

Implementing Source Code Metrics for Software quality analysis

Mandeep K. Chawla Indu Chhabra

 Research Scholar Associate Professor and Head

 Department of Computer Science Department of Computer Science

 Panjab University, Chandigarh Panjab University, Chandigarh

ABSTRACT
Developing a high quality software product in an economical

way is one of the fundamental goals of any software engineering

activity. As computers are being used in almost every

conceivable area in the contemporary world, quality of software

becomes a key factor in the strategic success of a business and

human security in general. Finding determinants of software

quality and mapping them into quantitative measures is a crucial

factor in sustainable success of an end product. Software metrics

as means of quality analysis has attracted a lot of attention

among researchers and practitioners in last one decade. Mapping

of program characteristics into these metric values indicate

structural complexity and behavior of an information system. In

this case study, the five software metrics- lines of code (LOC),

cyclomatic complexity (MVG), Halstead volume (HV), number

of modules (NOM) and lines of comment (COM) have been

utilized to analyze a set of three java based sorting programs.

Three software measurement tools have been applied on them to

judge their performance with respect to the metrics mentioned

therein. Also a derived metric maintainability index has been

calculated from the base metrics to indicate relative

maintainability of the source code. Comparative analysis of the

chosen tools have also been undertaken to reveal how they differ

in delivering results for the same programs. Further, some other

quality factors which can be derived from the constituent

metrics are mentioned in a later sub-section.

1. INTRODUCTION
Software engineering is fairly intellectual and crucial design

process because of today‟s dynamic environment which is quite

unpredictable and in principle, not fully specifiable in advance.

Effective software quality evaluation requires determinants that

describe what quality is and how it can be traced back to the

development process or the end product itself. Software industry

is gradually progressing towards a period of high maturity;

where informal approaches to quality analysis can no longer

work. Due to the revolutionary growth, customers are also

recognizing its value and they are not willing to compromise on

the qualitative aspects. Despite of all this, internal quality of a

product may go unchecked or be deliberately compromised at

times. Software metrics are primitive indicators to code quality

which provide us with the means to take pro-active actions at the

earliest stage possible, whenever project is moving off-track.
Quality has different interpretation for different people.

Various quality standards exist which are applicable for the

organizations involved in software development. ISO and IEEE

are the most widely used standards in this field. ISO/IEC 9126

[1] defines functionality, reliability, usability, efficiency,

maintainability and portability as quality characteristics for

software products. IEEE has published a standard for the

software quality metrics methodology [2]. IEEE defines

Software Quality as - the degree to which a system, component,

or process meets specified requirements and/or customer

expectations. Further, Software metrics are instruments applied

to a piece of software or its design specifications with the goal to

achieve reproducible quantitative measurements, which may be

further applied in cost estimation, project scheduling, debugging,

quality assurance and alike.

2. BACKGROUND
Measurement is essential in any engineering domain, and there

is no exemption to software engineering. Several researchers in

the past have applied software metrics as key inputs to guide

quality predictors. Henrike Barkmann [3] identifies correlation

between several metrics from well-known object oriented

metrics suites such as CK metrics, McCabe Cyclomatic

Complexity and various size metrics, besides presenting possible

thresholds. Yasunari Takai et al. [4] propose new software

metrics based on coding standards violations to capture latent

faults in a development. PA Judas [5] identifies a linear growth

trend in software size for crewed space and aircraft, which can

reasonably predict software size in similar future programs,

using SLOC based data. Zhou Yuming and XU Baowen [6]

investigate the relationships of size and complexity metrics with

maintainability of open source software. S. Pradeep et al. [7]

utilizes CK metrics, SLOC, COM metrics etc. to investigate the

relationship between software metrics and defects. Domenico

Cotroneo [8] demonstrates the relation between software aging

and several static features of the software. Cesar Couto,

Christofer Silva [9] discover evidences towards causality

between software metrics (as predictors) and the occurrence of

bugs. Yuming Zhou [10] re-examines the ability of complexity

metrics to predict fault-proneness. Daniela Glasberg [11]

validates OO design metrics on a commercial Java application.

AK Pandey [12] has made use of LOC, MVG and Halstead

metrics to classify the software module as fault prone or not.

