International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

Improve the Accuracy of Requirement
Traceability Links using Requirement Severity

1JERTV31S031273

M. Johara
M.E.(Computer Science and Engineering)
University College of Engineering-Panruti

Abstract:- The most important intention being determined in
this work is an concern about the Requirement Traceability
Links (RTL) that is the lack of updating of those links.
Requirement Engineering refers to the process of
formulating, documenting and maintaining software
requirements and to the subfield of Software Engineering
concerned with this process. Requirement traceability is
concerned with documenting the life of a requirement and
providing bi-directional trabceability between various
associated requirement. It enables user to find the origin of
each requirement and track every change that was made to
this requirement. It has been argued that even the use of the
requirement after the implemented features have been
deployed and used should be traceable. From the lots of
available traceability methods this paper considers the usage
of RTL during the development of a software system. During
the stages of software development and maintenance as
insufficient effort is being taken by the programmers in
updating the RTLs, they become inexperienced and at the
later stage it becomes very difficult and costly process for
doing so. Hence, this paper proposes an automated system
that detects all the modifications that takes place at all the
stages of development for every requirement gathered
initially. The main objective of this paper is detecting the
modification of requirements in the RTL during the reverse
engineering process also.

1. INTRODUCTION:

A requirement is a singular documented
physical and functional need that a particular design,
product or process must be able to perform. It is most
commonly used in a formal sense in system software
engineering (or) enterprise engineering. It is a
statement that identifies a necessary attribute,
capacity, characteristics, or quality of a system for it
to have value and utility to a customer, organization,
internal user, or other stakeholder. Requirements also
an important input in to the verification process since
tests should trace back to specific requirements.
Among the various list of attributes of requirements
the most major and important one is that it must be
“traceable”. Traceable in general confirms with the
point that the requirement is confidently documented
and satisfies all or part of the required needs as stated
by the clients or the stakeholders.

Requirement Engineering emphasizes the use
of systematic and repeatable technique that ensure the

www.ijert.org

T. Hemalatha
M.E.(Computer Science and Engineering)
Oxford Engineering College

completeness, consistency, and relevance of the
system requirements. Requirement engineering
consists of two important phases as:

¢ Requirement Elicitation.
e Requirement Analysis.

The term elicitation is used to raise the fact that good
requirements cannot just be collected from the
customer, as would be indicated by the name
requirements gathering. Requirement elicitation is the
practice of collecting the requirements of a system
from users, customers and other stake holders.
Requirement elicitation is non-trivial because you can
never be sure you get all requirements from the user
and customer by just asking them what the system do.
Requirement elicitation practices include interviews,
questionnaires, user observation, workshops,
brainstorming, use cases, role playing and
prototyping. Before requirements can be analyzed,
modeled, (or) specified they must be gathered through
an elicitation process. Requirement elicitation is the
part of the requirements engineering process, usually
followed.

2. REQUIREMENT TRACEABILITY:

Traceability is the ability to verify the history,
location, or application of an item by means of documented
recorded identifiers. It include to capability of keeping
track of a given set (or) type of information to a given
degree, (or) the ability to chronologically interrelate
uniquely identifiable entities in a way that is
verifiable.Requirement traceability is concerned with
documenting the life of a requirement and providing bi-
directional traceability between various associated
requirements. It enables users to find the origin of each
requirement and track every change that was made to this
requirement. For this purpose, it may be necessary to
document every change made to the requirements. It is
concerned with documenting the relation ships between
requirement and other development artifacts. Its purpose is
to facilitate:

e The overall quality of the product[s] under
development;

2482

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

1JERTV31S031273

e The understanding of product under development
and its artifact; and
e The ability to manage change.

3. METHODS OF REQUIREMENT TRACEABILITY:
3.1. Traceabiltiy Links:

Traceability links are one of important and
predominant method of requirement traceability. It
corresponds to the tracking of the relationship between
each requirement and its

origin. Traceability links are meant for tracking the
relationship between each requirement and the end product
to which the requirement is allocated.

The ability to perform requirements tracing can be
accomplished by four different types of links, utilizing both
forward and backward direction tracing. The different links
that canbe created for requirement tracing are:

1. Forward From The Requirements

2. Backward To The Requirements

3. Forward To The Requirements

4. Backward From The Requirements
3.1.1. Forward From The Requirements:

The link “Forward From The Requirements” can
be described by assigning a requirement to one or more
system components. Once this is done, then the component
(or) components are “responsible” for the requirement.
This type of link is good for evaluating impact of
requirement change

3.1.2. Backward To The Requirements:

The link “Backward To The Requirements” is
done when the compliance of the system or a system
component is mapped back to the requirements. This type
of link will show that the requirement has been tested (or)
verified for the system.

