
Improved Modeling Method for Rebalanced

Mapreduce Processing in Public Cloud’s Optimal

Resource Provisioning

Sathishkumar.

N.

S

PG-Information Technology

Jayam

College of Engg

& Tech

Dharmapuri,

India.

Siva Kumar.

C

Associate

Professor

Jayam

College of

Engg

& Tech

Dharmapuri,

India.

Abstract— Due to the massive improvement in the usage

of data’s in the real world, it becomes more burdens to

handle and process it effectively. The Map reduce is the

one of the more developed technology which is used to

handle and process the big data/largest tasks. Map

reduce is used to partition the task into sub partitions

and map those partitions into the machines for

processing. This process need to be done by the

considering the minimization of cost and meeting

deadline to improve the user satisfaction. In the previous

work, CRESP approach is used which focus on allocating

the map reduces tasks in the machine with the

consideration of reduction of cost and deadline. However

this method does not concentrate on the skew and

stragglers problem which can occur while handling the

largest task. In our work, we try improve the

performance of resource allocation strategy by

considering the skews and stragglers problem in mind.

This problem of skews and stragglers are handled by

introducing the partitioning mechanism. The

partitioning mechanism will improve the failure of task

allocation strategy.

Index Terms—Cloud Computing, Hadoop, Map Reduce,

Micro Partitioning.

I. INTRODUCTION

In the Development of Cloud Computing, Sensor Networks,

Grid Computing the huge amount of Datasets could be

collected from the users, Applications and Environment. For

Instance, nowadays users are capable of storing huge

amount of Datasets in a Datacenter, where we go for usage

of the Big Data. Map Reduce is a technique which is used to

work with the Big Data. Big Data is nothing but a collection

of huge datasets which is difficult to process using on-hand

database management tools or traditional data processing

applications.

On the other hand, Cloud analysts in most

Organizations such as research institutions, Government

institutions have no opportunity to access more private

Hadoop/Map Reduce clouds. Based on the requirements

Amazon introduced Elastic Map Reduce which runs on

Hadoop Clusters.

Apache Hadoop is the open source Software for

Storing and Processing Large amounts of datasets on

Clusters of Hardware. Requirements for running Hadoop

cluster on Public and a Private cloud varies promptly. First

for each job clusters could be allocated starting from the

virtual nodes to make use of “pay-as-you-use” economic

Cloud model.

 It is difficult to maintain a constant Hadoop cluster

as private Hadoop clusters because data processing requests

are generally entering in continuously. Thus on demand

Hadoop cluster has become a convenient choice for many

users. Such an on-demand cluster is created for a long-

running job, where no multi-user or multi-job resource

competition happens within the cluster. Second, it is

responsibility of user to set the number of virtual nodes for

the Hadoop cluster.

The Optimization of the Resource Provisioning

could involve about 2 factors. Provisioning the virtual

machine nodes which could consider about the monetary

cost and finishing of the job which considers about the time

cost. Resource provisioning could be done based on the cost

which depends on the time required for resources to be used.

It is complicated to use other constraints such as deadline or

monetary budget to reduce the cost for usage of resources.

We propose a method to help users to decide about

Allocation of running Map Reduce programs in public

clouds. This method, Micro Partitioning is used to distribute

the work load among the nodes.

However, running a Hadoop cluster on top of the

public cloud has different requirements from running a

private Hadoop cluster. First, for each job normally a

dedicated Hadoop cluster will be started on a number of

virtual nodes to take advantage of the ‘‘pay-as-you-use’’

economical cloud model. Because users’ data processing

requests are normally coming in intermittently, it is not

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

1

economical to maintain a constant Hadoop cluster like

private Hadoop cluster owners do. Meanwhile, current

virtualization techniques allow a virtual cluster to be

provisioned or released in minutes.

Thus, on-demand Hadoop clusters have become an

appropriate choice for most users who have ad-hoc Hadoop

jobs. Typically, such an on-demand cluster is created for a

specific long-running job, where no multi-user or multi-job

resource competition happens within the cluster.2 second, it

is now the user’s responsibility to set the appropriate number

of virtual nodes for the Hadoop cluster. The optimal setting

may differ from application to application and depend on the

amount of input data. An effective method is needed to help

the user make this decision.

II. THE CRESP APPROACH

This method, Cloud Resource Provisioning

(CRESP) for Map Reduce Programs is based on the time

cost model. Considering the time cost model and the

parameters, providing the users could solve optimization

problems. We analyze cost model in terms of Input datasets,

Specific complexity of the application and the resources that

are available for the system. In this approach we consider

the combination of the white-box and machine learning

approaches. Map Reduce programs have different time and

the logical complexity. The cost functions may be differing

from application to application.

