Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

Improved Modeling Method for Rebalanced
Mapreduce Processing in Public Cloud’s Optimal
Resource Provisioning

Sathishkumar. N. S
PG-Information Technology
Jayam College of Engg & Tech
Dharmapuri, India.

Abstract— Due to the massive improvement in the usage
of data’s in the real world, it becomes more burdens to
handle and process it effectively. The Map reduce is the
one of the more developed technology which is used to
handle and process the big data/largest tasks. Map
reduce is used to partition the task into sub partitions
and map those partitions into the machines for
processing. This process need to be done by the
considering the minimization of cost and meeting
deadline to improve the user satisfaction. In the previous
work, CRESP approach is used which focus on allocating
the map reduces tasks in the machine with the
consideration of reduction of cost and deadline. However
this method does not concentrate on the skew and
stragglers problem which can occur while handling the
largest task. In our work, we try improve the
performance of resource allocation strategy by
considering the skews and stragglers problem in mind.
This problem of skews and stragglers are handled by
introducing the partitioning mechanism. The
partitioning mechanism will improve the failure of task
allocation strategy.

Index Terms—Cloud Computing, Hadoop, Map Reduce,
Micro Partitioning.

I. INTRODUCTION

In the Development of Cloud Computing, Sensor Networks,
Grid Computing the huge amount of Datasets could be
collected from the users, Applications and Environment. For
Instance, nowadays users are capable of storing huge
amount of Datasets in a Datacenter, where we go for usage
of the Big Data. Map Reduce is a technique which is used to
work with the Big Data. Big Data is nothing but a collection
of huge datasets which is difficult to process using on-hand
database management tools or traditional data processing
applications.

On the other hand, Cloud analysts in most
Organizations such as research institutions, Government
institutions have no opportunity to access more private

Siva Kumar. C
Associate Professor
Jayam College of Engg & Tech
Dharmapuri, India.

Hadoop/Map Reduce clouds. Based on the requirements
Amazon introduced Elastic Map Reduce which runs on
Hadoop Clusters.

Apache Hadoop is the open source Software for
Storing and Processing Large amounts of datasets on
Clusters of Hardware. Requirements for running Hadoop
cluster on Public and a Private cloud varies promptly. First
for each job clusters could be allocated starting from the
virtual nodes to make use of “pay-as-you-use” economic
Cloud model.

It is difficult to maintain a constant Hadoop cluster
as private Hadoop clusters because data processing requests
are generally entering in continuously. Thus on demand
Hadoop cluster has become a convenient choice for many
users. Such an on-demand cluster is created for a long-
running job, where no multi-user or multi-job resource
competition happens within the cluster. Second, it is
responsibility of user to set the number of virtual nodes for
the Hadoop cluster.

The Optimization of the Resource Provisioning
could involve about 2 factors. Provisioning the virtual
machine nodes which could consider about the monetary
cost and finishing of the job which considers about the time
cost. Resource provisioning could be done based on the cost
which depends on the time required for resources to be used.
It is complicated to use other constraints such as deadline or
monetary budget to reduce the cost for usage of resources.
We propose a method to help users to decide about
Allocation of running Map Reduce programs in public
clouds. This method, Micro Partitioning is used to distribute
the work load among the nodes.

However, running a Hadoop cluster on top of the
public cloud has different requirements from running a
private Hadoop cluster. First, for each job normally a
dedicated Hadoop cluster will be started on a number of
virtual nodes to take advantage of the ‘‘pay-as-you-use’’
economical cloud model. Because users’ data processing
requests are normally coming in intermittently, it is not

Volume 3, | ssue 16

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

economical to maintain a constant Hadoop cluster like
private Hadoop cluster owners do. Meanwhile, current
virtualization techniques allow a virtual cluster to be
provisioned or released in minutes.

