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Abstract - Background subtraction continues to be in open 

drawback in the context of advanced situations like dynamic 

backgrounds, illumination variations, and bleary foreground 

objects. To overcome these challenges, we tend to propose a 

good background subtraction method by mean of spatial-

temporal representations. Within the experiments, I validate 

the projected methodology in many advanced situations, and 

show superior performances over different progressive 

approaches of background subtraction. There area a several 

challenges in developing a decent background subtraction 

algorithmic rule. First, it should be strong against changes in 

illumination. Second, it ought to avoid background objects 

like swinging leaves, rain, snow, and shadow forged by 

moving objects. Finally, its internal background model ought 

to react quickly to changes in background like beginning and 

stopping of vehicles. During this project, I tend to compare 

varied background sub-traction algorithms for police 

investigating moving vehicles and pedestrians in urban trace 

video sequences. I tend to contemplate variable approaches 

from easy techniques like frame defacing and adaptive 

median filtering, to more sophisticated probabilistic modelling 

techniques.  

 

Keywords - Spatio-temporal representation, video bricks, 

background subtraction. 

 

I. INTRODUCTION 

Background subtraction or foreground extraction 

has been extensively studied for years, yet it still remains 

an open challenge due to the real time applications. 

Background subtraction is a common method for detecting 

moving objects, and it has been widely used in many 

surveillance systems. Moving object detection by mean of 

background subtraction, compares an input image with a 

background model previously prepared, and picks up 

regions in an input image, which do not match a 

background mode. Moving object detection with 

background subtraction  

has the advantage of not requiring previous knowledge of 

moving objects. On the other hand, background subtraction 

has a problem in that it 

 

 

Fig1: Flow diagram for a background subtraction algorithm 

 

Cannot, discriminate moving objects from backgrounds 

when these backgrounds change significantly. Video 

surveillance systems tend to automatically identify events 

of interest in a variety of circumstances. Example 

applications include intrusion detection, activity 

monitoring, and pedestrian counting. The capability of 

extracting moving objects from a video sequence is a 

fundamental and crucial problem of these vision systems. 

For systems using static cameras, background subtraction 

is the method typically used to segment moving regions in 

the image sequences, by comparing each new frame to a 

model of the scene background. 

In our proposed method, we tend to learn and 

maintain the dynamic models within spatio-temporal video 

patches (i.e. video bricks), accounting surveillance 

scenarios for real challenges. The algorithm can process 

15∼ 20 frames per second in the resolution 352 × 288 

(pixels) on average. We briefly overview the proposed 

framework of background modelling in following aspects: 

 

1) Spatio-Temporal Representations: We represent the 

observed scene by video bricks, i.e. video volumes spanning 

over both  
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spatial and temporal domain, for to model spatial and temporal 

information jointly. Specifically, for every location in the scene, 

sequence of video bricks are extracted, using which we can learn 

and update the background models. Moreover, to compactly 

encode the video bricks against illumination variations, we design 

a brick- based descriptor, call Center Symmetric Spatio-Temporal 

Local Ternary Pattern (CS-STLTP), which is inspired by the 2D 

scale invariant local pattern operator. Its effectiveness is also 

validated in the experiments.  

2) Pursuing Dynamic Subspaces: We treat each video bricks 

sequence at a certain location as a consecutive signal, and 

generate the subspace within these video bricks. The linear 

dynamic system (i.e. Auto Regressive Moving Average, ARMA 

model) is adopted to characterize the spatio-temporal statistics of 

the subspace. Specifically, with the observed video bricks, we can 

express them by a data matrix, in which each column contains the 

feature of a video brick. The basis vectors (i.e. eigenvectors) of 

the matrix can be then analytically estimated, representing the 

appearance parameters of the subspace, and the parameters of 

dynamical variations are further computed based on the fixed 

appearance parameters. It is worth mentioning that our 

background model jointly captures the information of 

appearance and motion as the data (i.e. features of the 

video bricks) are extracted over both spatial and temporal 

domains.  

