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Abstract— Due to the massive improvement in the usage 

of data’s in the real world, it becomes more burdens to 

handle and process it effectively. The Map reduce is the 

one of the more developed technology which is used to 

handle and process the big data/largest tasks. Map 

reduce is used to partition the task into sub partitions 

and map those partitions into the machines for 

processing. This process need to be done by the 

considering the minimization of cost and meeting 

deadline to improve the user satisfaction. In the previous 

work, CRESP approach is used which focus on allocating 

the map reduces tasks in the machine with the 

consideration of reduction of cost and deadline. However 

this method does not concentrate on the skew and 

stragglers problem which can occur while handling the 

largest task. In our work, we try improve the 

performance of resource allocation strategy by 

considering the skews and stragglers problem in mind. 

This problem of skews and stragglers are handled by 

introducing the partitioning mechanism. The 

partitioning mechanism will improve the failure of task 

allocation strategy.  

 

Index Terms—Cloud Computing, Hadoop, Map Reduce, 

Micro Partitioning. 

 

I. INTRODUCTION 

 

In the Development of Cloud Computing, Sensor Networks, 

Grid Computing the huge amount of Datasets could be 

collected from the users, Applications and Environment. For 

Instance, nowadays users are capable of storing huge 

amount of Datasets in a Datacenter, where we go for usage 

of the Big Data. Map Reduce is a technique which is used to 

work with the Big Data. Big Data is nothing but a collection 

of huge datasets which is difficult to process using on-hand 

database management tools or traditional data processing 

applications. 

 

On the other hand, Cloud analysts in most 

Organizations such as research institutions, Government 

institutions have no opportunity to access more private 

Hadoop/Map Reduce clouds. Based on the requirements 

Amazon introduced Elastic Map Reduce which runs on 

Hadoop Clusters.  

 

Apache Hadoop is the open source Software for 

Storing and Processing Large amounts of datasets on 

Clusters of Hardware. Requirements for running Hadoop 

cluster on Public and a Private cloud varies promptly. First 

for each job clusters could be allocated starting from the 

virtual nodes to make use of “pay-as-you-use” economic 

Cloud model. 

 

 It is difficult to maintain a constant Hadoop cluster 

as private Hadoop clusters because data processing requests 

are generally entering in continuously. Thus on demand 

Hadoop cluster has become a convenient choice for many 

users. Such an on-demand cluster is created for a long-

running job, where no multi-user or multi-job resource 

competition happens within the cluster. Second, it is 

responsibility of user to set the number of virtual nodes for 

the Hadoop cluster. 

 

The Optimization of the Resource Provisioning 

could involve about 2 factors. Provisioning the virtual 

machine nodes which could consider about the monetary 

cost and finishing of the job which considers about the time 

cost. Resource provisioning could be done based on the cost 

which depends on the time required for resources to be used. 

It is complicated to use other constraints such as deadline or 

monetary budget to reduce the cost for usage of resources. 

We propose a method to help users to decide about 

Allocation of running Map Reduce programs in public 

clouds. This method, Micro Partitioning is used to distribute 

the work load among the nodes.  

 

However, running a Hadoop cluster on top of the 

public cloud has different requirements from running a 

private Hadoop cluster. First, for each job normally a 

dedicated Hadoop cluster will be started on a number of 

virtual nodes to take advantage of the ‘‘pay-as-you-use’’ 

economical cloud model. Because users’ data processing 

requests are normally coming in intermittently, it is not 
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economical to maintain a constant Hadoop cluster like 

private Hadoop cluster owners do. Meanwhile, current 

virtualization techniques allow a virtual cluster to be 

provisioned or released in minutes.  

 

Thus, on-demand Hadoop clusters have become an 

appropriate choice for most users who have ad-hoc Hadoop 

jobs. Typically, such an on-demand cluster is created for a 

specific long-running job, where no multi-user or multi-job 

resource competition happens within the cluster.2 second, it 

is now the user’s responsibility to set the appropriate number 

of virtual nodes for the Hadoop cluster. The optimal setting 

may differ from application to application and depend on the 

amount of input data. An effective method is needed to help 

the user make this decision. 