Thus, on-demand Hadoop clusters have become an
appropriate choice for most users who have ad-hoc Hadoop
jobs. Typically, such an on-demand cluster is created for a
specific long-running job, where no multi-user or multi-job
resource competition happens within the cluster.? second, it
is now the user’s responsibility to set the appropriate number
of virtual nodes for the Hadoop cluster. The optimal setting
may differ from application to application and depend on the
amount of input data. An effective method is needed to help
the user make this decision.

Il. THE CRESP APPROACH

This method, Cloud Resource Provisioning
(CRESP) for Map Reduce Programs is based on the time
cost model. Considering the time cost model and the
parameters, providing the users could solve optimization
problems. We analyze cost model in terms of Input datasets,
Specific complexity of the application and the resources that
are available for the system. In this approach we consider
the combination of the white-box and machine learning
approaches. Map Reduce programs have different time and
the logical complexity. The cost functions may be differing
from application to application.

A. ANALYZING MAP REDUCE TASKS

Map Reduce is the Combination of parallel and
distributed processing. Large number of data’s that could be
processed which are defined as clusters. Reduce phase is
executed after the execution of Map phase. The execution of
Map and Reduce programs is done by using the concepts of
Map/Reduce slot and Map/Reduce task. Slot is the unit used
for running the tasks by allocating the resources that are
available. Fixed number of slots could be allocated based on
the capacity of the system.

Hadoop consists of four Components, Name Node which
is the heart of Hadoop file system, Data Node which stores
blocks of data’s and retrieves them, Task Tracker is
responsible for the allocation of the number of Map slots and
Reduce slots, and Job Tracker is responsible for the
allocation of the client jobs.

B. CALCULATION OF COST FOR MAP TASK

Map phase consists of the three stages Map, Read and
Sort. First we consider the calculation of cost for the input
that is given to the Map phase. The input that may be in the
form of data blocks i (b) that could be from the local or
remote disk. Second we consider the Map function f (b) that
is given by the user. After that sorting of the data’s Om (b)
could be done and then the output will be in the form of
(Key, Value) pairs which could be give to the reduce phase.

@y =i(b) + f(b) + s(om(b),R)+em

C. CALCULATION OF COST OF REDUCE TASK

Reduce phase consists of the three stages
Shuffle, Merge Sort, Reduce and Write Result. The
execution that could be done in parallel in the reduce
phase. In the execution of the reduce task the amount of
data is proportional to the number of keys that are
assigned. The keys given by the Map phase is distributed
equally to the reduce Tasks. In the Shuffle stage the each
and every reduce tasks will be assigned for its shares
which could be given as k/R and the amount of data that
could be given is

br =M * om(b) * k/IR

In the Merge Sort stage the data’s that could be
simply merged because the sorting of the data’s are done
at the earlier stages.

The cost of Merge Sort could be given as it is

ms (br) which depends upon bg.
Learning the Model:

For the calculation of the cost function we
concentrate on the number of input variables, M, m, R
and then the parameter B;. First we randomly sample the
variables which are considered for testing. Second collect
the time and cost for the map and reduce tasks by setting
the variables (M, m, R). m is nothing but the number of
samples that are considered. Third the regression model
is considered which is applicable for learning of the
models with the transformed variables such as,

X1 =m/M, X2 = MR/m, x3 = R/m, x4 = (M log
M)/R, xs = M/R, X6 = M, X7 = R.

I1l. MICRO PARTITIONING

Micro Partitioning is the key technique is to run a
large number of reduce tasks, splitting the map output into
many more partitions than reduce machines in order to
produce smaller tasks. These tasks are assigned to reduce
machines in a “just-in-time” fashion as workers become idle,
allowing the task scheduler to dynamically mitigate skew
and stragglers. With large tasks, it can be more efficient to
exclude slow nodes rather than assigning them any work. By
assigning smaller units of work, jobs can derive benefit from
slower nodes.

Micro-tasks can also help to mitigate skew.
Increasing the number of hash partitions generally leads to
smaller, more-even partitions because there is a lower
probability of collision in the key’s partitioning function.
These tasks are assigned to reduce machines as workers
become idle, allowing the task scheduler to dynamically
mitigate skew and stragglers.