Zhou et al [13] concludes that LOC and WMC (weighted

method McCabe complexity) are indeed better fault-proneness

predictors than other lesser known complexity metrics SDMC,

AMC. In his large empirical study of five Microsoft software

systems, Nagappan [14] found that failure prone software

entities are statistically correlated with code complexity

measures.

3. METHODOLOGY FOLLOWED
There are two approaches to software measurement. One is

focused on direct evaluation of the quality of end product

produced during various processes; and in the second one,

processes themselves are measured to inform on duration, cost,

effectiveness and efficiency of software development activities.

In this study, we intend to evaluate source code as end product

for metric based analysis. To begin with, programs are selected

for which metrics shall be empirically validated for. We have

opted for three java based sorting programs from well

established algorithms of Bubble sort, Selection sort and Quick

sort. Then a suitable set of metrics of interest are chosen. This

in order requires determination and pre-testing of tools which

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

are language compatible, support given metrics and on the basis

of availability. After implementing the tools and capturing

metric values, a derived metric Maintainability Index (MI) is

calculated from base metrics; results are compared and

interpreted eventually. Figure 1 illustrates the methodology

followed in this paper:

Figure 1: Methodology followed

There exist many open-source and commercial measurement

tools to choose from depending upon the analyst preferences and

other compatibility issues. In this paper, tools supporting the

analysis of java programs were required. After some preliminary

investigation, three tools have been selected – C and C++ Code

Counter, Source Monitor and JHawk. For the sake of concision,

they are identified as CCCC, SM and JHK respectively from this

point. One reason behind opting for multiple tools is to put

across the differences and similarities prevailing among them in

delivering results. Tools produce many metrics values out of

which results of five metrics of interest are recorded, and these

are: Line of count (LOC), cyclomatic complexity (MVG),

number of modules (NOM), Line of comments (COM), Halstead

Volume (HV). Out of these 5 constituent metrics, three have

further been utilized to calculate MI as function of LOC, MVG

and HV. A few other derivable quality factors are also summed-

up along with.

4. METRICS UNDER CONSIDERATION
A clear understanding of the characterization of code attributes

and potential of their application in improving outcome of

prospective projects led to a body of research principally

converging on validation of these metrics. Further these are

capable of reducing subjectivity during quality assurance and

helps in decision making due to their nature of reproducibility.

There exist several direct and indirect measures, out of which

five metrics have been opted for the tools to be examined.

Ahead is a brief description of them.

4.1 Line of Count (LOC) – Physical Size
This one of the most popular size-oriented metric represents

total number of non-blank, non-comment lines. Proponents of

the LOC measure claim that LOC is an "artifact" of all software

development projects that can be easily counted, that many

existing software estimation models use LOC or KLOC as a key

input to evaluate other aspects of cost and quality [15].

4.2 McCabe's Cyclomatic Complexity (MVG)
 Originally developed by Thomas McCabe, this widely used

measure counts linearly independent paths through a flow of

control graph. This can be found by counting language

keywords and operators which affect on source code complexity

[16]. Cyclomatic complexity [15] has a foundation in graph

theory and provides us with extremely useful logical metric.

Cyclomatic complexity, V(G), for a flow graph, G, is defined as

V(G) = E - N + 2

where E is the number of flow graph edges, N is the number of

flow graph nodes.

It provides us with an upper bound for the number of

independent paths that form the basis set and, by implication, an

upper bound on the number of tests that must be designed and

executed to guarantee coverage of all program statements.

Hence it offers a quantitative measure of testing difficulty and

an indication of ultimate reliability. Experimental studies

indicate distinct relationships between the McCabe metric and

the number of errors existing in source code, as well as time

required to find and correct such errors.

4.3 NOM (Number of modules) –Code Distribution
All the functions, procedures or subroutines are counted under

this physical as well as logical metric. As compared to LOC, it is

more meaningful a size-metric because to some extent, it is

independent of the programming language opted for. It is easy to

calculate and serves best as an interface metric. The more

modules a class has, more complex its interface is assumed to be

[17].