 

II. THE CRESP APPROACH 

This method, Cloud Resource Provisioning 

(CRESP) for Map Reduce Programs is based on the time 

cost model. Considering the time cost model and the 

parameters, providing the users could solve optimization 

problems. We analyze cost model in terms of Input datasets, 

Specific complexity of the application and the resources that 

are available for the system. In this approach we consider 

the combination of the white-box and machine learning 

approaches. Map Reduce programs have different time and 

the logical complexity. The cost functions may be differing 

from application to application.  

 

A. ANALYZING MAP REDUCE TASKS 

Map Reduce is the Combination of parallel and 

distributed processing. Large number of data’s that could be 

processed which are defined as clusters. Reduce phase is 

executed after the execution of Map phase. The execution of 

Map and Reduce programs is done by using the concepts of 

Map/Reduce slot and Map/Reduce task. Slot is the unit used 

for running the tasks by allocating the resources that are 

available. Fixed number of slots could be allocated based on 

the capacity of the system.  

Hadoop consists of four Components, Name Node which 

is the heart of Hadoop file system, Data Node which stores 

blocks of data’s and retrieves them, Task Tracker is 

responsible for the allocation of the number of Map slots and 

Reduce slots, and Job Tracker is responsible for the 

allocation of the client jobs.  

 

B. CALCULATION OF COST FOR MAP TASK 

Map phase consists of the three stages Map, Read and 

Sort. First we consider the calculation of cost for the input 

that is given to the Map phase. The input that may be in the 

form of data blocks i (b) that could be from the local or 

remote disk. Second we consider the Map function f (b) that 

is given by the user. After that sorting of the data’s Om (b) 

could be done and then the output will be in the form of 

(Key, Value) pairs which could be give to the reduce phase. 

Фm = i(b) + f(b) + s(om(b),R)+εm 

 

 

 

 

C. CALCULATION OF COST OF REDUCE TASK 

Reduce phase consists of the three stages 

Shuffle, Merge Sort, Reduce and Write Result. The 

execution that could be done in parallel in the reduce 

phase. In the execution of the reduce task the amount of 

data is proportional to the number of keys that are 

assigned. The keys given by the Map phase is distributed 

equally to the reduce Tasks. In the Shuffle stage the each 

and every reduce tasks will be assigned for its shares 

which could be given as k/R and the amount of data that 

could be given is 

bR = M * om(b) * k/R 

In the Merge Sort stage the data’s that could be 

simply merged because the sorting of the data’s are done 

at the earlier stages. 

 

The cost of Merge Sort could be given as it is 

ms (bR) which depends upon bR.  

Learning the Model: 

For the calculation of the cost function we 

concentrate on the number of input variables, M, m, R 

and then the parameter βi.. First we randomly sample the 

variables which are considered for testing. Second collect 

the time and cost for the map and reduce tasks by setting 

the variables (M, m, R). m is nothing but the number of 

samples that are considered. Third the regression model 

is considered which is applicable for learning of the 

models with the transformed variables such as,  

X1 = m/M, x2 = MR/m, x3 = R/m, x4 = (M log 

M)/R, x5 = M/R, x6 = M, x7 = R. 

 

III. MICRO PARTITIONING 

Micro Partitioning is the key technique is to run a 

large number of reduce tasks, splitting the map output into 

many more partitions than reduce machines in order to 

produce smaller tasks. These tasks are assigned to reduce 

machines in a “just-in-time” fashion as workers become idle, 

allowing the task scheduler to dynamically mitigate skew 

and stragglers. With large tasks, it can be more efficient to 

exclude slow nodes rather than assigning them any work. By 

assigning smaller units of work, jobs can derive benefit from 

slower nodes.  

 

Micro-tasks can also help to mitigate skew. 

Increasing the number of hash partitions generally leads to 

smaller, more-even partitions because there is a lower 

probability of collision in the key’s partitioning function. 

These tasks are assigned to reduce machines as workers 

become idle, allowing the task scheduler to dynamically 

mitigate skew and stragglers.  

Running many small tasks lessens the impact of 

stragglers, since work that would have been scheduled on 

slow nodes is only small which can now be performed by 

other idle workers. By assigning smaller units of work, jobs 

can derive benefit from slower node. 
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DATASETS 

We use four types of testing Datasets to test the 

samples. The datasets could be 1000 words randomly chosen 

is used as samples from the dictionary. Another dataset is 

samples generated from the Page Rank Program, next 

dataset is packages from the Hadoop. 

The samples used are  

Word Count: Used to calculate the number of 

words that are present in the input file that is given. 

