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Abstract─This paper presents a high throughput Sparse 

Matrix Vector multiplication (SpMxV) in FPGA. Besides the 

throughput the system performance is also obtained. Sparse 

matrices of university of Florida with less than 0.09 sparsity 

are used as test pattern for checkingthe design performance. 

Compressed Row Storage(CRS) minimizes the control logic. 

Our design implements pipelined architecture which helps in 

improving system performance over 5x times that of software 

code running on Pentium4 processor. The design is targeted 

on XC2VP70-7 Xilinx FPGA and met the operating frequency 

of 205MHz. The SpMxV is implemented in Verilog HDL. 

Key Words─FPGA, SPARSE,Simple Dual Port RAM, 

MAC, Floating Point,CRS. 

I. INTRODUCTION 

 

Sparse Matrix-Vector multiplication (SpMxV)y=Ax, is 

used in many high-performance scientific computing 

applications, such as linear system iterative solvers, block 

LU solvers and eigen value solvers,  including information 

retrieval, medical imaging, and economic modeling.  

Parallelism in reconfigurable hardware (FPGA) greatly 

improves the computing performance in integer and 

floating point operations [1]. Shwetha and Ron used a 

Variable Dual Compressed Blocks (VDCB) format 

forsparsematrix-matrix multiplication. The VDCB format 

works by dividing a matrix into a number of smaller 

variable sized sub-matrices called BLOCKS [2].Zhuo and 

Prasanna designed an adder tree based SpMxV 

implementation for double precision floating point. A 

reduction circuit is used in their design that needs to be 

configured according to different matrix parameters [3].  

 

FPGAs have shown great potential in Reconfigurable 

Computing because of their intrinsic parallelism and 

flexible architecture. With their rapid increase in gate 

capacity and frequency, FPGAs can outperform 

microprocessors on both integer and floating point 

operations [4].El-Gindy and Shue proposed SpMxV on 

FPGA for fixed point data [5]. DeLorimier and DeHon 

arranged the PEs in a bidirectional ring to compute the 

equation y=A
i
x, where A is a square matrix and i is an 

integer. The design they proposed reduces the I/O 

bandwidth requirement greatly by sharing the results 

between PEs [6].  El-kurdi et al proposed a stream through 

architecture for finite element method matrices [7]. 

In this paper,we implement SpMxV in Compressed Row 

Storage (CRS) to invariant to number of inputs.  

This paper is organized as follows. SpMxV on FPGA and 

CRS format are explained in section2. Section3 describes 

basic design of SpMxV and MAC, controller units are 

explained. Complete design is explained in section4. The 

implementation results are compared with [1] in section5. 

Finally we draw conclusion and suggest the future work. 

II. SPMXV ON FPGA 

 

The CRS is used in our FPGA and the multiplicand vector 

x (y=Ax) is stored in FPGA memory as single column and 

number of rows as per the input column length. Inorder to 

minimize the hardware components the multiplicand vector 

length is limited to 630 elements stored as 63x10.The CRS 

format is shown in Fig 1. 

 
Fig1: Compressed Row Storage(CRS) 

 

 

 

As an example, consider 4x7 Sparsematrix as follows: 

 

 
 

The CRS format of this matrix can be described by three 

vectors given below: 
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val 10 6 1 4 3 3 5 

col 1 2 1 6 2 4 7 

 

row_cnt 2 2 1 2 

 

In the CRS representation, val vector represents the non-

zero elements of the sparse matrix, col vector represents the 

corresponding column indices of the non-zero elements and 

row_cnt vector shows number of non-zero elements in each 

row. First location of row_cnt vector represents first row of 

sparse matrix, second location represents second row and 

so on. 

III. BASIC DESIGN 

 

A. Top level Block diagram  

In our design Sparse Engine(SE) is the main computational 

block. Top level architecture of SE consisting of two Block 

RAMs (Coeff.RAM size 64X32, Sparse RAM size 

1024x32), two FIFOs (size 1024x6), Floating point MAC 

(32bit) and a Controller block is shown in Fig2. 

 

MAC consists of multiplier and adder with 8 clock cycle 

latency eachfor performing 32 bit floating point operations. 

The design is developed as parallel MAC. A stall is 

generated when FIFO of either of Col_id, or row_id is full.   

 

 
 

Fig2: Sparse Engine (SE) 

B. Controller Block  

Controller block is responsible for manipulating the row 

vector sparse multiplication process. It continuously 

monitors row_col_id. In the  row_col_id, upper nibble 6 

bits represents row index and lower nibble 6 bits represents 

column index of non zero elements.  

 

Controller compares present row_col_id with pre 

row_col_id, if the row index of two row_col_ids are equal 

the row_cnt increment by one else row_cnt is written into 

FIFO row_cnt and repeats the same process for remaining. 

The lower nibble of each row_col_id is stored in FIFO 

col_id. Whenever a valid row_cnt is available at FIFO 

row_cnt, then that particular row elements of sparse matrix 

and corresponding multiplicand vector elements are 

processed to MAC. For reading multiplicand vector 

elements col_id indices are used as reading addresses. 

 

C. MAC UNIT 

 

Detailed Block diagram of MAC is shown in 

Fig3.Pipelining is used in MAC for improving the speed. 

The row_count indicates the number of multiplications and 

additions to be carried on data stored in col and row 

vectors. Simple Dual port RAM is used in write first read 

next configuration.  

 

 

Fig 3:  Floating point MAC unit 

In order to perform dot product of one row, multiplier 

executes row_cnt number of multiplications and 

Accumulation circuit accumulates each multiplication 

result. 

 

conv_done signal is generated to indicate the valid row 

multiplication subsequent to the valid signal another row 

could be fetched to the MACwhich indicates valid 

mult_out result. The result mult_out represents dot product 

between row vector of sparse matrix and column vector of 

coefficient matrix. 

 

IV. COMPLETE DESIGN 

 

Parallel structure of SEs shown in Fig4 will help in 

developing the multiple row operations.The results of 

completed rows are stored in result BRAM. In general 

based on FPGA we can use n number of SEs. In our design 

8 SEs are used for SpMxV operation. 

 

 
 

Fig4: Complete Design 
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V. IMPLEMENTATIONRESULTS 

 

The design is targeted on Xilinx XC2VP70-7 FPGA. The 

implementation results are summarized in Table1. We 

checked our results for single floating point values and our 

design can adoptable to integer and double floating point 

values also with certain optimizations. 

 

Table 1: Characteristics of SpMxV 

 

We use our design of 8 SEs to compare with software on 

microprocessor. The machine is dual 2.8GHz intel Pentium 

4 with 16KB L1, 512KB L2 Cashe and 1GB memory. The 

speedup of our design over pentium4 is shown in Fig 5. 

The two test matrices are belong to Bai group taken from 

Florida Sparse matrix collection[8]. As the number of non 

zero elements increases the performance is increased. 

 

Fig 5: Speedup over 2.8GHz Pentium4 

 

VI. CONCLUSIONS 

 

We used CRS format for storing sparse matrices in SpMxV 

design. Compared to [1], our design has significant area, 

speed improvement and depends less on matrix sparsity. 

Our future work includes implementing our design on the 

Cray XD1 supercomputer for scientific applications and 

performance analysis. 
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 [1] Proposed 

Target Device XC2VP70-7 

Design Single FP 

Achievable 

Frequency 
   200 MHz 210 MHz 

Slices 10528  

(31%) 

6877  

(20%) 

MULT18x18 32 (9%) 32 (9%) 
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