A. ANALYZING MAP REDUCE TASKS

Map Reduce is the Combination of parallel and

distributed processing. Large number of data’s that could be

processed which are defined as clusters. Reduce phase is

executed after the execution of Map phase. The execution of

Map and Reduce programs is done by using the concepts of

Map/Reduce slot and Map/Reduce task. Slot is the unit used

for running the tasks by allocating the resources that are

available. Fixed number of slots could be allocated based on

the capacity of the system.

Hadoop consists of four Components, Name Node which

is the heart of Hadoop file system, Data Node which stores

blocks of data’s and retrieves them, Task Tracker is

responsible for the allocation of the number of Map slots and

Reduce slots, and Job Tracker is responsible for the

allocation of the client jobs.

B. CALCULATION OF COST FOR MAP TASK

Map phase consists of the three stages Map, Read and

Sort. First we consider the calculation of cost for the input

that is given to the Map phase. The input that may be in the

form of data blocks i (b) that could be from the local or

remote disk. Second we consider the Map function f (b) that

is given by the user. After that sorting of the data’s Om (b)

could be done and then the output will be in the form of

(Key, Value) pairs which could be give to the reduce phase.

Фm = i(b) + f(b) + s(om(b),R)+εm

C. CALCULATION OF COST OF REDUCE TASK

Reduce phase consists of the three stages

Shuffle, Merge Sort, Reduce and Write Result. The

execution that could be done in parallel in the reduce

phase. In the execution of the reduce task the amount of

data is proportional to the number of keys that are

assigned. The keys given by the Map phase is distributed

equally to the reduce Tasks. In the Shuffle stage the each

and every reduce tasks will be assigned for its shares

which could be given as k/R and the amount of data that

could be given is

bR = M * om(b) * k/R

In the Merge Sort stage the data’s that could be

simply merged because the sorting of the data’s are done

at the earlier stages.

The cost of Merge Sort could be given as it is

ms (bR) which depends upon bR.

Learning the Model:

For the calculation of the cost function we

concentrate on the number of input variables, M, m, R

and then the parameter βi.. First we randomly sample the

variables which are considered for testing. Second collect

the time and cost for the map and reduce tasks by setting

the variables (M, m, R). m is nothing but the number of

samples that are considered. Third the regression model

is considered which is applicable for learning of the

models with the transformed variables such as,

X1 = m/M, x2 = MR/m, x3 = R/m, x4 = (M log

M)/R, x5 = M/R, x6 = M, x7 = R.

III. MICRO PARTITIONING

Micro Partitioning is the key technique is to run a

large number of reduce tasks, splitting the map output into

many more partitions than reduce machines in order to

produce smaller tasks. These tasks are assigned to reduce

machines in a “just-in-time” fashion as workers become idle,

allowing the task scheduler to dynamically mitigate skew

and stragglers. With large tasks, it can be more efficient to

exclude slow nodes rather than assigning them any work. By

assigning smaller units of work, jobs can derive benefit from

slower nodes.

Micro-tasks can also help to mitigate skew.

Increasing the number of hash partitions generally leads to

smaller, more-even partitions because there is a lower

probability of collision in the key’s partitioning function.

These tasks are assigned to reduce machines as workers

become idle, allowing the task scheduler to dynamically

mitigate skew and stragglers.

Running many small tasks lessens the impact of

stragglers, since work that would have been scheduled on

slow nodes is only small which can now be performed by

other idle workers. By assigning smaller units of work, jobs

can derive benefit from slower node.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

2

DATASETS

We use four types of testing Datasets to test the

samples. The datasets could be 1000 words randomly chosen

is used as samples from the dictionary. Another dataset is

samples generated from the Page Rank Program, next

dataset is packages from the Hadoop.

The samples used are

Word Count: Used to calculate the number of

words that are present in the input file that is given.

Tera Sort: Sorting of the data’s that are done and

then given for reducers.

Page Rank: The ranking for the accessing of the

websites are given.

Table Join: The joining of the word count, Tera

Sort is done.

The procedure for implementing the micro

partitioning technique is as follows:

Step 1: Take the input samples

Step 2: Store the input samples in tire

Step 3: Build the two-level tire

Step 4: Count the occurrence of each prefix

Step 5: Using cut-point algorithm determine the

cut-points (split points)

Step 6: Split points are obtained by dividing the

sum of counter value by number of partitions+1

Cut points = sum of counters/number of

partitions+1

Step 7: Using cut points send the keys to

appropriate reducers

if (key<cutpoint1)

Send key to reducer 1

else if (key>=cut-point1&&key<cut-point2)

Send key to reducer2

else if (key>=cut-point2&&key<cut-point3)

Send key to reducer3

else

Send to the finished reducer

Step 8: Determine if there is any slow running node

by comparing the performance of each node with other

Step 9: If there is any such node move the data that

is processing on that node to the free node.