 4.4 COM (Lines of Comments)- Documentation
A well documented software aids developers and maintainers

equally well. COM represents the total source comment count

and further as an attribute to the measures - reusability,

maintainability and understandability. Another useful metric

called „Code to Comment Ratio‟ (CCR) can be derived from this

measure to have an estimate of how much the source code is

well documented.

4.5 Halstead Volume (HV)
Halstead Volume, a measure from the family of Halstead

metrics, is a composite metric based on the number of (distinct)

operators and operands in source code [18]. According to

Halstead, Volume is the count of number of mental comparisons

needed to generate a program [Menzies et al.2002]. It is

calculated as the program length times the 2-base logarithm of

the vocabulary size. It represents the volume of information (in

bits) required to specify a program. HV depicts textual code

complexity and is one of the key parameter in computing

maintainability index.

5. TOOLS DESCRIPTION

5.1 C and C++ Code Counter (CCCC)
CCCC [19] was developed in 2001 by Tim Littlefair as a part of

his doctorate research project. It is free-ware open source

command line interface originally meant for Linux, but also

build-able on the Win32 platform. Originally implemented to

process C++ and ANSI C programs, subsequent versions are

able to process Java source files as well. It is easy to run on the

command line by mentioning the names of one or more source

files to be analyzed. CCCC will first check the extension of the

filename, and if the extension is acknowledged as indicating a

supported language, the appropriate parser will run on the file.

As each file is parsed, identification of certain constructs will

cause records to be written into an internal database. Final

output will be generated in HTML format and XML files.

CCCC produces various measures such as size metrics,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

complexity metrics, object oriented metrics from CK and few

others.

5.2 SourceMonitor (SM)
Developed by Campwood software with graphical-interface,

SourceMonitor [20] is a free-ware closed-source software

measurement tool. It is capable to be operated on ASCII text

files created on other systems but runs only on Windows.

Checkpointing is one of its distinct features to keep the results

around so that project managers can see how the project code

changes over time. There are five different views available to

display the results such as Checkpoint view, Charts view,

Project view, Details view and Method view. The languages

supported are - VB6, HTML, VB.NET, C, C++, Java, C# and a

few others. One can export resultant metrics data from

SourceMonitor to text files, XML or CSV format. Metrics

support vary somewhat with programming language chosen,

however most commonly captured ones are- LOC, Methods per

Class, Classes and Interfaces, Maximum Method Complexity,

Percent Branch Statements and Percent Lines with Comments.

5.3 JHawk (JHK)
Primarily a Java metric tool, JHawk [21] has evolved from a

stand-alone GUI application to include a command line version

and an Eclipse plugin. It offers to produce IDE integration (for

Visual Age for Java) and provides the CSV, XML and HTML

export formats. Apart from letting the users create their own

new metrics, it provides a dashboard tab which gives a quick

overview of the metrics at System, Package and Class level.

Also, the JHawk Dataviewer allows a user to view changes in

core metrics over time – for example over a project lifecycle.

6. EXPERIMENTAL EVALUATION
Code analyses were performed after this preliminary study and

pre-preparations. Three java programs based on three sorting

techniques - Bubble sort, Selection sort, and Quick sort were

analyzed through the tools undertaken. Brief description of the

source programs is in Table I.

Table I: Source Programs description

Symbolic names of

programs

Description

ProgA Bubble sort

ProgB Selection sort

ProgC Quick sort

Each program is evaluated through all the three tools so that

results can be compared across distinct tools. According to the

individual tool‟s metric support, numerous metrics values were

calculated and delivered automatically as part of results.

However only the metrics of interest were captured and recorded

in Table II for further investigation.

Table II: Results of tools’ implementation

Tools Prog LOC MVG NOM COM HV

 CCCC ProgA 57 5 3* 1

 ProgB 30 5 2* 2 -

 ProgC 45 11 2* 3

Source ProgA 44 4 4 1#

Monitor ProgB 32 4 2 2# -

 (SM) ProgC 40 9 2 3#

JHawk ProgA 47 5 4 1 318.0

 ProgB 36 4 2 2 519.7

 (JHK) ProgC 42 8 2 3 727.3

- indicates metric is not supported by corresponding tool

indicates normalized values according to Table III (row 4,

col2)

* indicates different granularity level according to Table III

(row3, col2)

……………………………………………………
It is apparent in Table II that for the same program, identical

metrics produce different results. This is because of the fact that

all tools hold varying assumptions about their metric definitions

and accordingly, outcomes moderately differ across each other.