Running many small tasks lessens the impact of
stragglers, since work that would have been scheduled on
slow nodes is only small which can now be performed by
other idle workers. By assigning smaller units of work, jobs
can derive benefit from slower node.

Volume 3, | ssue 16

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

DATASETS

We use four types of testing Datasets to test the
samples. The datasets could be 1000 words randomly chosen
is used as samples from the dictionary. Another dataset is
samples generated from the Page Rank Program, next
dataset is packages from the Hadoop.

The samples used are

Word Count: Used to calculate the number of
words that are present in the input file that is given.

Tera Sort: Sorting of the data’s that are done and
then given for reducers.

Page Rank: The ranking for the accessing of the
websites are given.

Table Join: The joining of the word count, Tera
Sort is done.

The procedure for implementing the micro
partitioning technique is as follows:

Step 1: Take the input samples

Step 2: Store the input samples in tire

Step 3: Build the two-level tire

Step 4: Count the occurrence of each prefix

Step 5: Using cut-point algorithm determine the
cut-points (split points)

Step 6: Split points are obtained by dividing the
sum of counter value by number of partitions+1

Cut points = sum of counters/number of
partitions+1

Step 7: Using cut points send the keys to
appropriate reducers

if (key<cutpointl)

Send key to reducer 1

else if (key>=cut-pointl&&key<cut-point2)
Send key to reducer2

else if (key>=cut-point2&&key<cut-point3)
Send key to reducer3

else

Send to the finished reducer

Step 8: Determine if there is any slow running node
by comparing the performance of each node with other

Step 9: If there is any such node move the data that
is processing on that node to the free node.

For inputs containing few distinct keys, fine-
grained partitioning may result in many empty reduce tasks
that receive no data. These empty reduce tasks are
unproblematic, since they can be easily detected and ignored
by the scheduler. Jobs with few distinct keys are the most
sensitive to partitioning skew, since there may not be enough
other work to mask the effects of a straggling task created by
a key collision in the hash partitioning function.

For jobs with large numbers of distinct keys, the
impact of key collisions is small. Micro-tasks do not
specifically address record size or computational skew, but
these types of skew must be handled in an application-
specific manner.

Micro-tasks help to achieve a more even
assignment of indivisible units of work; techniques for
reducing the units of work, such as map-side combining, are
complimentary and orthogonal to this approach. Straggler is
one the common performance issue in Map reduce system.
Stragglers can impact job performance because a job’s
completion time is determined by the completion time of its
final task. Several techniques have been developed to
address stragglers. Here a new approach called micro
partitioning is used for avoiding skew and stragglers during
the reduce phase.

Time and cost
— Constraints
Input ’
d Split = .
Files —» t— | Classify | | Distribute
thenodes the
workload
Micro Partitioning Learn the cost
Method functions of every
component and
Divide the workload map the tasks.
into smaller tasks | ¢——
|
‘ il
Rédhces | Output Files

Fig.1 Architecture Diagram

Volume 3, | ssue 16

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

A. NODE CLASSIFICATION METHOD

In the node classification algorithm, we use the
comprehensive criterion to represent the data processing
speed. This criterion should be the comprehensive
processing capacity facing all memory intensity, 10 intensity
and CPU intensity jobs. In a heterogeneous environment,
cluster usually contains nodes with different processing
capacity, which means the speed of the processed data.
Classification is done based on the processing capacity.
There are two purposes of node classification with their
processing capacity: one is to optimize the data distribution
in order to improve the data locality; the other is to improve
the evaluation accuracy of the task remaining time in
heterogeneous environment.