For inputs containing few distinct keys, fine-

grained partitioning may result in many empty reduce tasks

that receive no data. These empty reduce tasks are

unproblematic, since they can be easily detected and ignored

by the scheduler. Jobs with few distinct keys are the most

sensitive to partitioning skew, since there may not be enough

other work to mask the effects of a straggling task created by

a key collision in the hash partitioning function.

For jobs with large numbers of distinct keys, the

impact of key collisions is small. Micro-tasks do not

specifically address record size or computational skew, but

these types of skew must be handled in an application-

specific manner.

Micro-tasks help to achieve a more even

assignment of indivisible units of work; techniques for

reducing the units of work, such as map-side combining, are

complimentary and orthogonal to this approach. Straggler is

one the common performance issue in Map reduce system.

Stragglers can impact job performance because a job’s

completion time is determined by the completion time of its

final task. Several techniques have been developed to

address stragglers. Here a new approach called micro

partitioning is used for avoiding skew and stragglers during

the reduce phase.

Fig.1 Architecture Diagram

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

3

A. NODE CLASSIFICATION METHOD

In the node classification algorithm, we use the

comprehensive criterion to represent the data processing

speed. This criterion should be the comprehensive

processing capacity facing all memory intensity, IO intensity

and CPU intensity jobs. In a heterogeneous environment,

cluster usually contains nodes with different processing

capacity, which means the speed of the processed data.

Classification is done based on the processing capacity.

There are two purposes of node classification with their

processing capacity: one is to optimize the data distribution

in order to improve the data locality; the other is to improve

the evaluation accuracy of the task remaining time in

heterogeneous environment.

In order to get the differences between nodes with

their capacities, we divide the nodes to different levels. In

the cluster, we take the slowest data processing speed nodes

as the first level and the level factor is 1. To quantize the

node’s computing capacity simply by running a group of

specific tasks. On a given cluster, we set each node with one

Map slot and one Reduce slot. And all the map tasks are

feed by the same input data. Then the benchmark jobs run on

the cluster the node classification algorithm enables us to

decide the nodes’ level by their computing capacity. The

data distribution strategy is that the size of each node’s data

is in proportion to the node’s level.

Optimized Resource Allocation:

With the cost model we are now ready to find the

optimal settings for some problems.

To find the best resource allocation for three typical

situations: 1) with a certain limited amount of monetary

budget; 2) with a time constraint; 3) and the optimal tradeoff

curve without any constraint. In the following, we formulate

these problems as optimization problems based on the cost

model. In all the scenarios we consider, we assume the

model parameters βi have been learned with sample runs in

small scale settings. For the simplicity of presentation, we

assume the simplified model T2 is applied.

Since the input data is fixed for a specific Map

Reduce job, M is a constant. We also consider all general

Map Reduce system configurations have been optimized via

other methods and fixed for both small and large scale

settings.

In Map Reduce, the job’s execution progress

includes Map and Reduce stage. So, the job’s completion

time contains Map execution time and Reduce execution

time. In view of the differences between Map and Reduces

code, we divide the scheduling progress into two stages,

namely Map stage and Reduce stage. In the aspect of the

task’s scheduling time prediction, the execution time of Map

and Reduce is not correlative; their execution time depends

on the input data and function of their own. Therefore, in

this work the scheduling algorithm sets two deadlines: map-

deadline and reduce-deadline.

In order to get map-deadline, we need to know the

Map task’s time proportion on the task’s execution time. In a

cluster with limited resources, Map slot and Reduce slot

number is decided. For an arbitrary submitted job with

deadline constraints, the scheduler has to schedule

reasonable with the remaining resources in order to assure

that all jobs can be finished before the deadline constraints.

According to map-deadline, we can acquire the current map

task’s slot number it needs; and with reduce-deadline, we

can get the current reduce task’s slot number it needs.

In the task scheduling, to get map-deadline, we

need to know the Map task’s time proportion on the task’s

execution time. In a cluster with limited resources, Map slot

and Reduce slot number is decided. For an arbitrary

submitted job with deadline constraints, the scheduler has to

schedule reasonable with the remaining resources in order to

assure that all jobs can be finished before the deadline

constraints. The scheduling strategy of MSTD is based on

δm
j and δr

j. The minimum Map and Reduce slot number

required of job J can be denoted as δmj and δr
j respectively.

The symbol reflects that δm
j Map tasks should be scheduled

at present in order to meet job J’s map-deadline, as well as

to meet the reduce-deadline δr
j Reduce tasks should be

scheduled.

