
Improved Compression Scheme for FPGA with

Hamming Code Error Correction Technique

 Chinchu C Riyas A N

PG Scholar Assistant Professor

Applied Electronics & Instrumentation Electronics & Communication

Younus College of Engineering & Technology Younus College of Engineering & Technology

Kollam, India Kollam, India

Abstract—Theexcess of area taken by the nonvolatile

registers can be reduced by the compression strategy.

Compression strategy is based on run length encoding which

is lossless. Errorslike single bit, multiple bit and bursterrors

can occur in the memory storage unit changing the

compressed data. These errors are corrected by hamming

code, which is a family of linear error correcting codes that

can detect up to two bit errors or correct one bit errors.

Compression scheme for FPGA is being proposed to be

stimulated in Xilinx 14.5.

Keywords—Run length encoding; hamming code; Xilinx;

FPGA

I. INTRODUCTION

 Data are stored in either the volatile storage units as in

the case of conventional processor, like charge stored in a

capacitor, flip flops, registers, and static random access

memories (SRAM). The states are lost when the power

supply is turned off, because the charge on the capacitor

quickly drains without the power supply. Some traditional

processors use nonvolatile memories to store the data.Some

exascalerandom access memory use off- chip phase change

random access memory (PCRAM) for checkpointing

applications [2]. PCRAM is a nonvolatile random access

memory that has the ability to achieve anumber of distinct

intermediary states, thereby having the ability to hold

multiple bits in a single cell. Self powered embedded

systems use on-chip ferroelectric random access memory

(FeRAM) to prevent data loss during power failure [3].

FeRAM is similar in construction to DRAM but uses a

ferroelectric layer instead of dielectric layer to achieve non

volatility. It offers the same functionality as flash memory.

Nonvolatile processors store data in nonvolatile storage

unit. It has got several advantageslike zero standby power,

instant on and off feature, high resilience to power failure,

fine grain power management. To implement a NV

processor, appropriate NV memory technologies are

needed for flip-flops and registers. Flash memory is a high

density nonvolatile memory but it has got disadvantages

like low endurance, slow writing speed, block erasing

pattern, high mask cost. Another nonvolatile memory is

PCRAM which have disadvantages like asymmetric

reading/writing characteristics, limited life time.FeRAM

and magnetic random access memory (MRAM) have

advantages like unlimited operation cycles, ultrashort

access time, easy integration to CMOS technology.

 The challenge faced by all the integrated circuits is

the area occupied by the memory units such as registers,

flip-flops and other storage units. The area of the storage

unit can be reduced by the compression technique. We

make the following contributions.

1) We develop a design to reduce the number of bits

to be stored in the memory units thereby reducing the

number and area of the storage units. The bits are reduced

by compression.

2) The compression codec is based on parallel run

length encoding /decoding scheme. It is a two stage

shifting network designed to minimize the codec area.

3) Hamming code is used for error correction.

II. OVERVIEW

A. Impact of area

In the case of a nonvolatile flip-flop the area taken by

the nonvolatile storage unit is large [1]. The Table I below

shows the area taken up by the non volatile storage

units.Table shows that the area overhead in different

nonvolatile technologies are all nontrivial. It should be

noted that the area overhead does not consider the variation

and reliability issues, which may further increase the chip

area. For ferroelectric processor, the ferroelectric capacitors

have a sandwich structure with a ferroelectric film layer

between two metal layers. To reduce read and write

operations to a low level,the ferroelectric film should be

large enough.

TABLE I. AREA CHALLENGE UNDER DIFFERENT NOVOLATILE

APPROACHES

Approach Area of NVFF in DFFs Area overhead of entire chip

Floating gate 1.4x 19%

Magnetic RAM 2x 40%

FeRAM 4-5x 90%

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

1

III. COMPRESSION ALGORITHM

A. Run length encoding

The architecture comprises of an encoding and

decoding scheme [1]. The data to be stored in the memory

unit is first compressed using parallel run length encoding.

Then hamming code is used for error correction since

single bit, multiple bit and burst errors can occur and

change the compressed data. Then comes the decoding

stage where the original data is retrieved without any error.

The compression scheme used is parallel run length

encoding.

First, a compression algorithm with superior

compression ratio should be designed and its hardware

feasibility and processing speed should be taken into

consideration. Second, the hardware design of the codec

should be implemented. In the hardware design, the area

overhead must be reduced to improve the performance.