Tera Sort: Sorting of the data’s that are done and 

then given for reducers. 

Page Rank: The ranking for the accessing of the 

websites are given.  

Table Join: The joining of the word count, Tera 

Sort is done. 

The procedure for implementing the micro 

partitioning technique is as follows: 

Step 1: Take the input samples 

Step 2: Store the input samples in tire 

Step 3: Build the two-level tire 

Step 4: Count the occurrence of each prefix 

Step 5: Using cut-point algorithm determine the 

cut-points (split points) 

Step 6: Split points are obtained by dividing the 

sum of counter value by number of partitions+1 

Cut points = sum of counters/number of 

partitions+1 

Step 7: Using cut points send the keys to 

appropriate reducers 

if (key<cutpoint1) 

Send key to reducer 1 

else if (key>=cut-point1&&key<cut-point2) 

Send key to reducer2 

else if (key>=cut-point2&&key<cut-point3) 

Send key to reducer3 

else 

Send to the finished reducer 

Step 8: Determine if there is any slow running node 

by comparing the performance of each node with other 

Step 9: If there is any such node move the data that 

is processing on that node to the free node. 

For inputs containing few distinct keys, fine-

grained partitioning may result in many empty reduce tasks 

that receive no data. These empty reduce tasks are 

unproblematic, since they can be easily detected and ignored 

by the scheduler. Jobs with few distinct keys are the most 

sensitive to partitioning skew, since there may not be enough 

other work to mask the effects of a straggling task created by 

a key collision in the hash partitioning function. 

  

For jobs with large numbers of distinct keys, the 

impact of key collisions is small. Micro-tasks do not 

specifically address record size or computational skew, but 

these types of skew must be handled in an application-

specific manner.  

 

Micro-tasks help to achieve a more even 

assignment of indivisible units of work; techniques for 

reducing the units of work, such as map-side combining, are 

complimentary and orthogonal to this approach. Straggler is 

one the common performance issue in Map reduce system. 

Stragglers can impact job performance because a job’s 

completion time is determined by the completion time of its 

final task. Several techniques have been developed to 

address stragglers. Here a new approach called micro 

partitioning is used for avoiding skew and stragglers during 

the reduce phase.  

 
 

Fig.1 Architecture Diagram 
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A. NODE CLASSIFICATION METHOD 

In the node classification algorithm, we use the 

comprehensive criterion to represent the data processing 

speed. This criterion should be the comprehensive 

processing capacity facing all memory intensity, IO intensity 

and CPU intensity jobs. In a heterogeneous environment, 

cluster usually contains nodes with different processing 

capacity, which means the speed of the processed data. 

Classification is done based on the processing capacity. 

There are two purposes of node classification with their 

processing capacity: one is to optimize the data distribution 

in order to improve the data locality; the other is to improve 

the evaluation accuracy of the task remaining time in 

heterogeneous environment.  

 

In order to get the differences between nodes with 

their capacities, we divide the nodes to different levels. In 

the cluster, we take the slowest data processing speed nodes 

as the first level and the level factor is 1. To quantize the 

node’s computing capacity simply by running a group of 

specific tasks. On a given cluster, we set each node with one 

Map slot and one Reduce slot. And all the map tasks are 

feed by the same input data. Then the benchmark jobs run on 

the cluster the node classification algorithm enables us to 

decide the nodes’ level by their computing capacity. The 

data distribution strategy is that the size of each node’s data 

is in proportion to the node’s level. 

 

Optimized Resource Allocation: 

With the cost model we are now ready to find the 

optimal settings for some problems.  

To find the best resource allocation for three typical 

situations: 1) with a certain limited amount of monetary 

budget; 2) with a time constraint; 3) and the optimal tradeoff 

curve without any constraint. In the following, we formulate 

these problems as optimization problems based on the cost 

model. In all the scenarios we consider, we assume the 

model parameters βi have been learned with sample runs in 

small scale settings. For the simplicity of presentation, we 

assume the simplified model T2 is applied.  

 

Since the input data is fixed for a specific Map 

Reduce job, M is a constant. We also consider all general 

Map Reduce system configurations have been optimized via 

other methods and fixed for both small and large scale 

settings. 

