
Importance Of Different Agents in Software Development

P. S. K. Patra

Prof. & HOD, Department of CSE, ACT, Chennai, TN, India

Abstract—The tendency of increasing technical complication of software development when

tied with the need for knowledgeable and predictable progressive process using agents and

multi-agents has driven software developers to establish innovative system development

models. The upcoming industry/organization demands the need to automate its various day-

to-day activities using different life cycle models to develop software. Due to availability of

some standard structural methodology that can be introduced in various fields so that the

transition from manual to automated system became easy. A number of models like waterfall,

prototype, rapid application development, V-shaped etc. are emphasized in this paper towards

building new or improved system In this paper, our basic focus on the comparative analysis

of these Software Development processes and usage of agents and multi-agents in different

activities of software development.

Keywords: Agent, Multi –Agent, OMG, UML & MAS etc.

1.INTRODUCTION

Software engineering techniques are a key

prerequisite of running successful software

projects. A software methodology is

typically characterized by a modeling

language (used for the description of

models, and for defining the elements of

the model a specific syntax or notation

(and associated semantics) and a software

process defining development activities,

interrelationships among activities & ways

in which different activities are performed.

 Deploying agent technology

successfully in industrial

applications requires industrial-

quality software methods and

explicit engineering tools.

 Agent technology has still not met

with broad acceptance in industrial

settings (despite some encouraging

success stories).

 Three characteristics of

commercial development have

prevented wider adoption of agent

technology:

scope of industrial projects is much larger

than typical research efforts skills of

developers are focused on established

technologies, not leading-edge methods

and programming languages use of

advanced technologies is not part of the

success criteria of a project Methods for

commercial development must depend on

widely standardized representations of

artifacts supporting all phases of the

software lifecycle. Currently, technologies

in use by industry (e.g. the Object

Management Group’s (OMG) Unified

Modeling Language (UML) accompanied

by process frameworks such as the

Rational Unified Process), cannot cope

with the required modeling artifacts for

agent technologies.

2.EXISTING SYSTEM

Most early approaches supporting the

software engineering of agent-based

systems were inspired by the knowledge

engineering community.

Agent-oriented approaches focus directly

on the properties of agent-based systems

and try to define a methodology to cope

with all aspects of agents. A relatively new

tendency is to base methodologies and

modeling languages on object-oriented

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

techniques, like UML, and to build the

agent-specific extensions on top of these

object-oriented approaches.

Knowledge Engineering Approaches -

MAS-CommonKADS

 CommonKADS is a knowledge

engineering methodology as well

as a knowledge management

framework

 The CommonKADS methodology

was developed to support

knowledge engineers in modeling

expert knowledge and developing

design specifications in textual or

diagrammatic form.

MAS-CommonKADS Layeres

 The Organization Model describes

the organizational context in which

the knowledge-based system works

(knowledge providers, knowledge

users, knowledge decision makers)

 The Task Model describes the tasks

representing a goal-oriented

activity, adding value to the

organization, and executed in the

organizational environment

 The Agent Model describes all

relevant properties like various

roles, competencies and reasoning

capabilities of agents able to

achieve tasks of the task model.

 The Knowledge Model or Expertise

Model describes the capabilities of

an agent with a bias towards

knowledge intensive problem-

solving capabilities.

 The Communication Model

describes — in an implementation

independent way — all the

communication between agents in

terms of transactions, transaction

plans, initiatives and capabilities

needed in order to take part in a

transaction.

The Design Model describes the design of

the system, its architecture,

implementation platform and software

modules.

Apart from that the following table

illustrate the different features of different

existing soft ware development life cycle

model.

3.PROPOSED MODEL

Agent-Oriented Approaches – Gaia and

ROADMAP

 Knowledge engineering software

development methodologies are

perceived (by some) as lacking

because specifically for agent-

based systems and this

shortcomings are only partly

addressed by extensions such as

those seen for MAS-

CommonKADS

 Gaia is a methodology for agent-

oriented analysis and design

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

supporting macro (societal) level as

well as micro (agent) level aspects

Figure1. Coordination Model

Agent-Oriented Approaches – SODA

(Societies in Open and Distributed Agent

spaces)

 SODA takes the agent environment

into account and provides

mechanisms for specific

abstractions and procedures for the

design of agent infrastructures

 Agent societies - exhibiting global

behaviors not deducible from the

behavior of individual agents

 Agent environments - the space in

which agents operate and interact,

such as open, distributed,

decentralized, heterogeneous,

dynamic, and unpredictable

environments

But, intra-agent aspects are not covered –

SODA is not a complete methodology;

rather, its goal are to define a coherent

conceptual framework, and a

comprehensive software engineering

procedure that accounts for the analysis

and design of individual agents from a

behavioral point of view, agent societies,

and agent environments.

Figure2. Agent Diagram

 Agent Communication Channel

 These components fit together to

enable message transport between

agents in two different ways

 FIPA also allows agents to interact

in an arbitrary direct way but this

does not require standards

FIPA defines external transport interfaces

of agent platforms (via agent

communication channel - ACC) in terms

of overall transport architecture, MTPs and

message envelopes the resulting external

interfaces can then be accessed by either

ACCs (method 1) or agents (method 2)

directly from other platforms or on the

same platform the internal interface of an

agent to its platform's messaging services

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

is not defined, to provide flexibility for

toolkit developers.