A proper compressionalgorithm should have the

following features: 1) it should be lossless, that is, at the

decoding stage the data must be recovered without any

error. 2) it should provide efficient hardware

implementation, that is, the area overhead introduced

bythe hardware realization of the algorithm should be as

small aspossible. One widely used lossless encoding

algorithm is

Fig. 1. Example of k bit parallel RLE. (a) Serial RLE (b) Parallel RLE

Huffman coding [4], which is a lossless encoding algorithm

that provides a unique decodable entropy code. However it

cannot be used, as it requires a predefined probability

distribution of each symbol. In this case it is unobtainable.

All the algorithms are software based so it requires an

additional hardware to store code. So these are not used for

compression. Some efficient binary compressionalgorithms

are used in memory data compression, such asthe LZRW

series, which achieve good compressionspeed and ratio.

However, those algorithms are software-basedand require

significant additional hardware to store code the dictionary.

Run length encoding (RLE) is a lossless algorithm and

can be easily implementedin hardware. Unlike Huffman

coding it does not require a probability distribution

function and code mapping. Furthermore, RLE offers a

good compression ratio for consecutive 0/1 sequences.

Therefore, we choose RLE encoding as thecompression

algorithm.

RLE is of two types, serial and parallel. In this paper

parallel RLE is used. The shortcoming of the traditional

RLE is that it processesbit streams serially, which incurs a

large time overhead.Treinet al. [5] proposed a parallel

input-based RLE. Instead ofexamining a bit stream bit by

bit, our parallel RLE (PRLE)observes k bits in parallel. If

they are all 0 or 1, all the k bitsare bypassed in one clock

cycle. Fig. 1shows that for serial RLE it requires 3k+9

cycles to bypass the bit stream but for parallel RLE it takes

only 12 clock cycles. K bits are called observation width

window (OWW) for parallel RLE. However the value of k

affects the speed.

Disadvantage of RLE is that, it cannot operate well

when there are short0/1’s chain. We can use adaptive codec

to improve the efficiency of short chains. The challenges

faced by the adaptive codec are:1) the improvement that

can be done on adaptive codec is limited because of the

infrequent appearance of 0/1’s chain.2) adaptive codec

requires complex circuits which requires large area.In order

to improve the efficiency of PRLE, we use a threshold

value of length, only if the bit chains of 0/1’s exceed that

length PRLE will be performed.

B. Hardware design

Fig. 2 shows the hardware design of the codec. It has an

input end shifting network which shifts the ‘n’ input bits

from the registers to encoder. Output end shifting network

shift ‘m’ bit to registers. There is also a 0/1 detector, which

is for the observation of ‘k’ bits. The detector generates a

bypass signal to RLE encoder and length controller. The

function of the length controller is that it provides the

length that has to be shifted, depending on ‘OWW’ and

bypass signal. RLE encoder compresses the ‘k’ bit serially

when the bypass signal is enabled. If it is disabled it

bypasses the ‘k’ bit. Microcontroller control unit (MCU)

provides OWW ‘k’ and threshold value. After compressing

the output is ‘q’ bit which is given to the output end

shifting network.

Fig. 2. Block diagram for the encoder in the architecture

 In the decoder stage, the input and output shifting

networks are interchanged. Instead of RLE encoder, there

is an RLE decoder. Data flows in the opposite direction.

Encoding and decoding are opposite operations, hence the

decoder can reuse the two shifting networks. The only

difference in the decoder is that it contains anRLE

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

2

decoding module instead of the RLE encoding module.

Thus we omit detailed discussion on the decoder part.

The two shifting is a challenge because the shifting

length changes. Barrel shifter can be used but it consumes

large area. In order to overcome this we use hierarchical

shifting network. It is a new area efficient shifting

structure.

Fig. 3. Structure of the two stage shifting network

Fig. 3 shows a two stage hierarchical shifting network.

First stage consists of a coarse grained shifting network. It

has a fixed shifting length ‘N’. Input is shifted by ‘N’.

Advantage of the first stage is that it is area efficient and no

multiplexer is required. Second stage consist of a ‘2N’ bits

barrel shifter which takes first ‘2N’ bits of the ‘n’ bit input.

Second stage shift the data to be compressed. First stage

update the volatile registers. There are)2(log2 2 NN

multiplexers of which ‘2N’ is used to increase the

performance. If the value of ‘N’ is small, then area

becomes small.