In order to get the differences between nodes with
their capacities, we divide the nodes to different levels. In
the cluster, we take the slowest data processing speed nodes
as the first level and the level factor is 1. To quantize the
node’s computing capacity simply by running a group of
specific tasks. On a given cluster, we set each node with one
Map slot and one Reduce slot. And all the map tasks are
feed by the same input data. Then the benchmark jobs run on
the cluster the node classification algorithm enables us to
decide the nodes’ level by their computing capacity. The
data distribution strategy is that the size of each node’s data
is in proportion to the node’s level.

Optimized Resource Allocation:

With the cost model we are now ready to find the
optimal settings for some problems.

To find the best resource allocation for three typical
situations: 1) with a certain limited amount of monetary
budget; 2) with a time constraint; 3) and the optimal tradeoff
curve without any constraint. In the following, we formulate
these problems as optimization problems based on the cost
model. In all the scenarios we consider, we assume the
model parameters Bi have been learned with sample runs in
small scale settings. For the simplicity of presentation, we
assume the simplified model T2 is applied.

Since the input data is fixed for a specific Map
Reduce job, M is a constant. We also consider all general
Map Reduce system configurations have been optimized via
other methods and fixed for both small and large scale
settings.

In Map Reduce, the job’s execution progress
includes Map and Reduce stage. So, the job’s completion
time contains Map execution time and Reduce execution
time. In view of the differences between Map and Reduces
code, we divide the scheduling progress into two stages,
namely Map stage and Reduce stage. In the aspect of the
task’s scheduling time prediction, the execution time of Map
and Reduce is not correlative; their execution time depends
on the input data and function of their own. Therefore, in
this work the scheduling algorithm sets two deadlines: map-
deadline and reduce-deadline.

In order to get map-deadline, we need to know the
Map task’s time proportion on the task’s execution time. In a

cluster with limited resources, Map slot and Reduce slot
number is decided. For an arbitrary submitted job with
deadline constraints, the scheduler has to schedule
reasonable with the remaining resources in order to assure
that all jobs can be finished before the deadline constraints.
According to map-deadline, we can acquire the current map
task’s slot number it needs; and with reduce-deadline, we
can get the current reduce task’s slot number it needs.

In the task scheduling, to get map-deadline, we
need to know the Map task’s time proportion on the task’s
execution time. In a cluster with limited resources, Map slot
and Reduce slot number is decided. For an arbitrary
submitted job with deadline constraints, the scheduler has to
schedule reasonable with the remaining resources in order to
assure that all jobs can be finished before the deadline
constraints. The scheduling strategy of MSTD is based on

M and 8'j. The minimum Map and Reduce slot number
required of job J can be denoted as dmj and &"; respectively.
The symbol reflects that ™ Map tasks should be scheduled
at present in order to meet job J’s map-deadline, as well as
to meet the reduce-deadline &"j Reduce tasks should be
scheduled.

In the scheduling process, we take 8™j and 8" as
the basic criteria of priority allocation. At the beginning of
the job be submitted, there is no data available, so the
scheduler can’t estimate the required slots or the completion
time of tasks. In this case, the job’s precedence is over than
the others. In some scenarios, jobs may have already missed
their deadline.

IV. RESULT ANALYSIS

Finally, the performance of the existing and the
proposed approaches were illustrated and evaluated. The
existing system based on cost analysis function, the
optimized resource allocation in done. In the proposed
system, the micro-partitioning method is also considered
before allocating the tasks into the resources. Compared to
existing method efficient scheduling is used in the proposed
system and achieve high throughput.

A. TIME CONSUMPTION
Figure 2 compares the consumption of time in
CRESP Approach with the Micro partitioning Mechanism.
The time consumption is reduced in the Micro Partitioning
mechanism.

3500
9 3000 -
@ 2500 -
S 2000 -
@ 1500 -
£ 1000 -
~ 500 -

Bl Base

B Proposed

Fig.2 Time Consumption in ms

Volume 3, | ssue 16

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

B. MEMORY CONSUMPTION
Figure 3 shows that usage of the size of memory is
reduced in Micro Partitioning Mechanism when compared
with the CRESP Approach.