 In the scheduling process, we take δm
j and δr

j as

the basic criteria of priority allocation. At the beginning of

the job be submitted, there is no data available, so the

scheduler can’t estimate the required slots or the completion

time of tasks. In this case, the job’s precedence is over than

the others. In some scenarios, jobs may have already missed

their deadline.

IV. RESULT ANALYSIS

Finally, the performance of the existing and the

proposed approaches were illustrated and evaluated. The

existing system based on cost analysis function, the

optimized resource allocation in done. In the proposed

system, the micro-partitioning method is also considered

before allocating the tasks into the resources. Compared to

existing method efficient scheduling is used in the proposed

system and achieve high throughput.

A. TIME CONSUMPTION

Figure 2 compares the consumption of time in

CRESP Approach with the Micro partitioning Mechanism.

The time consumption is reduced in the Micro Partitioning

mechanism.

0
500

1000
1500
2000
2500
3000
3500

T
im

e
 i

n
 s

e
c

Base

Proposed

Fig.2 Time Consumption in ms

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

4

B. MEMORY CONSUMPTION

Figure 3 shows that usage of the size of memory is

reduced in Micro Partitioning Mechanism when compared

with the CRESP Approach.

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

M
em

o
ry

 i
n

 b
y
te

s

Base

Proposed

Fig.3 Memory consumption in bytes

C. COST CONSUMPTION

Figure 4 shows that cost is reduced in Micro Partitioning

Mechanism when compared with the CRESP Approach.

0

500000

1000000

1500000

2000000

C
o

st
 in

 r
u

p
ee

s

Base

Proposed

Fig.4 Cost in rupees

V. CONCLUSION

In this work, we study the components in Map

Reduce processing and build a cost function that explicitly

models the relationship among the amount of data, the

available system resources (Map and Reduce slots), and the

complexity of the Reduce function for the target Map

Reduce program. The model parameters can be learned from

test runs. Based on this cost model, we can solve a number

of decision problems, such as the optimal amount of

resources that can minimize the monetary cost with the

constraint on monetary budget or job finish time. To

improve the load balancing for distributed applications,

Micro partitioning techniques is used. By improving load

balancing, Map Reduce programs can become more efficient

at handling tasks by reducing the overall computation time

spent processing data on each node. In addition to that we

use Map Reduce Task Scheduling algorithm for cost and

time constraints for the efficient scheduling. For that we use

node classification method and distribute the workload

among the nodes according to the node capacity.

After that a micro partitioning method is used for

applications using different input samples. This approach is

only effective in systems with high-throughput, low-latency

task schedulers and efficient data materialization.

VI. FUTURE WORK

In the future, we would like to implement the

proposed task scheduler architecture and perform additional

experiments to measure performance using straggling or

heterogeneous nodes. We also plan to investigate other

benefits of micro-tasks, including the use of micro-tasks as

an alternative to preemption when scheduling mixtures of

batch and latency-sensitive jobs.

REFERENCES

[1]. Candan KS, Kim JW, Nagarkar P, Nagendra M, Yu R (2010)

RanKloud: scalable multimedia data processing in server clusters.
IEEE MultiMed 18(1):64–77

[2]. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrws M,

Chandra T, Fikes A, Gruber RE (2006) Big table: a distributed storage
system for structured data. In: 7th UENIX symposium on operating

systems design and implementation, pp 205–218.

[3]. Dean J, Ghemawat Dean S (2008) Map Reduce: simplified data
processing on large clusters. Common ACM 51:107–113.

[4]. Ghemawat S, Gobi off H, Leung S-T (2003) The Google file system.

In: 19th ACM symposium on operating systems principles (SOSP).

[5]. Jiang W, Agrawal G (2011) Ex-MATE data intensive computing with

large reduction objects and its application to graph mining. In:

IEEE/ACM international symposium on cluster, cloud and grid
computing, pp 475–484.

[6]. Jin C, Vecchiola C, Buyya R (2008) MRPGA: an extension of Map

Reduce for parallelizing genetic algorithms. In: IEEE fourth
international conference on escience, pp 214–220.

[7]. Kavulya S, Tany J, Gandhi R, Narasimhan P (2010) An analysis of

traces from a production Map Reduce cluster. In: IEEE/ACM
international conference on cluster, cloud and grid computing, pp 94–

95.

[8]. Krishnan A (2005) Grid BLAST: a globus-based high-throughput
implementation of BLAST in a grid computing framework. Concur

Compute 17(13):1607–1623.
[9]. Liu H, Orban D (2011) Cloud Map Reduce: a Map Reduce

implementation on top of a cloud operating system. In: IEEE/ACM

international symposium on cluster, cloud and grid computing, pp
464–474.

[10]. Hsu C-H, Chen S-C (2012) Efficient selection strategies towards

processor reordering techniques for improving data locality in
heterogeneous clusters. J Super computes 60(3):284–300.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

5

