
Improve the Accuracy of Requirement 

Traceability Links using Requirement Severity 
 

 
M.

 
Johara

 
M.E.(Computer Science and Engineering)

 
University College of Engineering-Panruti

 

  

 

T.
 
Hemalatha

 
M.E.(Computer Science and Engineering)

 
Oxford Engineering College

 

  

Abstract:- The most important intention being determined in 

this work is an concern about  the Requirement Traceability 

Links (RTL) that is the lack of updating of those links. 

Requirement Engineering refers to the process of 

formulating, documenting and maintaining software 

requirements and to the subfield of Software Engineering 

concerned with this process. Requirement traceability is 

concerned with documenting the life of a requirement and 

providing bi-directional trabceability between various 

associated requirement. It enables user to find the origin of 

each requirement and track every change that was made to 

this requirement. It has been argued that even the use of the 

requirement after the implemented features have been 

deployed and used should be traceable. From the lots of 

available traceability methods this paper considers the usage 

of RTL during the development of a software system. During 

the stages of software development and maintenance as 

insufficient effort is being taken by the programmers in 

updating the RTLs, they become inexperienced and at the 

later stage it becomes very difficult and costly process for 

doing so. Hence, this paper proposes an automated system 

that detects all the modifications that takes place at all the 

stages of development for every requirement gathered 

initially. The main objective of this paper is detecting the 

modification of requirements in the RTL during the reverse 

engineering process also.  

1. INTRODUCTION: 

A requirement is a singular documented 

physical and functional need that a particular design, 

product or process must be able to perform. It is most 

commonly used in a formal sense in system software 

engineering (or) enterprise engineering. It is a 

statement that identifies a necessary attribute, 

capacity, characteristics, or quality of  a system for it 

to have value and utility to a customer, organization, 

internal user, or other stakeholder. Requirements also 

an important input in to the verification process since 

tests should trace back to specific requirements. 

Among the various list of attributes of requirements 

the most major and important one is that it must be 

“traceable”. Traceable in general confirms with the 

point that the requirement is confidently documented 

and satisfies all or part of the required needs as stated 

by the clients or the stakeholders. 

Requirement Engineering emphasizes the use 

of systematic and repeatable technique that ensure the 

completeness, consistency, and relevance of the 

system requirements. Requirement engineering 

consists of two important phases as: 

 Requirement Elicitation. 

 Requirement Analysis. 

The term elicitation is used to raise the fact that good 

requirements cannot just be collected from the 

customer, as would be indicated by the name 

requirements gathering. Requirement elicitation is the 

practice of collecting the requirements of a system 

from users, customers and other stake holders. 

Requirement elicitation is non-trivial because you can 

never be sure you get all requirements from the user 

and customer by just asking them what the system do. 

Requirement elicitation practices include interviews, 

questionnaires, user observation, workshops, 

brainstorming, use cases, role playing and 

prototyping. Before requirements can be analyzed, 

modeled, (or) specified they must be gathered through 

an elicitation process. Requirement elicitation is the 

part of the requirements engineering process, usually 

followed.  

2. REQUIREMENT TRACEABILITY: 

 Traceability is the ability to verify the history, 

location, or application of an item by means of documented 

recorded identifiers. It include to capability of keeping 

track of a given set (or) type of information to a given 

degree, (or) the ability to chronologically interrelate 

uniquely identifiable entities in a way that is 

verifiable.Requirement traceability is concerned with 

documenting the life of a requirement and providing bi-

directional traceability between various associated 

requirements. It enables users to find the origin of each 

requirement and track every change that was made to this 

requirement. For this purpose, it may be necessary to 

document every change made to the requirements. It is 

concerned with documenting the relation ships between 

requirement and other development artifacts. Its purpose is 

to facilitate: 

 The overall quality of the product[s] under 

development; 

2482

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)



 The understanding of product under development 

and its artifact; and 

 The ability to manage change. 

3. METHODS OF REQUIREMENT TRACEABILITY: 

3.1. Traceabiltiy Links: 

 Traceability links are one of important and 

predominant method of requirement traceability. It 

corresponds to the tracking of the relationship between 

each requirement and its  

origin. Traceability links are meant for tracking the 

relationship between each requirement and the end product 

to which the requirement is allocated. 

