
Improved Deep CNN with Reduced Parameters 

for Automatic Identification of Environmental 

Sounds 
 

Aswathy Madhu 
 (is with the Department of Electronics, 

College of Engineering, 

Trivandrum) 

Suresh K 
Member, IEEE 

 (is with the Department of Electronics, 

Govt. Engineering College, 

Barton Hill, Trivandrum)

 
Abstract— Deep learning techniques like Convolutional 

Neural Network (CNN) are steadily gaining impetus in the 

context of environmental sound classification. Despite their 

excellent performance CNN poses a challenge in terms of 

hardware and memory requirements due to its computationally 

intensive nature. Recent trends in deep learning research focus 

on reducing the number of parameters in the deep learning 

framework without performance degradation. In this paper, we 

put forward a novel CNN architecture with reduced parameters 

for automatic environmental sound classification. The proposed 

architecture offered a parameter reduction of 24.16% and 

reduced the MAC operations by 20.17%. This indicates that the 

proposed architecture results in reduced computational 

complexity during hardware deployment. The impact of 

parameter reduction on model accuracy is analyzed by 

evaluating the proposed model on a publicly available database. 

The results indicate that the proposed architecture outshines the 

state of the art approaches for automatic identification of 

environmental sounds. 

Keywords— Deep Learning, Convolutional Neural Network, 

Environmental Sound Classification. 

I.  INTRODUCTION  

The recent developments in Brain Computer Interface 

(BCI) technology has pushed its boundaries beyond mere 

transfer of information between human and machine. Current 

efforts are in the direction of improving machine perception 

(vision and audition). This has given rise to two related fields 

of research - computer vision and computer audition. 

Motivated by the promising results of deep learning in 

computer vision, researchers have introduced deep learning in 

computer audition. The demand for deep learning in computer 

audition is especially increasing in numerous applications like 

robotic awareness, environmental monitoring, hearing aids 

etc. Current solutions in intelligent applications like driverless 

cars are mostly vision based. But they may not perform well if 

exposed to conditions where visual information is 

compromised or is completely absent. The performance of 

these solutions could be improved drastically if audio 

information is utilized along with visual cues. 

Most of the research utilizing audio information has 

focussed mainly on speech/music processing. Recently 

automatic environmental sound classification has received 

much attention from the research community due to its 

obvious socially relevant applications. To date, various signal 

processing as well as machine learning algorithms have 

addressed the problem of automatic environmental sound 

classification. Some of them are Non negative Matrix 

Factorization [1]-[3], Dictionary Learning [4], [5] etc. 

Recently deep learning techniques like Convolutional Neural 

Network (CNN) [6], [7] are steadily gaining impetus in this 

field. Despite their excellent performance CNN poses a 

challenge in terms of hardware and memory requirements due 

to its computationally intensive nature. Recent trends in deep 

learning research focus on reducing the number of parameters 

in the deep learning framework in order to reduce the 

computational cost and the network size. State of the art 

parameter reduction techniques in literature degrades the 

performance of the network in terms of classification 

accuracy. In this paper, we put forward a novel CNN 

architecture with reduced parameters for automatic 

environmental sound classification. The proposed architecture 

reduces the computational complexity, training time and 

enhances the classification accuracy. 

II. METHOD 

A. Dataset 

The proposed method in this work is evaluated on 

UrbanSound8K dataset [8]. This dataset of 8.75 hours of field 

recordings contains 8732 sound extracts (≤4s) of urban sounds 

belonging to 10 classes: air conditioner, car horn, children 

playing, dog bark, drilling, engine idling, gunshot, 

jackhammer, siren, and street music. The 8732 audio slices are 

prearranged into 10 folds. The audio slices are available in 

.wav format and the corresponding metadata file is available 

in .csv format.. 

B. Preprocessing 

As observed from the literature survey, raw audio is not 

suitable as the input of a classifier even if it automatically 

learns feature representation like CNN. This is due to the 

high dimensionality of the audio and due to the fact that 

perceptually similar audio sounds may not be neighbours in 

terms of distance. Hence raw audio needs to be converted to a 

suitable representation that facilitates successful learning. 

