respectively.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

TABLE I

TEST FILES USED
No File name Size (Bytes)

1 act2may2.xls 1348036

2 calbook2.txt 610856

3 cal-obj2 246814

4 cal-pic 513216

5 cycle.doc 1483264

 6 every.wav 6994092

7 family1.jpg 198372

8 frymire.tif 3706306

9 kennedy.xls 1029744

10 lena3.tif 786568

11 linuxfil.ppt 246272

12 monarch.tif 1179784

13 pine.bin 1566200

14 ptt5 513216

15 sadvchar.pps 1797632

16 shriji.jpg 4493896

17 world95.txt 3005020

TABLE II

COMPRESSION (ENCODING) TIME

 ACEN ACEN-JS %Gain

No File name Sec Sec

1 act2may2.xls 2.307 2.0329 11.8812

2 calbook2.txt 1.099 0.989 10.0091

3 cal-obj2 0.495 0.3846 22.3030

4 cal-pic 0.6593 0.6044 8.3270

5 cycle.doc 2.637 2.3077 12.4877

6 every.wav 15.000 12.0329 19.7807

7 family1.jpg 0.439 0.3297 24.8975

8 frymire.tif 6.648 5.4945 17.3511

9 kennedy.xls 1.640 1.4835 9.5427

10 lena3.tif 1.703 1.3187 22.5661

11 linuxfil.ppt 0.439 0.3846 12.3918

12 monarch.tif 2.528 1.978 21.7563

13 pine.bin 3.077 2.5824 16.0741

14 ptt5 0.604 0.6044 0.0000

15 sadvchar.pps 3.791 3.0769 18.8367

16 shriji.jpg 9.505 7.6923 19.0710

17 world95.txt 5.604 4.8351 13.7206

Overall Performance 17.2805

TABLE III

DECOMPRESSION (DECODING) TIME
 ACEN ACEN-JS %Gain

No File name Sec Sec

1 act2may2.xls 6.868 6.0989 11.1983

2 calbook2.txt 3.351 3.1319 6.5383

3 cal-obj2 1.374 1.2637 8.0277

4 cal-pic 2.362 1.5384 34.8688

5 cycle.doc 7.912 7.1429 9.7207

6 every.wav 40.769 36.7582 9.8379

7 family1.jpg 1.154 1.0989 4.7747

8 frymire.tif 19.615 18.3516 6.4410

9 kennedy.xls 5.270 3.8462 27.0171

10 lena3.tif 4.560 4.1209 9.6373

11 linuxfil.ppt 1.31 1.1542 11.8931

12 monarch.tif 6.868 6.1538 10.3990

13 pine.bin 8.791 8.1319 7.4974

14 ptt5 2.362 1.5385 34.8645

15 sadvchar.pps 10.384 9.4505 8.9898

16 shriji.jpg 26.099 23.6264 9.4739

17 world95.txt 16.648 13.6813 17.8202

 Overall Performance 11.2401

 Fig. 1. Encoding execution time

 Fig. 2. Decoding execution time

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

8. Conclusion
As compared to existing conventional

implementations of arithmetic coding, proposed

implementation has resulted into a tremendous gain

in execution speed of about 17% while encoding

and 11% while decoding, without any compromise

in compression ratio.

9. Further enhancement
Both encoding and decoding can be further

improved in execution speed by determining how

many times consecutive underflow will occur.

When underflow occurs, most significant bit (msb)

is not matching and next bit differs by 1. So msb is

1 and next bit is 0 in high bound of interval,

whereas msb is 0 and next bit is 1 in low bound.

Our interest is to find number of leading 0s (say n0)

after msb in high and how many leading 1s (say n1)

after msb in low. Using this, consecutive

occurrences of underflow can be computed

minimum of these two numbers n0 and n1.

10. References
[1] J. Rissanen, ―Generalized kraft inequality and

arithmetic coding‖, IBM J. Res. Develop., vol.

20, pp. 198–203, May 1976.

[2] G. G. Langdon, Jr., and J. Rissanen,

―Compression of black-white images with

arithmetic coding‖, IEEE Trans. Commun.,

vol. COMM-29, pp. 858–867, 1981.

[3] C. B. Jones, ―An efficient coding system for

long source sequences‖, IEEE Trans. Inform.

Theory, vol. IT–27, pp. 280–291, 1981.

[4] I. H. Witten, R. M. Neal, and J. G. Cleary,

―Arithmetic coding for data compression‖

Commun. ACM, vol. 30, pp. 520–540, 1987.

[5] P. G. Howard and J. S. Vitter, ―Arithmetic

coding for data compression‖, Proc. IEEE, vol.

82, pp. 857–865, 1994.