In spite of this, we can discern interesting similarities between

them as mentioned in Table III. Note that HV is supported by

only one of the tool, so is excluded from the comparative

analysis in the following table.

Table III: Comparative analysis of tools against metrics calculated

Metric Concluding observations w.r.t CCCC, SM and JHK

LOC Out of three, SM provides most optimistic LOC value. CCCC counts all non-blank lines and curly brackets {, } as part of

LOC while SM counts non-blank lines only and does not consider curly brackets under the label „Statements‟. JHK counts

the same under the label LLOC as SM does. JHK differs from SM in the way it counts the „for‟ statement.

MVG CCCC measures it class-wise and picks the maximum as final value.

SM measures module-wise and reports the result as „maximum complexity‟.

JHK calculates the metrics quite nearer to SM. Since no two tools agreed to a common value for MVG, we tested the

programs with one anonymous well established quality analysis tool. It validates the result of SM‟s analysis.

NOM CCCC measure for NOM is not comparable to its counterparts because it counts number of classes as against others two

which count number of functions and procedures spanning over all the classes in a program. Since a method undoubtedly

is at a finer granularity level than a class, we confirm the result of SM and/or JHK analysis in this case.

COM SM reports this metric in percentage form, it has been converted into fixed value before entering into table by taking two

other metrics „Lines (including comments)‟ and „Percent line with comments‟ as input parameters. CCCC and JHK

directly returns the result in absolute figures and convenient to counter-check. Among all, this metric remains the most

stable of all.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

7. RESULTS AND INTERPRETATION
The results of the experimental evaluation are briefed in Table

IV.

Table IV: Program characteristics

Programs Size

Logical

Complexity

Documentation Volume

ProgA Largest less complex Poor

documented

Small

ProgB Smallest less complex Few comments Medium

ProgC middle-

sized

most

complex

well

documented

High

Metrics characterize various program features objectively. They

may be classified by their volume or size, interdependence

among the modules or intricacy of flow control in each program

module and a lot more. These measurements become more

meaningful if some significant quality attributes could be further

derived from the base metrics. In next sub-section, we attempt to

compute one such composite metric to indicate relative

maintainability which is one of most sought-after quality factor

for the project managers.

7a. MAINTAINABILITY

Maintainability Index (MI) [22] is a composite metric that

incorporates a number of traditional source code metrics into a

single number that indicates relative maintainability. It is

calculated with certain formulae from LOC, MVG and Halstead

volume (HV). The metric originally is calculated as follows:

MI = 171 - 5.2 * ln(aveV) - 0.23 * (aveMVG) – 16.2 *

ln(aveLOC)

where 'ave' is average of the measure per module. To reset this

measure to lie between 0 and 100, it has been normalized as-

MI* = MAX(0,(171 - 5.2 * ln(aveV) - 0.23 * (aveMVG) - 16.2 *

ln(aveLOC)))*100/171

It calculates an index value between 0 and 100 that represents

the relative ease of maintaining the source code. A higher value

suggests better maintainability. Table V records MI values

calculated for all programs.

Table V: MI computation

Programs Calculating MI Result

ProgA MAX(0,(171 - 5.2 * LN(317.98)-0.23 *

2.75 - 16.2 * LN(10.5))) * 100/171

59.83

ProgB MAX(0,(171 - 5.2 * LN(519.69)-0.23 *

3.5 - 16.2 * LN(18))) * 100/171

53.13

ProgC MAX(0,(171 - 5.2 * LN(727.36)-0.23 *

5.5 - 16.2 * LN(21))) * 100/171

50.38

According to Table V, ProgA (Bubble sort) has highest degree

of maintainability among the threesome and ProgC (Quick sort)

is most difficult to maintain. ProgB (Selection sort) comes in

between the line. One can notice that these observations come

quite in concordance with the program characteristics in Table

IV. Quick Sort carries highest complexity in source code, largest

volume and hence results in lowest maintainability index in

Table V. Bubble sort is easiest to program, less complex and of

least volume and scores highest MI. Trade-off remains similar

for Selection sort too. Therefore the algorithmic traits and

resultant attributes reveal that our programs are successfully

tested for the said measures.