3) Maintaining Dynamic Subspaces Online: Given the 

newly appearing video bricks with our model, moving fore- 

ground objects are segmented by estimating the residuals 

within the related subspaces of the scene, while the back- 

ground models are maintained simultaneously to account 

for the scene changes. The raising problem is to update 

parameters of the subspaces incrementally against 

disturbance 

 

 

of foreground objects and background noise. The new 

observation may include noise pixels (i.e. outliers), 

resulting in degeneration of model updating. Furthermore, 

one video brick could be partially occluded by foreground 

objects in our representation, i.e. only some of pixels in the 

brick are true positives. To overcome this problem, we 

present a good approach to compensate observations (i.e. 

the observed video bricks) by generating data from the 

current models. Specifically, we replace the pixels labelled 

as non-background by the generated pixels to synthesize 

the new observations. The algorithm for online model 

updating includes two steps: (i) update appearance 

parameters using the incremental sub-space learning 

technique, and (ii) update dynamical variation parameters 

by analytically solving the linear reconstruction. The 

experiments show that the proposed method effectively 

improves the robustness during the online processing. 

II. DYNAMIC SPATIO-TEMPORAL 

MODEL 

In this section, we introduce the background model, 

and then discuss the video brick representation and our 

model definition, respectively. 

A. Background  

In general, a complex surveillance background may 

include diverse appearances that sometimes move and 

change randomly and dynamically over time. There is a 

bunch of works on time-varying texture modeling in 

computer vision. They often treated the scene as a whole, 

and pursued a global subspace by utilizing the linear 

dynamic system (LDS). These models worked well on 

some natural scenes such as some homogeneous textures, 

as with a set of linearly combined components the LDS 

characterizes the subspace. However, under real 

surveillance challenges, it could be intractable to pursue the 

global subspace. Here , we represent the observed scene by 

an array of small and independent subspaces, each of 

which is defined by the linear system, so be able to handle 

better challenging scene variations. Our background model 

can be viewed as a mixed compositional model consisting 

of the linear subspaces. In particular, we conduct the 

background subtraction based on the following 

observations 

Assumption 1: The local scene variants (i.e. appearance 

and motion changing over time) can be captured by the 

low- dimensional subspace.  

Assumption 2: It is feasible to separate foreground moving 

objects from the scene background by fully exploiting 

spatio- temporal statistics 

B. Spatio-Temporal Video Brick  

The surveillance video of one scene is given , it is then 

decomposed with a batch of small brick-like volumes. The 

video brick of small size (e.g.,4×4×5 pixels) is considered 

which includes relative simple content, which can be thus 
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generated by few bases (components). And the brick 

volume integrates both spatial and temporal information, 

that we can better capture complex appearance and motion 

variations compared with the traditional image patch 

representations. Each frame Ii, (i = 1,2,...,n) is divided into 

a set of image patches with the width w and height h. A 

number t of patches at the same location across the frames 

are combined together to form a brick. In this way, a 

sequence of video bricks V = {v1, v2,..., vn} is extracted at 

every location for the scene. Moreover, descriptor is design 

to describe the video brick instead of using RGB values. 

For any video brick vi, the CS-STLTP operator is applied 

on each pixel and sum all the feature values into a 

histogram. For a pixel xc, a few 2D spatio-temporal planes 

is constructed centred at it, and compute the local ternary 

patterns (LTP) operator on each plane. The CS-STLTP 

then encodes xc by combining the LTP operators of all 

planes. Note that the way of splitting spatio-temporal 

planes little affects the operator’s performance. To simplify 

the implementation, we make the planes parallel to the Y 

axis, as Fig. 2 shown. To measure the operator response, 

we transform the binary vector of CS-STLTP into a 

uniform value that is defined as the number of spatial 

transitions (bitwise changes). For example, the pattern (i.e. 

the vector of 16 bins) 0000000000000000 has a value of 0 

and 1000000000000000 of 1. In our implementation, we 

further quantize all possible values into 48 levels. To 

further improve the capability, we can generate histograms 

in each color channel and concatenate them together. The 

proposed descriptor is computationally efficient and 

compact to describe the video brick. In addition, by intro- 

ducing a tolerative comparing range in the LTP operator 

computation, it is robust to local spatio-temporal noise 

within a range. 

C. Model Definition 

Let m be the descriptor length for each brick, and V = 

{v1,v2,...,vn}, vi ∈ Rm be a sequence of video bricks at a 

certain location of the observed background. We can use a 

set of bases (components) C = [C1,C2,...,Cd] to represent the 

subspace where V lies in. Each video brick vi in V can be 

represented as 





d

j
ijji cz

1
,   

Where, Cj is the jth basis (jth column of matrix C) of the 

subspace, zi,j the coefficient for Cj, and ωi the appearance 

residual. We denote C to represent appearance consistency 

of the sequence of video bricks. In some traditional 

background models by subspace learning, zi,j can be 

solved and kept as a constant, with the underlying 

assumption that the appear- ance of background would be 

stable within the observations. In contrast, we treat zi,j as 

the variable term that can be further phrased as the time-

varying state, accounting for temporally coherent variations 

(i.e. the motions).  