3.1.3. Forward To The Requirements:

The link “Forward To The Requirements” can be
described by taking the customers needs and technical
assumptions and linking them to a requirement or
requirements. If the customers needs or a technical
assumption changes, then the requiremets can be analyzed
for impact.

3.1.4. Backward From The Requirements:

The link “Backward From The Requirements” will
give the ability to validate the requirement or requirements
by the customers needs or technical assumptions.

www.ijert.org

Customer needs are traced forward to
requirements, So you can tell which requirements, will be
affected if those needs change during or after development.
This also gives you confidence that the requirements
specification has addressed all stated customer needs to
identify the origin of each software requirement. If you
presented customer needs in the form of use cases, the top
half of Figure 1 illustrates tracing between use cases and
functional requirements. The bottom of Figure 1 indicates
that, as requirements flow into down stream deliverables
during development, you can trace forward from
requirements by defining links between individual
requirements and specific product elements. This types of
link assures that you have satisfied every requirement
because you know which components address each
one.The fourth types of link traces specific work products
backward to requirements so that you know why each item
was created. Most applications include code that doesn’t
relate directly user-specified requirements, but you should
know why someone wrote every line of code.

Suppose a tester discovers unexpected
functionality with no corresponding written requirement.
This code could indicate that a developer implemented a
legitimate implied requirement that the analyst can now
add to the specification. Alternatively, it might be “orphan”
code, an instance of gold plating that doesn’t belong in the
product. Traceability links can help you sort out these
kinds of situations and build a more complete pictures of
how the pieces of your system fit together. Conversely, test
cases that are derived from-and traced back to individual
requirements provide a mechanism for detecting
unimplemented requirements because the tester wont find
the expected functionality

Traceability links help you keep track of
parentage, interconnections, and dependencies among
individual requirements. This information reveals the
propagation of change that can result when a specific
requirement is deleted or modified. If you have mapped
specific requirements into tasks in your projects work-
breakdown structure, those tasks will be affected when a
requirement is changed or deleted. There are four typical
types of traceability links as described in figure Fig 1. They
are:

2483

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

1JERTV31S031273

Customer Meeds

l

Forwrard Bacloarard
Ta From
Eequirements Reguirements

VS

Eegquirements
Forward Bacloarard
Frotn To

Requirements FEequirements

Drowwrnstrearn
Worls
Froducts

Fig 1. Requirement traceability link's description.
3.2. Traceability Matrices:

Traceability matrix links a business requirement to
its corresponding functional requirement right up to the
corresponding test cases. If a Test Case fails, traceability
helps to determine corresponding functionality easily. It
also helps ensure that all requirements are tested. It is a
method used to validate the compliance of a process or
product with the requirements for that process or product.
The requirements are each listed in arrow of the matrix and
the columns of the matrix are used to identify how and
where each requirement has been addressed.In a software
development process, a traceability matrix is a table that
correlates any two baselined documents that require a
many to many relationship to determine the completeness
of the relationship. It is often used with high level
requirements and detailed requirement of the software
product to the matching parts of high level design, detailed
design, test plan and test cases

3.3. Traceability And Non-Functional Requirements:

Traceability is a bidirectional process between
stated requirements both functional and non-functional
requirements and the completeness of the product in
meeting those requirements.

Unlike the functional requirements that support a
certain degree of locality in the system, non-functional
requirement, being related to the system quality apply to

www.ijert.org

the overall qualities of the system. In most cases, non-
functional requirements provide solutions in pattern and are
applied to the system in the design phase. If the traceability
between the analysis model elements, design model
elements and the elements involved in the architectural
pattern is not maintained in the application process, it may
be very costly to reflect the changes of the non-functional
requirements in the system .This study process the
mechanism in which the traceability between anlysis
model, design model and pattern elements is set in real
time while applying the architecture pattern simultaneously
to minimize the costly change of non-functional
requirements.

4. EXISTING TECHNIQUES IN UPDATING RTLs:

With the importance of the requirement
traceability links in mind the literature has proposed
various techniques that automatically or semi-automatically
update these links.

Among the lots of available techniques two which we
considered are:

4.1. Techinque 1:

IR based approaches are very well suited to
address the traceability recovery problem.

In general, the IR techniques can automatically
recover RTLs.