The ability to perform requirements tracing can be 

accomplished by four different types of links, utilizing both 

forward and backward direction tracing. The different links 

that canbe created for requirement tracing are: 

1. Forward From The Requirements 

2. Backward To The Requirements 

3. Forward To The Requirements 

4. Backward From The Requirements 

3.1.1. Forward From The Requirements: 

The link “Forward From The Requirements” can 

be described by assigning a requirement to one or more 

system components. Once this is done, then the component 

(or) components are “responsible” for the requirement. 

This type of link is good for evaluating impact of 

requirement change 

3.1.2. Backward To The Requirements:  

The link “Backward To The Requirements” is 

done when the compliance of the system or a system 

component is mapped back to the requirements. This type 

of link will show that the requirement has been tested (or) 

verified for the system. 

3.1.3. Forward To The Requirements:  

The link “Forward To The Requirements” can be 

described by taking the customers needs and technical 

assumptions and linking them to a requirement or 

requirements. If  the customers needs or a technical 

assumption changes, then the requiremets can be analyzed 

for impact. 

3.1.4. Backward From The Requirements: 

The link “Backward From The Requirements” will 

give the ability to validate the requirement or requirements 

by the customers needs or technical assumptions. 

Customer needs are traced forward to 

requirements, So you can tell which requirements, will be 

affected if those needs change during or after development. 

This also gives you confidence that the requirements 

specification has addressed all stated customer needs to 

identify the origin of each software requirement. If you 

presented customer needs in the form of use cases, the top 

half of Figure 1 illustrates tracing between use cases and 

functional requirements. The bottom of Figure 1 indicates 

that, as requirements flow into down stream deliverables 

during development, you can trace forward from 

requirements by defining links between individual 

requirements and specific product elements. This types of 

link assures that you have satisfied every requirement 

because you know which components address each 

one.The fourth types of link traces specific work products 

backward to requirements so that you know why each item 

was created. Most applications include code that doesn’t 

relate directly user-specified requirements, but you should 

know why someone wrote every line of code. 

Suppose a tester discovers unexpected 

functionality with no corresponding written requirement. 

This code could indicate that a developer implemented a 

legitimate implied requirement that the analyst can now 

add to the specification. Alternatively, it might be “orphan” 

code, an instance of gold plating that doesn’t belong in the 

product. Traceability links can help you sort out these 

kinds of situations and build a more complete pictures of 

how the pieces of your system fit together. Conversely, test 

cases that are derived from-and traced back to individual 

requirements provide a mechanism for detecting 

unimplemented requirements because the tester wont find 

the expected functionality 

Traceability links help you keep track of 

parentage, interconnections, and dependencies among 

individual requirements. This information reveals the 

propagation of change that can result when a specific 

requirement is deleted or modified. If you have mapped 

specific requirements into tasks in your projects work-

breakdown structure, those tasks will be affected when a 

requirement is changed or deleted. There are four typical 

types of traceability links as described in figure Fig 1. They 

are:  

2483

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)



 

Fig 1. Requirement traceability link's description. 

3.2. Traceability Matrices: 

 Traceability matrix links a business requirement to 

its corresponding functional requirement right up to the 

corresponding test cases. If a Test Case fails, traceability 

helps to determine corresponding functionality easily. It 

also helps ensure that all requirements are tested. It is a 

method used to validate the compliance of a process or 

product with the requirements for that process or product. 

The requirements are each listed in arrow of the matrix and 

the columns of the matrix are used to identify how and 

where each requirement has been addressed.In a software 

development process, a traceability matrix is a table that 

correlates any two baselined documents that require a 

many to many relationship to determine the completeness 

of the relationship. It is often used with high level 

requirements and detailed requirement of the software 

product to the matching parts of high level design, detailed 

design, test plan and test cases 

3.3. Traceability And Non-Functional Requirements: 

 Traceability is a bidirectional process between 

stated requirements both functional and non-functional 

requirements and the completeness of the product in 

meeting those requirements. 

Unlike the functional requirements that support a 

certain degree of locality in the system, non-functional 

requirement, being related to the system quality apply to 

the overall qualities of the system. In most cases, non-

functional requirements provide solutions in pattern and are 

applied to the system in the design phase. If the traceability 

between the analysis model elements, design model 

elements and the elements involved in the architectural 

pattern is not maintained in the application process, it may 

be very costly to reflect the changes of the non-functional 

requirements in the system .This study process the 

mechanism in which the traceability between anlysis 

model, design model and pattern elements is set in real 

time while applying the architecture pattern simultaneously 

to minimize the costly change of non-functional 

requirements. 

4. EXISTING TECHNIQUES IN UPDATING RTLs: 

 With the importance of the requirement 

traceability links in mind the literature has proposed 

various techniques that automatically or semi-automatically 

update these links.  