7b. OTHER DERIVED PARAMETERS
Though the attributes measured in Section 7 may not directly

define the quality however they can be utilized to derive

parameters signifying the potential changes to be carried out in

the final product. Some of the quality factors which can be

determined by these code attributes are summed up as under:

i) Correctness: Once LOC is calculated, it can prove useful to

derive other code attributes such as Defects per KLOC. It

estimates the defect density and eventually the „correctness‟

which is one of the main quality metrics.

ii) Programming effort and Cost: Project cost per KLOC is

another useful cost metrics derivable from LOC. For instance,

assuming $2.00 per LOC, the pure coding cost can be evaluated

for ProgB as $88 (presuming SM‟s LOC measure).

Also based on degree of complexity (MVG), programmer‟s

effort and subsequently cost estimation can be developed. MVG

indicates the breadth of functional coverage of the software.

iii) Fault prone-ness: One of the key aims of complexity metrics

is to predict modules that are fault-prone. Based on MVG,

residual defect prediction can be made. The more complex a

system is, more challenging it is to test it fully and more error-

prone it is.

iv) Modularity: NOM reveals the logical design intricacy of the

system. It quantitatively describes how well modularized the

software system is.

v) Usability: A program augmented with appropriate comments

increases usability and readability during development process.

A derived metrics „Comment density‟ from COM is assumed to

be a good predictor of maintainability and hence survival of a

software project [23].

8. DIFFICULTIES EXPERIENCED WHILE

COMPARING TOOLS
 Same metrics carry distinct names in different tools. So

efforts took to identify the similar ones.

 Each tool bears different assumptions while measuring

metrics. Some of these were cited in the tools‟ guidebook

while for others, manual code inspections had to be done to

ensure their legitimacy.

 Tools either quantify the attributes at different granularity

level or report figures in different forms, which makes them

difficult to compare without some normalizations. Such as

CCCC counts the number of classes for „NOM‟ while SM

and JHK counts number of methods; SM provides COM in

percent form while others result in fixed value.

9. THREATS TO VALIDITY
Software quality is a multi-facet concept. Like any experimental

study, our findings may be biased according to what primitive

data was used to produce them. Possible traces of bias include,

programming language selected, source code representative-ness,

choice of tools and their measurement precision. There are

numerous other tools available which could have been taken into

account. Nonetheless there is little chance that choice of

different data set or tools would altogether change the inferences

drawn because most tools do not vary significantly in their

estimation accuracy. However, we encourage readers to test

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

programs for different metrics, on different programming

languages and other promising tools.

10. CONCLUSION AND PERSPECTIVES
This paper entails the evaluation of five software metrics on a

set of three well-known sorting techniques through three

automated analysis tools. It is followed by derivation of

Maintainability index from component metrics and a brief

determination of other quality factors which can be inferred.

Undoubtedly software metrics are economical instruments

available to management for decision making purposes and

making them capable of taking pro-active action in case of

prospective software crisis by stating early indicators to risk-

prone issues. Yet project managers should formulate their own

tailor-made metrics program to address company‟s unique

strategic goals, priorities, clients‟ custom needs and expectations

to fully utilize their enormous worth. Our study enhances prior

empirical literature on software metrics validating the

association between software metrics and quality attributes

derived thereon, presenting the pros and cons on choosing

automated tools which are available in large number. Like most

other research in this stream, our study has several limitations.

Our analysis covers only a subset of metrics and tools. This

research needs to be further extended with large number and size

of software sets to evaluate many more measures of

performance.

11. REFERENCES
[1] ISO/IEC 9126-1 Software engineering – Product Quality -

Part 1: Quality model", 2001.

[2] IEEE Std 1061-1998 “IEEE standard for a software quality

metrics methodology, IEEE publications.