In this work, we use log scaled mel spectrogram since it 

allows to use the spectral information in the same way as 

human hearing. In this work, the raw audio files are read and 

processed using Librosa - a python package for music and 

audio analysis. The occurrences in UrbanSound8K vary in 

their sampling rate, bit depth and number of channels. To 

deal with variable sampling rate, all the occurrences were 
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resampled to 44,100 Hz (sampling rate of audio CDs). The 

fact that 20 kHz is the highest frequency audible by humans 

makes 44.1 kHz the logical choice for sampling rate. Given 

an input, it is divided into non overlapping frames of 23ms 

length (1024 points at a sampling rate of 44.1 kHz) which are 

then converted to feature space using log scaled 

melspectrogram. In this work, log scaled melspectrogram is 

computed with librosa.feature.melspectrogram using a 1024 

point fft window and same hop length. The number of mel 

frequency bands was chosen to be 128 since this is a 

reasonable size that provides significant dimensionality 

reduction while preserving most of the original spectral 

characteristics. For a convenient representation of input to the 

CNN, 128 T-F patches are selected from the log 

melspectrogram of each audio signal. The patches are 

selected from a random initial point in time. Fig. 1 shows 

exemplary audio signals from the dataset and their 

corresponding mel spectrograms. 

 

TABLE 1 PARAMETER REQUIREMENT FOR SB_CNN 

Layer 
Output 

Dimension 
Parameters 

MAC 

Operations 

CONV 1 124×124×24 624 399776 

POOL 1 31×62×24 0 0 

CONV 2 27×58×48 28848 40716 

POOL 2 6×29×48 0 0 

CONV 3 2×25×48 57648 1300 

FC 1 64×1 153664 153664 

FC 2 10×1 650 650 

 

 

 

 

 

 

 

 

 

 

 

 

C. Proposed CNN Architecture 

Given the input, the network is trained to estimate the 

function that maps input to a label. The proposed CNN 

architecture is obtained by applying two parameter reduction 

strategies to the CNN proposed by J. Salamon et al. (SB 

_CNN) [6]. SB_CNN consisted of three convolution layers of 

24, 48 and 48 5×5 filters of strides (1,1) interleaved with 

pooling layers of size (4,2) and same strides. We replaced 

each 5×5 kernel with two stacked 3×3 kernels based on the 

observation that stacked lower dimensional kernels can 

extract more complex features with fewer parameters and can 

contribute to improved accuracy. The second strategy was to 

tweak the number of filters in each convolutional layer. We 

experimented with different values for the number of filters 

in each layer. It was found empirically that reducing the 

number of filters by a small amount in each convolution layer 

will not severely degrade accuracy while it contributes to 

significant parameter reduction. Based on these observations, 

the final architecture consists of three sets of stacked 

convolution layers containing 20, 40, and 40 3×3 filters of 

strides (1, 1) interleaved with pooling layers of size (4,2) and 

same strides. This is followed by two fully connected layers 

of 64 and 10 neurons as suggested in SB CNN. To reduce 

overfitting, dropout is introduced in the last hidden layer with 

a probability of 0.5. An additional max norm constraint is 

enforced on the weights of this layer to speed up 

convergence. For training, the model optimizes categorical 

cross entropy using Adam. A constant learning rate of 0.001 

was used. The training is stopped after 50 epochs. A 

validation set is used for hyper parameter tuning. The CNN 

was implemented in Python with Keras. 