The proposed model is time-varying, and the 

parameters Cn, An, Bn can be updated incrementally along 

with the processing of new observations, in order to adapt 

our model with scene changes. 

 

III.  LEARNING ALGORITHM 

In this section, the learning for spatio-temporal 

background models is discussed, including initial subspace 

generation and online maintenance. The initial learning is 

performed at the beginning of system deployment, when 

only a few foreground objects move in the scene. 

Afterwards, the system switches to the mode of online 

maintenance. 

A. Initial Model Learning 

In the initial stage, the model defined in the above equation 

can be degenerated as a non-dynamic linear system, as the 

n observations are extracted and fixed. When a brick 

sequence V = {v1, v2,...,vn} is given, an algorithm to 

identify the model parameters Cn, An, Bn, is presented.  

B. Online Model Maintenance 

 

Then we discuss the online processing with our 

model that segments foreground moving objects and keeps 

the model updated. 

 

1) Foreground Segmentation:  

Given one newly appearing video brick vn+1, we 

can determine whether pixels in vn+1 belong to the 

background or not by thresholding their appearance 

residual and state residual. We first estimate the state of 

vn+1 with the existing Cn, and further the appearance 

residual of vn+1. 

As the state zn and the temporal coherence An have 

been solved, we can then estimate the state residual 

according to system equation. 

With the state residual zn+1 and the appearance residual 

ωn+1 for the new video brick vn+1, we conduct the following 

criteria for foreground segmentation, in which two 

thresholds are introduced. 

 

1) Vn+1 is classified into background, only if all 

dimensions of _n are less than a threshold Tω. 

 

2)  If vn+1 has been labeled as non-background, 

perform the pixel-wise segmentation by 

comparing ωn+1 with a threshold Tω: the pixel is 

segmented as foreground if its corresponding 

dimension in ωn+1 is greater than Tω. 

 

2) Model Updating: 

During the online processing, to deal with 

foreground disturbance is the key problem for model 

updating, i.e. to avoid absorbing pixels from foreground 

objects or noise. In this work, we develop an effective 
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approach to update the model with the synthesized data. 

We first generate a video brick from the current model, 

namely noise-free brick,  vn+1, then we extract pixels from ˆ 

vn+1 to compensate occluded (i.e. foreground) pixels in the 

newly appearing brick. Concretely, the pixels labeled as 

non-background are replaced by the pixels from the noise-

free video brick at the same place. We can thus obtain a 

synthesized video brick. vn+1 for model updating. 

Given the brick, vn+1, the data matrix Wn composed 

of observed video bricks is extended to Wn+1. The, the 

model Cn+1 is update. 

 

IV. EXPERIMENTS 

For, to perform simulation, we collected a number 

of challenging videos to validate our approach. Our 

algorithm had shown a good result in adapting the complex 

background changes. The total evaluation of our work will 

be presented after the full implementation.    

 

The Algorithm for the proposed model is given           

below 

Algorithm 1: The Sketch of the Proposed Algorithm 

Input: Video brick sequence V={} for every location for 

the scene. 

Output: Maintained Background models and foreground 

regions. 

For all the locations for the scene do 

Given the observed video bricks V, extract the 

CS-STLTP descriptor 

Initialize the subspace by estimating Cn, An, Bn; 

           for the newly appearing video brick vn+1 do 

(1) Extract the CS-STLTP descriptor for vn+1; 

(2) Calculate its state residual and appearances 

residual; 

(3) For each pixel of vn+1, classify it into 

foreground or background by thresholding 

the two residuals with ; 

(4) Generate the noise-free brick ὺn+1 from the 

current model; 

(5) Synthesize video brick ῡn+1 for model 

updating; 

 

(6) Update ῡn+1 into ṽn+1 by introducing a 

robustness function;. 

 

 

 

V. OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7) Update the new appearance parameter Cn+1 

by calculating the covariance matrix Covn+1 

with the learning rate α; 

(8) Update the state variation parameters 

An+1,Bn+1; 

end 

end  

 

VI. CONCLUSION 

 

By using the above algorithm we have obtain 

the fig 3 results. The work is still in progress and 

further work will be done using some edge detection 

and smoothing filter along with spatio-temporal 

method to get a more noise free foreground object 

detection. 

 

 

 

 

 

 

 

 

       

 

Fig 3: Sampled results of background subtraction generated by 

our approach 
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