C. Threshold Based RLE Algorithm

Threshold based RLE algorithm is used to record the

length of 0/1’s chain [7]. It provides a good compression

ratio. Algorithm 1 represents threshold based variable run

length encoding. The input of the algorithm is a data bit

streamvdiffand a threshold value ‘m’, the output is the

compressed data streamvcomp. Threshold value ‘m’ is

selected to deal with short 0/1’s chains.

Line 1 of the algorithm checks if the encoding is

complete or not by comparing vector current index k with

the vector bound n. Line 2 determines if a transition (0 to 1

or 1 to0) happens in the sequence. If the number of

consecutive zeros or ones are smaller than

m,Process_ShortSEQis called to copy the segment

intovcomp. Otherwise, we call Process_LongSEQto encode

the segment intovcomp. The encoded segments and copied

segments are regularly constructed according to Fig. 4.

Fig. 4. Shows encoded and copied segment structure.

The first bit (flag bit) in the structure indicates the segment

category. The next four bits indicate the length of the body

part. The body part records the length of consecutive 0/1

for the encoded segments or the copied segments. For a

good compression, the threshold value ‘m’ must be

properly chosen. In real applications the threshold value

‘m’ varies for different input bit stream. The value of m is

set to balance the length of the encoded segments and the

copied segments.

Algorithm 1

Input: Vdiff, m

Output::Vcomp

1: while k < n do

2: if thenak = ak+1

3: if counter ≤ m then

4: Process_ShortSEQ();

5: end if

6: if counter > m then

7: Process_LongSEQ();

8: end if

9: end if

10: end while

Fig. 4. Encoded and copied segment structure

D. Hamming code

Hamming codes are linear error correcting codes that

can detect up to two-bit errors or correct one-bit errors

without detection of uncorrected errors. Hamming codes

achieve highest possible rate for codes, with block length

and minimum distance of three.

Hamming codes are binary linear codes. For each

integerr ≥ 2 there is a code with block length n=2r-1 and

message length k=2r-r-1. Rate of Hamming code is

R=k/n=1-r/(2r-1), which is the highest possible for codes

with minimum distance of three and block length 2r-1.

Simple parity code cannot correct errors, and can detect

only odd number of bits in error.

Parity- check matrix of Hamming code is constructed

by listing all columns of length ‘r’ that are non –zero,

which means the dual code of the Hamming code is the

Punctured Hadamard code. In parity-check matrix any two

columns are pair wise linearly independent. Hamming

codes add only limited redundancy to the data so they can

only detect and correct errors when the error rate is low.

Extended hamming codes achieve a hamming distance of

four so they are said to be single-error correcting and

double error detecting codes (SECDED).

Parity adds a single bit indicating whether the number

of one’s (bit- positions with values of one) in the preceding

data was even or odd. The error can be detected if odd

number of bits are changed in transmission, the message

will change parity. However the bit that changed may have

been the parity itself. If the parity is one, it indicates that

there are odd numbers of one in the data, and a parity value

of zero indicates that there are even numbers of one in the

data. Error will not be detected if the number of bits

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

3

changed is even and check bit will be valid. Parity can only

detect the error, it cannot indicate which bit contained the

error. Hence, the data must be discarded entirely and re-

transmitted.

If more error-correcting bits are included with a

message,and if those bits can be arranged such that

different incorrectbits produce different error results, then

bad bitscould be identified. In a seven-bit message, there

areseven possible single bit errors, so three error control

bitscould potentially specify not only that an error

occurredbut also which bit caused the error.

Hamming studied the existing coding schemes and

developed a nomenclature to describe a system, including

the number of data bits and error correction bits in a block.

Hamming described this as an (8,7) code , with eight bits in

total, of which seven are data. The repetition example will

be (3,7), following the same logic. For repetition example

1/3 , codec rate is the second number divided by the first.

Hamming studied the existing coding schemes,

includingtwo-of-five, and generalized their concepts. To

start with,he developed a nomenclature to describe the

system, includingthe number of data bits and error-

correction bitsin a block. For instance, parity includes a

single bit forany data word, so assuming ASCII words with

seven bits.Parity has adistance of 2, so one bit flip can be

detected, but notcorrected and any two bit flips will be

invisible. The(3,1) repetition has a distance of 3, as three

bits needto be flipped in the same triple to obtain another

codeword with no visible errors. It can correct one-bit

errorsor detect, but not correct two-bit errors. A (4,1)

repetition(each bit is repeated four times) has a distance of

4,so flipping three bits can be detected, but not

corrected.When three bits flip in the same group there can

be situationswhere attempting to correct will produce the

wrongcode word. In general, a code with distance k can

detectbut not correct k − 1 errors.