[3] H. Barkmann, R. Lincke, and W. Löwe. “Quantitative

Evaluation of Software Quality Metrics in Open-Source

Projects”. In Proceedings of The 2009 IEEE International

Workshop on Quantitative Evaluation of large-scale Systems

and Technologies (QuEST09), Bradford, UK, 26-29th May,

2009.

[4] Yasunari Takai, Takashi Kobayashi, Kiyoshi

Agusa. ”Software Metrics based on Coding Standards

Violations”, In Proc. the Joint Conference of the 21th

International Workshop on Software Measurement and the 6th

International Conference on Software Process and Product

Measurement (IWSM/MENSURA2011) pp.273-278, Nara,

Japan, 3-4 Nov. 2011

[5] Paul A. Judas, Lorraine E. Prokop. “A historical compilation

of software metrics with applicability to NASA's Orion

spacecraft flight software sizing”. ISSE 7(3): 161-170 (2011)

[6] Yuming Z., Baowen X. “Predicting the Maintainability of

Open Source Software Using Design Metrics”. Wuhan

University Journal of Natural Sciences, Vol. 13 No.1, PP 14-20.

2008

[7] S Pradeep, Chaudhary K D and V Shrish. "An Investigation

of the Relationships between Software Metrics and Defects".

International Journal of Computer Applications 28(8):13-17,

August 2011. Foundation of Computer Science, New York,

USA.

[8] D. Cotroneo, R. Natella, R. Pietrantuono. “Is Software Aging

Related to Software Metrics?” In proc. of the 2st IEEE

International Workshop on Software Aging and Rejuvenation

(WoSAR 2010) Ð in conj. with International Symposium on

Software Reliability Engineering (ISSRE) 2010. San Jose CA,

USA, Novembre 2010.

[9] Cesar Couto, Christofer Silva, Marco Tulio Valente, Roberto

da Silva Bigonha, Nicolas Anquetil. “Uncovering Causal

Relationships between Software Metrics and Bugs”. CSMR

2012: 223-232

[10] Yuming Zhou, Baowen Xu, Hareton Leung. “On the ability

of complexity metrics to predict fault-prone classes in object-

oriented systems”. Journal of Systems and Software, 83(4),

2010: 660-674

[11] Glasberg, D., Emam, K. E., Melo, W., and Madhavji, N.,

"Validating Object-Oriented Design Metrics on a Commercial

Java Application," National Research Council 44146, September

2000.

[12] AK Pandey. “Predicting Fault-prone Software Module

Using Data Mining Technique and Fuzzy Logic”. Special Issue

of IJCCT Vol. 2, 2010

[13] Yuming Zhou, Baowen Xu, Hareton Leung. 2010. “On the

ability of complexity metrics to predict fault-prone classes in

object-oriented systems”. Journal of Systems and Software,

83(4), 2010: 660-674.

[14] Nagappan, N., Ball, T., Zeller, A. 2006.: Mining metrics to

predict component failures. In ICSE(2006) 452-461.

[15] Roger S. Pressman, “Software Engineering – A

Practitioner‟s Approach”, 5th Ed., McGraw Hill International

Edition.

[16] Yuhanis Yusof and Qusai Hussein Ramadan, 2010.

Automation of Software Artifacts Classification. International

Journal of Soft Computing, 5: 109-115.

[17] Wei Li, Sallie M. Henry. “Object-oriented metrics that

predict maintainability”. Journal of Systems and Software 23(2):

111-122 (1993)
[18] Tobias Kuipers and Joost Visser. “Maintainability Index

Revisited - position paper”, System Quality and Maintainability

(SQM 2007), satellite of CSMR 2007.

[19] http://cccc.sourceforge.net.

[20] www.campwoodsw.com

[21] http://www.virtualmachinery.com/jhawkprod.htm

[22] Kurt D. Welker 2001. “The Software Maintainability Index

Revisited”. Crosstalk The Journal of Defense Software

Engineering.

[23] Beat Fluri, Michael Wursch, and Harall Gall. 2007. “Do

Code and Comments Co-Evolve? On the Relation Between

Source Code and Comment Changes.” In Proceedings of the

14th Working Conference on Reverse Engineering (WCRE

2007). Page 70-79.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