4.2. Technique 2:

This technique automatically manage traceability
link evolution and update the links in evolving software. It
constitutes of three basic components such as TLR, LSI,
and TLEM.

TLR: Provide the support for automatic traceability link
evolution management that can cope with software
evolution.

LSI: Automatic link updating technique relies on a novel
incremental version of the well-known Laten Sematic
Indexing that have been used for TLR

TLEM: During software development automatically
maintain and update the links.

5. PROBLEM STATEMENT:

The source code of a system is not consistent with
its requirement and that all and only the specified
requirement have been implemented by developers. During
software maintanence and evolution, requirement
traceability becomes outdated because developers do
not/cannot devote effort to updating them. Yet, recovering
thse traceability links later is a discouraging and costly task
for developers. But a successful software developer must
recover these traceability links semiautomatically or
automatically

2484

1JERTV31S031273

This paper provides a solution for this problem
wherein we suggest a model for detecting the modification
of requirements also in the reverse engineering process and
enhance the efficiency of the RTLs.

6. PROPOSED WORK:

The proposed work support automated
traceability maintanence by recognizing development
activities. Development activities are formally specified
and changes to certain model elements trigger a LinkUp
dateManager. This manager is responsible for updating
traceability links that are related to the changed element. IR
technique that uses latent semantic indexing for feature
location. It shows combining different approaches can
perform better than IR technique. It helps developers to
keep source code identifiers and comments consistent with
high level artificat. It uses traceability from requirements to
surce code and uses bug reports, mailing lists, temporal
information and so on, as reputation trust for a traceability
link. As the reputation of a link increases, the trust in this
link also increases..

Here the following methods are to be carried out for
success of the objective.

6.1. Initial Mapping Work:

While software development it is very essential to
ensure that the traceability links for each and every
requirement in the project. From the software requirement
specification document the tracability goes through design
document and coding in the forward directon.

First all the requirements arranged in an order
using merge sort according to its severity. To maintain the
links in the backward direction that means while doing any
change in the coding it is really a tough task to maintain
the link through design document and software
specification. This backward traceability achieved using a
machine learning and initial mapping algorithm to improve
the efficiency and accuracy. The compared the result of the
existing with the new technique used in this work and
found that the proposed model producing better results.

The following steps are carried out in the initial
mapping work.

Step 1: Initially all the requirements of the clients are
properly gathered and analyzed using different elicitation
and analysis techniques.

Step 2: Each of the gathered requirements is named
uniquely

Step 3: Then the corresponding test cases for their
respective modules are taken.Here test cases can be framed
separately for single or group of modules.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

Step 4: Similarly proper investigation is made and the
corresponding detailed design of the requirements.Here the
requirements in a group like can depend on a single design
document. .

Step 8: After identification of the entire component items
proper mapping of every requirement in their progress
must be noted which helps in tracking whenever necessary.

6.2. Traceability System:

‘ Stack helder needs

Traces te

l

TTze Case Supplementary
Fequirements

~

Test Case

Fig 2: Total Traceability System

Fig 2. Hlustrates User needs will be traced to
features. Features will be traced to use case. Any needs not
traced to a features will not be implemented. Use case will
be traced to test cases. Supplemental specifications will be
traced to test case.

6.3. Modification Detection System:
Requirements tracinc can improve the quality of
products, reduce maintanence cost and facilitate reuse.

Following are some potential benefits of implementing
requirements traceability.

1. Certification

2. Change impact analysis
3. Maintanence

4. Project tracking

5. Re-engineering

6. Reuse

7. Risk reduction

8. Testings

Many of these long-term benefits, reducing
overall product life-cycle costs but increasing the
development cost by effort you expend to accumulate and
manage the traceability information. Once links are given it
is to be designed in such a way that a change when made

www.ijert.org 2485

highlights it in the mapped requirements. This helps in
enhancement of modification detection system.

Business Requirements

Derives Specification Of

Modifies
System Requirement

Use case, External
Interface

Change Request Modifies — Requirement Quality
Attribute
ifies i s Oligin of s Origin Of
\A S/W Functional /
Requirements
s Satisfied By IsVIrif\edBv LeadsTp Creation

Architectural User

‘ System Test ‘ ‘ Project Plan Test

Interface

Isvlerif\edﬁy Is Implemented By

Integration Test Code

Is Veyrified By
Unit Test

Fig 2: Modification Detection System

In order to check the working and accuracy of this
system we developed a project for result analysis in the
college.

Then we took it as a sample for evaluation of the
system and the result data is tabulated in Table 1 and are
used for generation of the following graph (Fig 3).