Among the lots of available techniques two which we 

considered are: 

4.1. Techinque 1: 

IR based approaches are very well suited to 

address the traceability recovery problem.  

In general, the IR techniques can automatically 

recover RTLs. 

4.2. Technique 2: 

This technique automatically manage traceability 

link evolution and update the links in evolving software. It 

constitutes of three basic components such as TLR, LSI, 

and TLEM. 

TLR: Provide the support for automatic traceability link 

evolution management that can cope with software 

evolution. 

LSI: Automatic link updating technique relies on a  novel 

incremental version of the well-known Laten Sematic 

Indexing that have been used for TLR  

TLEM: During software development automatically 

maintain and update the links. 

5. PROBLEM STATEMENT: 

 The source code of a system is not consistent with 

its requirement and that all and only the specified 

requirement have been implemented by developers. During 

software maintanence and evolution, requirement 

traceability becomes outdated because developers do 

not/cannot devote effort to updating them. Yet, recovering 

thse traceability links later is a discouraging and costly task 

for developers. But a successful software developer must 

recover these traceability links semiautomatically or 

automatically 

2484

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)



This paper provides a solution for this problem 

wherein we suggest a model for detecting the modification 

of requirements also in the reverse engineering process and 

enhance the efficiency of the RTLs.  

6. PROPOSED WORK: 

  The proposed work support automated 

traceability maintanence by recognizing development 

activities. Development activities are formally specified 

and changes to certain model elements trigger a LinkUp 

dateManager. This manager is responsible for updating 

traceability links that are related to the changed element. IR 

technique that uses latent semantic indexing for feature 

location. It shows combining different approaches can 

perform better than IR technique. It helps developers to 

keep source code identifiers and comments consistent with 

high level artificat. It uses traceability from requirements to 

surce code and uses bug reports, mailing lists, temporal 

information and so on, as reputation trust for a traceability 

link. As the reputation of a link increases, the trust in this 

link also increases.. 

  

Here the following methods are to be carried out for 

success of the objective. 

6.1. Initial Mapping Work: 

While software development it is very essential to 

ensure that the traceability links for each and every 

requirement in the project. From the software requirement 

specification document the tracability goes through design 

document and coding in the forward directon.  

First all the requirements arranged in an order 

using merge sort according to its severity. To maintain the 

links in the backward direction that means while doing any 

change in the coding it is really a tough  task to maintain 

the link through design document and software 

specification. This backward traceability achieved using a 

machine learning and initial mapping algorithm to improve 

the efficiency and accuracy. The compared the result of the 

existing with the new technique used in this work and 

found that the proposed model producing better results. 

The following steps are carried out in the initial 

mapping work. 

Step 1: Initially all the requirements of the clients are 

properly gathered and analyzed using different elicitation 

and analysis techniques. 

Step 2: Each of the gathered requirements is named 

uniquely  

Step 3: Then the corresponding test cases for their 

respective modules are taken.Here test cases can be framed 

separately for single or group of modules. 

Step 4: Similarly proper investigation is made and the 

corresponding detailed design of the requirements.Here the 

requirements in a group like can depend on a single design 

document. . 

Step 8: After identification of the entire component items 

proper mapping of every requirement in their progress 

must be noted which helps in tracking whenever necessary. 

6.2. Traceability System: 

 

Fig 2: Total Traceability System 

 Fig 2. Illustrates User needs will be traced to 

features. Features will be traced to use case. Any needs not 

traced to a features will not be implemented. Use case will 

be traced to test cases. Supplemental specifications will be 

traced to test case.  

6.3. Modification Detection System: 

Requirements tracinc can improve the quality of 

products, reduce maintanence cost and facilitate reuse. 

Following are some potential benefits of implementing 

requirements traceability. 

1. Certification 

2. Change impact analysis 

3. Maintanence 

4. Project tracking 

5. Re-engineering 

6. Reuse 

7. Risk reduction 

8. Testings 

Many of these long-term benefits, reducing 

overall product life-cycle costs but increasing the 

development cost by effort you expend to accumulate and 

manage the traceability information. Once links are given it 

is to be designed in such a way that a change when made 

2485

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)



highlights it in the mapped requirements. This helps in 

enhancement of modification detection system. 

 

Fig 2: Modification Detection System 

In order to check the working and accuracy of this 

system we developed a project for result analysis in the 

college.  

Then we took it as a sample for evaluation of the 

system and the result data is tabulated in Table 1 and are 

used for generation of the following graph (Fig 3). 