[6] F. M. J. Willems, Y. M. Shtarkov, and T. J.

Tjalkens, ―The context-tree weighting method:

Basic properties‖, IEEE Trans. Inform. Theory,

vol.41, pp. 653–664, May 1995.

[7] J. C. Kieffer and E. H. Yang, ―Grammar-based

codes: A new class of universal lossless source

codes‖, IEEE Trans. Inform. Theory, vol. 46,

pp. 737–754, 2000.

[8] J. C. Kieffer, E. H. Yang, G. J. Nelson, and P.

Cosman, ―Universal lossless compression via

multilevel pattern matching‖, IEEE Trans.

Inform.Theory, vol. 46, pp. 1227–1245, July

2000.

[9] D. S. Taubman and M. W. Marcellin,

JPEG2000: Image Compression

Fundamentals, Standards and Practice.

Norwell, MA: Kluwer Academic, 2002.

[10] T. Wiegand, G. Sullivan, G. Bjontegaard, and

A. Luthra, ―Overview of the H.264/AVC video

coding standard,‖ IEEE Trans. Circuits

Syst.Video Technol., vol. 13, no. 7, pp. 560–

576, Jul. 2003.

[11] Detlev Marpe, Heiko Schwarz, and Thomas

Wiegand, ―Context-Based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video

Compression Standard‖, IEEE Trans. On

Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 620-636, July 2003

[12] M. Dyer,D. Taubman, and S. Nooshabadi,

―Improved throughput arithmetic coder for

JPEG2000‖, Proc. Int. Conf. Image Process.,

Singapore, Oct. 2004, pp. 2817–2820.

[13] R. R. Osorio and J. D. Bruguera, ―A

newarchitecture for fast arithmetic coding in

H.264 advanced video coder‖, Proc. 8th

Euromicro Conf. Digital System Design, Porto,

Portugal, Aug. 2005, pp. 298–305.

[14] Ranjan Bose,Saumitr Pathak, ―A Novel

Compression and Encryption Scheme Using

Variable Model Arithmetic Coding and

Coupled Chaotic System‖, IEEE Trans.

Circuits and Systems, vol. 53, no. 4, pp. 848-

857, April 2006

[15] Kwok-Wo Wong, Qiuzhen Lin, Jianyong

Chen, ―Simultaneous Arithmetic Coding and

Encryption Using Chaotic Maps‖, IEEE Trans.

On Circuits and Systems, vol. 57, no. 2, pp.

146-150, February 2010

[16] M. Grangetto, E. Magli, and G. Olmo,

―Multimedia selective encryption by means of

randomized arithmetic coding,‖ IEEE Trans.

Multimedia, vol. 8, no. 5, pp. 905–917, Oct.

2006.

[17] Hyungjin Kim, Jiangtao Wen, John D.

Villasenor, ―Secure Arithmetic Coding‖, IEEE

Trans. On Signal Processing, vol. 55, no. 5,

pp. 2263-2272, May 2007

[18] Boris Ryabko and Jorma Rissanen, ―Fast

Adaptive Arithmetic Code for Large Alphabet

Sources With Asymmetrical Distributions‖ ,

IEEE COMMUNICATIONS LETTERS,

VOL. 7, NO. 1, JANUARY 2003 pp. 33-35

[19] A. Moffat, N. Sharman, I. H. Witten, and T. C.

Bell, ―An empirical evaluation of coding

methods for multi-symbol alphabets,‖ Inf.

Process.Manage., vol. 30, pp. 791–804, 1994.

[20] E.Bodden, MalteClasen, Joachim Kneis,

―Arithmetic Coding revealed-A guided tour

from theory to praxis‖, Sable Technical Report

No. 2007-5, May 2007, available at

http://www.bodden.de/legacy/arithmetic-

coding/

[21] I.MengyiPu, Fundamental Data Compression,

Butterworth-Heinemann, 2006

[22] D. Salomon, Data Compression-The Complete

Reference, 3rd Edition, Springer, 2004

[23] A.Drozdek, Elements of data compression,

Brooks/Cole, 2002

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

[24] M. Nelson and Jean-loupGailly, The Data

Compression Book,2nd edition, M&T Books,

New York, NY 1995

[25] Compression and Coding Algorithms: Kluwer

Academic Publishers, 2002.

[26] A. Moffat, R. Neal, and I. Witten, ―Arithmetic

coding revisited,‖ ACM Trans. Inform. Syst.,

vol. 16, no. 3, pp. 256–294, July 1998.

[27] A. Said, ―Introduction to Arithmetic Coding -

Theory and Practice‖, available at

http://www.hpl.hp.com/techreports/2004/HPL-

2004-76.pdf

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