From the graph (Fig 3) a conclusion can be
derived that the proposed system has detected
comparatively a large number of changes or modifications
than the related works in improving the accuracy of
requirement traceability links. Another notable point is that
the related works highly detects and corrects the
modifications only in the coding phase whereas the
proposed system detects equally in all the phases.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

1JERTV31S031273

ACCURACY OF ACCURACY OF
CHANGES CHANGES
DETECTED IN DETECTED IN
PHASES PROPOSED RELATED
WORK WORK
REQUIREMENT 68.3 48.2
ANALYSIS
DESIGN 59.2 51.2
CODING 77.8 87.1
TESTING 72.2 64.2

Table 1. Tabulation of data obtained from a sample project
subject to the proposed system in comparison with other
related work.

www.ijert.org

100
80
60
e ACCURACY OF
40 ERRORS DETECTED
IN PROPOSED
WORK
20
e ACCURACY OF
0 T : . . ERRORSDETECTED
IN RELATED WORK
& & ©¢©
ol 5 & P
s Q [<&
I
&
&
&
&>
<«

Fig 3. Graph denoting the difference in accuracy of errors between the
proposed and related system with the above data in the table.

7. CONCLUSION AND FUTURE WORK:

Thus, this paper provides a contribution for the
detection of modifications and errors in the requirement
traceability links. Here a mapping is being provided
between the outputs of the various phases carried out
during the development process of the software. This is
designed in such a way that the error occurred in any part
of the development would automatically trace its path in
the remaining phases and would denote that part by
highlighting the phrases.

This is designed in such a way that it is possible to
make the traceability links accessible in both forward and
backward directions. In general, the errors detected in the
testing phase are recovered only in the source code alone in
a fast manner. But this system would rather help to identify
the problem right from the requirement source that would
eventually eradicate the problem completely from arising
in the future.

The future work of this paper is in concentration
with updating the detected modifications made and creating
and maintaining a separate repository to store these
modifications so that it can be used in the future.

8. REFERENCES:

1. S.A. Sherba and K.M. Andrson, “A Framework for
Managing Traceability Relationships between Requirements
and Architectures,” Proc. Second Int’l Software
Requirements to Architectures Workshop, part of Int’l
Conf.Software Eng., pp.150-156, 2003

2. 0. C. Z. Gotel and C. W. Finkelstein, “An analysis of the
requirements traceability problem,” Requirements
Engineering., Proceedings of the First International
Conference on, pp. 94-101, April 1994.

3. N. Alij, Y. -G. Gu’eh’eneuc, and G. Antoniol, “Trust-based
requirements traceability,” in Proceedings of the 19th
International Conference on Program Comprehension, S. E.
Sim and F. Ricca, Eds. IEEE Computer Society Press, June
2011, 10 pages.

4. G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E.
Merlo, “Recovering traceability links between code and
documentation,” |IEEE Transactions on Software
Engineering, vol. 28, no. 10, pp. 970- 983, 2002.

2486

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

5. A. Marcus and J. I. Maletic, “Recovering documentation-to
source-code traceability links using latent semantic
indexing,” in Proceedings of 25th International Conference
on Software Engineering. Portland Oregon USA: IEEE CS
Press, 2003, pp. 125-135.

6. Murphy, G. C., Notkin, D. And Sullivan, K., Software
Reflexion Models: Bridging the Gap between Source and
High-Level Models, In the Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, October 1995, ACM, New York, NY, p. 18-28.

7. M.Gethers, R.Oliveto, D.Poshyvanyk, and A.D.Lucia, “On
Integrating Orthogonal Information Retrieval Methods to
Improve Traceability Recovery,” Proc. 27" IEEE Int’] Conf.
Software Maintanence, pp.133-142, Sept.2011.

8. Ramesh, B., Jarke, M., Toward Reference Models for
Requirements Traceability, IEEE Transactions On Software
Engineering, vol. 27, no. 1, January 2001.

9. A.Marcus and J.I. Maletic, “Recovering Documentation-to-
Source-Code Traceability Links Using Latent Semantic
Indexing, Proc.Int’l Conf.Software Eng., pp.125-135, May
2003

10. P.Mader, O. Gotel, and 1. Philippow, “Enabling Automated
Traceability Maintanence by Recognizing Development
Activities Applied to Models,” Proc.23™ IEEE/ACM Int’l
conf. Automated Software Eng., pp. 49-58,2008

1JERTV31S031273 www.ijert.org 2487