From the graph (Fig 3) a conclusion can be 

derived that the proposed system has detected 

comparatively a large number of changes or modifications 

than the related works in improving the accuracy of 

requirement traceability links. Another notable point is that 

the related works highly detects and corrects the 

modifications only in the coding phase whereas the 

proposed system detects equally in all the phases. 

 

 

 

PHASES 

ACCURACY OF 

CHANGES 

DETECTED IN 

PROPOSED 

WORK 

ACCURACY OF 

CHANGES 

DETECTED IN 

RELATED 

WORK 

REQUIREMENT 
ANALYSIS 

68.3 48.2 

DESIGN 59.2 51.2 

CODING 77.8 87.1 

TESTING 72.2 64.2 

 

Table 1. Tabulation of data obtained from a sample project 

subject to the proposed system in comparison with other 

related work. 

 

Fig 3. Graph denoting the difference in accuracy of errors between the 

proposed and related system with the above data in the table. 

7. CONCLUSION AND FUTURE WORK: 

 Thus, this paper provides a contribution for the 

detection of modifications and errors in the requirement 

traceability links. Here a mapping is being provided 

between the outputs of the various phases carried out 

during the development process of the software. This is 

designed in such a way that the error occurred in any part 

of the development would automatically trace its path in 

the remaining phases and would denote that part by 

highlighting the phrases.  

This is designed in such a way that it is possible to 

make the traceability links accessible in both forward and 

backward directions. In general, the errors detected in the 

testing phase are recovered only in the source code alone in 

a fast manner. But this system would rather help to identify 

the problem right from the requirement source that would 

eventually eradicate the problem completely from arising 

in the future. 

 The future work of this paper is in concentration 

with updating the detected modifications made and creating 

and maintaining a separate repository to store these 

modifications so that it can be used in the future. 

8. REFERENCES: 

1. S.A. Sherba and K.M. Andrson, “A Framework for 

Managing Traceability Relationships between Requirements 

and Architectures,” Proc. Second Int’l Software 

Requirements to Architectures Workshop, part of Int’l 

Conf.Software Eng., pp.150-156, 2003 

2. O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the 

requirements traceability problem,” Requirements 

Engineering., Proceedings of the First International 

Conference on, pp. 94–101, April 1994. 

3. N. Ali, Y. -G. Gu´eh´eneuc, and G. Antoniol, “Trust-based 

requirements traceability,” in Proceedings of the 19th 

International Conference on Program Comprehension, S. E. 

Sim and F. Ricca, Eds. IEEE Computer Society Press, June 

2011, 10 pages. 

4. G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. 

Merlo, “Recovering traceability links between code and 

documentation,” IEEE Transactions on Software 

Engineering, vol. 28, no. 10, pp. 970– 983, 2002. 

2486

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)



5. A. Marcus and J. I. Maletic, “Recovering documentation-to 

source-code traceability links using latent semantic 

indexing,” in Proceedings of 25th International Conference 

on Software Engineering. Portland Oregon USA: IEEE CS 

Press, 2003, pp. 125–135. 

6. Murphy, G. C., Notkin, D. And Sullivan, K., Software 

Reflexion Models: Bridging the Gap between Source and 

High-Level Models, In the Proceedings of the Third ACM 

SIGSOFT Symposium on the Foundations of Software 

Engineering, October 1995, ACM, New York, NY, p. 18-28. 

7. M.Gethers, R.Oliveto, D.Poshyvanyk, and A.D.Lucia, “On 

Integrating Orthogonal Information Retrieval Methods to 

Improve Traceability Recovery,” Proc. 27th IEEE Int’l Conf. 

Software Maintanence, pp.133-142, Sept.2011. 

8. Ramesh, B., Jarke, M., Toward Reference Models for 

Requirements Traceability, IEEE Transactions On Software 

Engineering, vol. 27, no. 1, January 2001. 

9. A.Marcus and J.I. Maletic, “Recovering Documentation-to-

Source-Code Traceability Links Using Latent Semantic 

Indexing, Proc.Int’l Conf.Software Eng., pp.125-135, May 

2003 

10. P.Mader, O. Gotel, and I. Philippow, “Enabling Automated 

Traceability Maintanence by Recognizing Development 

Activities Applied to Models,” Proc.23rd IEEE/ACM Int’l 

conf. Automated Software Eng., pp. 49-58,2008 

2487

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031273

International Journal of Engineering Research & Technology (IJERT)