2000000
«» 1800000
S 1600000
& 1400000
‘= 1200000
=, 1000000
800000
600000
400000
200000

M Base

H Proposed

Memor

Fig.3 Memory consumption in bytes

C. COST CONSUMPTION
Figure 4 shows that cost is reduced in Micro Partitioning
Mechanism when compared with the CRESP Approach.

,, 2000000
[«B}
© 1500000
2 1000000
= 500000 = Base
wn
8 0 B proposed
& (_)o‘\' ,b& \6\0
(}0 Ny N4
S &
$O& Q’b N

Fig.4 Cost in rupees
V. CONCLUSION

In this work, we study the components in Map
Reduce processing and build a cost function that explicitly
models the relationship among the amount of data, the
available system resources (Map and Reduce slots), and the
complexity of the Reduce function for the target Map
Reduce program. The model parameters can be learned from
test runs. Based on this cost model, we can solve a number
of decision problems, such as the optimal amount of
resources that can minimize the monetary cost with the
constraint on monetary budget or job finish time. To
improve the load balancing for distributed applications,
Micro partitioning techniques is used. By improving load
balancing, Map Reduce programs can become more efficient

at handling tasks by reducing the overall computation time
spent processing data on each node. In addition to that we
use Map Reduce Task Scheduling algorithm for cost and
time constraints for the efficient scheduling. For that we use
node classification method and distribute the workload
among the nodes according to the node capacity.

After that a micro partitioning method is used for
applications using different input samples. This approach is
only effective in systems with high-throughput, low-latency
task schedulers and efficient data materialization.

VI. FUTURE WORK

In the future, we would like to implement the
proposed task scheduler architecture and perform additional
experiments to measure performance using straggling or
heterogeneous nodes. We also plan to investigate other
benefits of micro-tasks, including the use of micro-tasks as
an alternative to preemption when scheduling mixtures of
batch and latency-sensitive jobs.

REFERENCES

[1]. Candan KS, Kim JW, Nagarkar P, Nagendra M, Yu R (2010)
RanKloud: scalable multimedia data processing in server clusters.
IEEE MultiMed 18(1):64-77

[2]. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrws M,
Chandra T, Fikes A, Gruber RE (2006) Big table: a distributed storage
system for structured data. In: 7th UENIX symposium on operating
systems design and implementation, pp 205-218.

[3]. Dean J, Ghemawat Dean S (2008) Map Reduce: simplified data
processing on large clusters. Common ACM 51:107-113.

[4]. Ghemawat S, Gobi off H, Leung S-T (2003) The Google file system.
In: 19th ACM symposium on operating systems principles (SOSP).

[5]. Jiang W, Agrawal G (2011) Ex-MATE data intensive computing with
large reduction objects and its application to graph mining. In:
IEEE/ACM international symposium on cluster, cloud and grid
computing, pp 475-484.

[6]. Jin C, Vecchiola C, Buyya R (2008) MRPGA: an extension of Map
Reduce for parallelizing genetic algorithms. In: IEEE fourth
international conference on escience, pp 214-220.

[7]. Kavulya S, Tany J, Gandhi R, Narasimhan P (2010) An analysis of
traces from a production Map Reduce cluster. In: IEEE/ACM
international conference on cluster, cloud and grid computing, pp 94—
95.

[8]. Krishnan A (2005) Grid BLAST: a globus-based high-throughput
implementation of BLAST in a grid computing framework. Concur
Compute 17(13):1607-1623.

[9]. Liu H, Orban D (2011) Cloud Map Reduce: a Map Reduce
implementation on top of a cloud operating system. In: IEEE/ACM
international symposium on cluster, cloud and grid computing, pp
464-474.

[10]. Hsu C-H, Chen S-C (2012) Efficient selection strategies towards
processor reordering techniques for improving data locality in
heterogeneous clusters. J Super computes 60(3):284-300.

Volume 3, | ssue 16

Published by, www.ijert.org 5