A starting point: the OPEN Process

Framework

We now briefly describe a suitable,

existing process infrastructure upon which

to build a facility to support the design of

multi-agent systems. OO methodologies

that are highly prescriptive and overly

specified are hard to extend when a new

variant or a new paradigm appears. What

is required is a more flexible approach to

building methodologies or processes. One

such will be described here: OPEN,

process components are selected from a

repository and the actual methodology (or

process) is constructed using identified

construction and tailoring guidelines.

OPEN thus provides a useful starting point

because it is not only defined at the meta

model level but is also itself

componentized. Thus, adding further

support for the design of intelligent agents

is feasible, such potential extensions

having been a priori designed into the

meta-model architecture of the OPEN

Process Framework (OPF).

Figure 3. Creating a personalized

development process

The OPF is a process meta-model or

framework from which can be generated

an organizationally- specific process

(instance). Some of the major elements in

this meta-model are Work Units

(Activities, Tasks and Techniques wherein

Activities and Tasks say “what” is to be

done and Techniques say “how” it will be

accomplished), Work Products and

Producers3. Together, Work Units and

Producers create Work Products and the

whole process is structured temporally by

the use of Stages (phases, cycles etc.).

Each process instance is created by

choosing specific instances of Activities,

Tasks, Techniques etc. from the OPF

Repository and specific configurations

thereof (created by the application of the

Construction Guidelines). OPEN

thus provides a high degree of flexibility to

the user organization.

Initial work in identifying new process

components (e.g. Activities, Tasks,

Techniques, Roles, Work Products) has

already started. For example, in a newly

proposed Task named Identify intelligent

agents we suggest that identification of

agents is in some ways an extension of

‘finding the objects’, although there are

several clear differences (e,g, Odell, 2000).

Agents are autonomous entities that have

many similarities to objects. A major

difference is that whereas an object

receiving a request for service must deliver

that service, an agent is empowered to say

‘no’. Agents act when “they feel like it”,

and not necessarily when they receive a

communication or other stimulus. Agents

play roles with responsibilities. These

responsibilities are not only equivalent to

those for objects (responsibilities for

doing, knowing and enforcing) but also

towards achieving organizational goals

(Jennings, 2001). However, they attempt

to more closely mimic the behaviour of

people and their decision making strategies

than can objects. Consequently, there is a

greater emphasis on the roles that are

played by agents. Each role is defined by

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

four attributes: responsibilities,

permissions, motivations and protocols.

Roles are already well supported in OPEN

but need to be extended and refined to

support the more sophisticated notion of

roles in agent technology.

Figure 3 The major elements of the OPF

meta-model

4.EXPERIMENTAL ANALYSIS

Model competition from a consumer

agent’s perspective, let m be the number of

consumers and n be the number of Agents.

Since each consumer agent has m _ 1

competitors, let m’ denotes m _ 1.

There are three thing which has been

observed such as utility, success rate &

negotiation period. Let us see the

determination as:

5.PERFORMANCE MEASURE

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

6.CONCLUSION

There is as yet no single methodological

approach that fits all purposes unsurprising

given the breadth and scope of agent

research and applications. Because of these

challenges one approach being considered

is the introduction of a meta-methodology

that supports the various types of models

described above and provides adequate

mappings. An important prerequisite to

bringing agent technology to market

successfully is the availability of

expressive and usable development tools,

to enable software engineers to construct

methodologies, define the various models

listed above, and to achieve automatic

model transformation as far as possible.

Finally, it appears that (independent of the

methodology used) the question of how

agent-based approaches can be embedded

and migrated into mainstream IT

infrastructures and solutions is another key

factor to determine which elements of the

current work on agent-oriented software

engineering will be successful in real-

world software engineering environments.

REFERENCES

[1].Agent-based Software Development

Methodologies Brian Henderson-Sellers,

University of Technology, Sydney

(Australia) and Ian Gorton, Pacific

Northwest National Laboratory (USA).

[2].Bresciani, P. and Giorgini, P. (2002).

The TROPOS analysis process as graph

transformation system, in Proceedings of

the OOPSLA 2002, Odell, COTAR,

Sydney, 1-12.

[3].Bresciani, P., Giorgini, P., Giunchiglia,

F., Mylopoulos, J. and Perini, A., 2003,

Tropos: an agent-oriented software

development methodology, J. Autonomous

and Multi-Agents (in press)

[4].Cabri, G., Leonardi, L. and ambonelli,

F. (2002). Modeling role-based

interactions for agents, in Proceedings of

the OOPSLA 2002 Workshop on Agent-

Oriented Methodologies (eds. J.

Debenham, B. Henderson-Sellers, N.

Jennings, and J. Odell), COTAR, Sydney,

13-20

[5].Debenham, J.K. and Henderson-

Sellers, B. (2002). Full lifecycle

methodologies for agent-oriented systems

– the extended OPEN Process Framework.

In Proceedings Agent-Oriented

Information Systems (eds. P. Giorgini, Y.

Lesperance, G. Wagner and E. Yu),

Toronto, 87-101.

[6].Debenham, J.K. and Henderson-

Sellers, B. (2003). Designing agent-based

process systems –extending the OPEN

process framework, chapter in Intelligent

Agent Software Engineering, Idea Group

Publishing, 160-190

[7].Debenham, J., Henderson-Sellers, B.,

Jennings, N. and Odell, J. (2002).

Proceedings of the OOPSLA 2002

Workshop on Agent-Oriented

Methodologies, COTAR, Sydney,

130pp, ISBN 0-9581915-6

Firesmith, D.G. and Henderson-Sellers, B.

(2002).

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