In Map Reduce, the job’s execution progress 

includes Map and Reduce stage. So, the job’s completion 

time contains Map execution time and Reduce execution 

time. In view of the differences between Map and Reduces 

code, we divide the scheduling progress into two stages, 

namely Map stage and Reduce stage. In the aspect of the 

task’s scheduling time prediction, the execution time of Map 

and Reduce is not correlative; their execution time depends 

on the input data and function of their own. Therefore, in 

this work the scheduling algorithm sets two deadlines: map-

deadline and reduce-deadline.  

 

In order to get map-deadline, we need to know the 

Map task’s time proportion on the task’s execution time. In a 

cluster with limited resources, Map slot and Reduce slot 

number is decided. For an arbitrary submitted job with 

deadline constraints, the scheduler has to schedule 

reasonable with the remaining resources in order to assure 

that all jobs can be finished before the deadline constraints. 

According to map-deadline, we can acquire the current map 

task’s slot number it needs; and with reduce-deadline, we 

can get the current reduce task’s slot number it needs. 

 

In the task scheduling, to get map-deadline, we 

need to know the Map task’s time proportion on the task’s 

execution time. In a cluster with limited resources, Map slot 

and Reduce slot number is decided. For an arbitrary 

submitted job with deadline constraints, the scheduler has to 

schedule reasonable with the remaining resources in order to 

assure that all jobs can be finished before the deadline 

constraints. The scheduling strategy of MSTD is based on 

δm
j and δr

j. The minimum Map and Reduce slot number 

required of job J can be denoted as δmj and δr
j respectively. 

The symbol reflects that δm
j Map tasks should be scheduled 

at present in order to meet job J’s map-deadline, as well as 

to meet the reduce-deadline δr
j Reduce tasks should be 

scheduled. 

 In the scheduling process, we take δm
j and δr

j as 

the basic criteria of priority allocation. At the beginning of 

the job be submitted, there is no data available, so the 

scheduler can’t estimate the required slots or the completion 

time of tasks. In this case, the job’s precedence is over than 

the others. In some scenarios, jobs may have already missed 

their deadline.  

 

IV. RESULT ANALYSIS 

Finally, the performance of the existing and the 

proposed approaches were illustrated and evaluated. The 

existing system based on cost analysis function, the 

optimized resource allocation in done. In the proposed 

system, the micro-partitioning method is also considered 

before allocating the tasks into the resources. Compared to 

existing method efficient scheduling is used in the proposed 

system and achieve high throughput. 

 

A. TIME CONSUMPTION 

Figure 2 compares the consumption of time in 

CRESP Approach with the Micro partitioning Mechanism. 

The time consumption is reduced in the Micro Partitioning 

mechanism. 
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B. MEMORY CONSUMPTION 

Figure 3 shows that usage of the size of memory is 

reduced in Micro Partitioning Mechanism when compared 

with the CRESP Approach. 
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Fig.3 Memory consumption in bytes 

 

C. COST CONSUMPTION 

Figure 4 shows that cost is reduced in Micro Partitioning 

Mechanism when compared with the CRESP Approach. 
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Fig.4 Cost in rupees 

 

V. CONCLUSION  

 

In this work, we study the components in Map 

Reduce processing and build a cost function that explicitly 

models the relationship among the amount of data, the 

available system resources (Map and Reduce slots), and the 

complexity of the Reduce function for the target Map 

Reduce program. The model parameters can be learned from 

test runs. Based on this cost model, we can solve a number 

of decision problems, such as the optimal amount of 

resources that can minimize the monetary cost with the 

constraint on monetary budget or job finish time. To 

improve the load balancing for distributed applications, 

Micro partitioning techniques is used. By improving load 

balancing, Map Reduce programs can become more efficient 

at handling tasks by reducing the overall computation time 

spent processing data on each node. In addition to that we 

use Map Reduce Task Scheduling algorithm for cost and 

time constraints for the efficient scheduling. For that we use 

node classification method and distribute the workload 

among the nodes according to the node capacity.  

 

After that a micro partitioning method is used for 

applications using different input samples. This approach is 

only effective in systems with high-throughput, low-latency 

task schedulers and efficient data materialization. 

 

VI. FUTURE WORK 

In the future, we would like to implement the 

proposed task scheduler architecture and perform additional 

experiments to measure performance using straggling or 

heterogeneous nodes. We also plan to investigate other 

benefits of micro-tasks, including the use of micro-tasks as 

an alternative to preemption when scheduling mixtures of 

batch and latency-sensitive jobs.  
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