 

III. RESULTS AND DISCUSSIONS 

Table I shows the complete parameter requirement of 

SB_CNN. Each convolutional layer kernel has 26 parameters 

(25 weights and 1 bias). Thus the parameter count of a 

convolutional layer is obtained by multiplying the number of 

parameters with the depth of the output. For example, the 

depth of Conv 1 layer output in SB_CNN is 24. Hence total 

number of parameters for Conv 1 layer is 624 obtained by 

multiplying 26 with 24. Following this calculation, the total 

number of parameters learned by the network is 241.434K. To 

calculate the number of MAC (Multiply and Accumulate) 

operations, the number of parameters for one kernel is 

multiplied with the product of width and height of the output. 

For example, the number of MAC operations for Conv 1 layer 

is obtained by multiplying 26 with the square of 124. 

Calculation for the entire network suggests that SB CNN 

computes 596.11K MAC operations. Since pooling layer 

implements a fixed operation, no learnable parameters as well 

as MAC operations are associated with it. 

Table II shows the complete parameter requirement of the 

proposed architecture. Each convolutional layer kernel has 10 

parameters (9 weights and 1 bias) as opposed to 26 parameters 

in SB_CNN. Following a similar calculation to SB_CNN, the 

total number of parameters for Conv 1 layer in the proposed 

architecture is 200 obtained by multiplying 10 with 20. The 

total number of parameters learned by the network is 183.1K. 

Similarly, the number of MAC operations for Conv 1 layer is 

158760 obtained by multiplying 10 with the square of 126. 

The entire network computes 475.87K MAC operations. 

Similar to SB_CNN, no learnable parameters as well as MAC 

operations are associated with the pooling layer. Comparing 

the two architectures, it is observed that the proposed 

architecture has 183.1K parameters whereas SB CNN has 

241.434K parameters. This shows that the proposed 

architecture offers a reduction of 24.16% in the number of 

parameters. The proposed architecture has 475.87K MAC 

operations as opposed to SB CNN with 596.11K MAC 

operations offering a reduction of 20.17% in the 

computational effort. 

 
Fig 1  Exemplary audio signals from the dataset and their 

corresponding log mel spectrograms 
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To analyse the impact of parameter reduction on accuracy, 

the proposed model is evaluated on the Urbansound8K dataset 

with 10 fold cross validation. We used mean per fold 

classification accuracy as the evaluation metric. A mean 

accuracy of 90.85% is obtained. The result is compared with 

the state of the art approaches for environmental sound 

classification evaluated on the same dataset. The results of 

comparison are summarized in Table III. The results indicate 

that the proposed architecture does not compromise on 

classification accuracy. 

TABLE II   PARAMETER REQUIREMENT FOR PROPOSED 

ARCHITECTURE 

Layer 
Output 

Dimension 
Parameters 

MAC 

Operations 

CONV 1 126×126×20 200 158760 

CONV 2 124×124×20 3620 153760 

POOL 1 31×62×20 0 0 

CONV 3 29×60×40 7240 17400 

CONV 4 27×58×40 14440 15660 

POOL 2 6×29×40 0 0 

CONV 5 4×27×40 14440 1080 

CONV 6 2×25×40 14440 500 

FC 1 64×1 128064 128064 

FC 2 10×1 650 650 

 

TABLE III  COMPARISON OF PROPOSED MODEL WITH THE STATE 

OF THE ART 

Model  Parameters Mean Per Fold Accuracy 

SB_CNN [6] 241,434 73% 

PiczakCNN [7] 29,115,370 74% 

AlexNet [9]  62,378,344 90% 

GoogLeNet [9]  6,797,700 93% 

Proposed Model 183,094 85% 

 

IV. CONCLUSION 

In this paper, an improved CNN with reduced parameters for 

environmental sound classification is presented. The proposed 

architecture offered a parameter reduction of 24.16% and 

reduced the MAC operations by 20.17%. This indicates that 

the proposed architecture results in reduced computational 

complexity during hardware deployment without compromise 

on classification accuracy. In this work, we have not tweaked 

the fully connected layers of the model even though they 

contribute most of the parameters. Tweaking the fully 

connected layers for parameter reduction and replacing 

cascaded convolutional and pooling layers with new building 

units for parameter reduction are interesting avenues for future 

research.  
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