E. Algorithm of hamming code

The following general algorithm generates a single-

errorcorrecting (SEC) code for any number of bits.

1. Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.

2. Write the bit numbers in binary: 1, 10, 11, 100,

101,etc.

3. All bit positions that are powers of two (have

onlyone 1 bit in the binary form of their position) areparity

bits: 1, 2, 4, 8, etc. (1, 10, 100, 1000)

4. All other bit positions, with two or more 1 bits in

thebinary form of their position, are data bits.

5. Each data bit is included in a unique set of 2 or

moreparity bits, as determined by the binary form of itsbit

position.

(a) Parity bit 1 covers all bit positions which havethe

least significant bit set: bit 1 (the parity bititself), 3, 5, 7, 9,

etc.

(b) Parity bit 2 covers all bit positions which havethe

second least significant bit set: bit 2 (theparity bit itself), 3,

6, 7, 10, 11, etc.

(c) Parity bit 4 covers all bit positions which havethe

third least significant bit set: bits 4–7, 12–15, 20–23, etc.

(d) Parity bit 8 covers all bit positions which havethe

fourth least significant bit set: bits 8–15,24–31, 40–47, etc.

(e) In general each parity bit covers all bits wherethe

bitwise AND of the parity position and thebit position is

non-zero.

Fig. 5. Block diagram of hamming code

IV. SIMULATION RESULTS

The compression scheme for FPGA with hamming

code error correction technique can be designed in Xilinx

14.5 software. By using this software we can generate

thewaveforms of the compressed data at the encoding

stage and decompressed data at the decoding stage.

Fig. 6.Output at the encoding stage

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

4

Fig. 7. Output at the decoding stage

V. CONCLUSION

Compression technique using hamming code opens a

new domain for area efficient, power saving and other

attractive applications. This paper proposes a compression

strategy for reducing energy and the number of bits stored

in a memory unit. The compressed data is prone to errors

like single bit, multiple bit and burst errors which is

corrected by hamming code. Our future work will focus on

data compressing of more than 64 bits.

ACKNOWLEDGMENT

I would like to thank, the Head ofthe Department of

Electronics and Communication Mr. Rajeev S Kwho were

always ready to help me with ideas and suggestions for

rectifying themistakes that crept up time to time during the

completion of this venture. I would also like to thank

myfriends and last but not the least the staff of ECE

department for their whole hearted support

andencouragement. Above all, I am thankful to the god

almighty.

REFERENCES

[1] PaCC: A Parallel Compare and Compress Codec for Area Reduction

in Nonvolatile Processors YiqunWang, Student Member, IEEE,

Yongpan Liu, Member, IEEE,Shuangchen Li, Xiao Sheng, Daming

Zhang, Mei-Fang Chiang, BaikoSai, Xiaobo Sharon Hu, Senior
Member, IEEE,andHuazhong Yang, Senior Member, IEEE, july

2014.

[2] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application
monitoring and checkpointing in HPC: Looking towards exascale

systems,” in Proc. 50th Annu. Southeast Regional Conf., 2012, pp.

262–267.
[3] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M.

Herzog, R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B.

Eversmann, “An 82 μA/MHz microcontroller with embedded
FeRAM for energy harvesting applications,” in Proc. ISSCC, Feb.

2011, pp. 334–336.

[4] D. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep.

1952

[5] J. Trein, A. Schwarzbacher, B. Hoppe, and K. Noff, “A hardware
implementation of a run length encoding compression algorithm

with parallel inputs,” in Proc. ISSC, Jun. 2008, pp. 337–342.

[6] G. Beenker and K. Immink, “A generalized method for encoding
and decoding run-length-limited binary sequences (Corresp.),” IEEE

Trans. Inf. Theory, vol. 29, no. 5, pp. 751–754, Sep. 1983.
[7] Y. Wang, Y. Liu, Y. Liu, D. Zhang, S. Li, B. Sai, M.-F. Chiang, and

H. Yang, “A compression-based area-efficient recovery architecture

for nonvolatile processors,” in Proc. DATE, Mar. 2012, pp. 1519–
1524.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2016 Conference Proceedings

Volume 4, Issue 17

Special Issue - 2016

5

