
Implementation of Sparse Matrix Vector

Multiplication in Verilog HDL

 CH. Raviteja K. R. K.Sastry
MTech student Associate Professor

Department of ECE G.V.P.College of Engg (A) Department of ECE G.V.P.College of Engg(A)
Visakhapatnam,A.P.,India Visakhapatnam,A.P.,India

Abstract─This paper presents a high throughput Sparse

Matrix Vector multiplication (SpMxV) in FPGA. Besides the

throughput the system performance is also obtained. Sparse

matrices of university of Florida with less than 0.09 sparsity

are used as test pattern for checkingthe design performance.

Compressed Row Storage(CRS) minimizes the control logic.

Our design implements pipelined architecture which helps in

improving system performance over 5x times that of software

code running on Pentium4 processor. The design is targeted

on XC2VP70-7 Xilinx FPGA and met the operating frequency

of 205MHz. The SpMxV is implemented in Verilog HDL.

Key Words─FPGA, SPARSE,Simple Dual Port RAM,

MAC, Floating Point,CRS.

I. INTRODUCTION

Sparse Matrix-Vector multiplication (SpMxV)y=Ax, is

used in many high-performance scientific computing

applications, such as linear system iterative solvers, block

LU solvers and eigen value solvers, including information

retrieval, medical imaging, and economic modeling.

Parallelism in reconfigurable hardware (FPGA) greatly

improves the computing performance in integer and

floating point operations [1]. Shwetha and Ron used a

Variable Dual Compressed Blocks (VDCB) format

forsparsematrix-matrix multiplication. The VDCB format

works by dividing a matrix into a number of smaller

variable sized sub-matrices called BLOCKS [2].Zhuo and

Prasanna designed an adder tree based SpMxV

implementation for double precision floating point. A

reduction circuit is used in their design that needs to be

configured according to different matrix parameters [3].

FPGAs have shown great potential in Reconfigurable

Computing because of their intrinsic parallelism and

flexible architecture. With their rapid increase in gate

capacity and frequency, FPGAs can outperform

microprocessors on both integer and floating point

operations [4].El-Gindy and Shue proposed SpMxV on

FPGA for fixed point data [5]. DeLorimier and DeHon

arranged the PEs in a bidirectional ring to compute the

equation y=A
i
x, where A is a square matrix and i is an

integer. The design they proposed reduces the I/O

bandwidth requirement greatly by sharing the results

between PEs [6]. El-kurdi et al proposed a stream through

architecture for finite element method matrices [7].

In this paper,we implement SpMxV in Compressed Row

Storage (CRS) to invariant to number of inputs.

This paper is organized as follows. SpMxV on FPGA and

CRS format are explained in section2. Section3 describes

basic design of SpMxV and MAC, controller units are

explained. Complete design is explained in section4. The

implementation results are compared with [1] in section5.

Finally we draw conclusion and suggest the future work.

II. SPMXV ON FPGA

The CRS is used in our FPGA and the multiplicand vector

x (y=Ax) is stored in FPGA memory as single column and

number of rows as per the input column length. Inorder to

minimize the hardware components the multiplicand vector

length is limited to 630 elements stored as 63x10.The CRS

format is shown in Fig 1.

Fig1: Compressed Row Storage(CRS)

As an example, consider 4x7 Sparsematrix as follows:

The CRS format of this matrix can be described by three

vectors given below:

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071341

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1672

val 10 6 1 4 3 3 5

col 1 2 1 6 2 4 7

row_cnt 2 2 1 2

In the CRS representation, val vector represents the non-

zero elements of the sparse matrix, col vector represents the

corresponding column indices of the non-zero elements and

row_cnt vector shows number of non-zero elements in each

row. First location of row_cnt vector represents first row of

sparse matrix, second location represents second row and

so on.

III. BASIC DESIGN

A. Top level Block diagram

In our design Sparse Engine(SE) is the main computational

block. Top level architecture of SE consisting of two Block

RAMs (Coeff.RAM size 64X32, Sparse RAM size

1024x32), two FIFOs (size 1024x6), Floating point MAC

(32bit) and a Controller block is shown in Fig2.

MAC consists of multiplier and adder with 8 clock cycle

latency eachfor performing 32 bit floating point operations.

The design is developed as parallel MAC. A stall is

generated when FIFO of either of Col_id, or row_id is full.

Fig2: Sparse Engine (SE)

B. Controller Block

Controller block is responsible for manipulating the row

vector sparse multiplication process. It continuously

monitors row_col_id. In the row_col_id, upper nibble 6

bits represents row index and lower nibble 6 bits represents

column index of non zero elements.

Controller compares present row_col_id with pre

row_col_id, if the row index of two row_col_ids are equal

the row_cnt increment by one else row_cnt is written into

FIFO row_cnt and repeats the same process for remaining.

The lower nibble of each row_col_id is stored in FIFO

col_id. Whenever a valid row_cnt is available at FIFO

row_cnt, then that particular row elements of sparse matrix

and corresponding multiplicand vector elements are

processed to MAC. For reading multiplicand vector

elements col_id indices are used as reading addresses.

C. MAC UNIT

Detailed Block diagram of MAC is shown in

Fig3.Pipelining is used in MAC for improving the speed.

The row_count indicates the number of multiplications and

additions to be carried on data stored in col and row

vectors. Simple Dual port RAM is used in write first read

next configuration.

Fig 3: Floating point MAC unit

In order to perform dot product of one row, multiplier

executes row_cnt number of multiplications and

Accumulation circuit accumulates each multiplication

result.

conv_done signal is generated to indicate the valid row

multiplication subsequent to the valid signal another row

could be fetched to the MACwhich indicates valid

mult_out result. The result mult_out represents dot product

between row vector of sparse matrix and column vector of

coefficient matrix.

IV. COMPLETE DESIGN

Parallel structure of SEs shown in Fig4 will help in

developing the multiple row operations.The results of

completed rows are stored in result BRAM. In general

based on FPGA we can use n number of SEs. In our design

8 SEs are used for SpMxV operation.

Fig4: Complete Design

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071341

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1673

V. IMPLEMENTATIONRESULTS

The design is targeted on Xilinx XC2VP70-7 FPGA. The

implementation results are summarized in Table1. We

checked our results for single floating point values and our

design can adoptable to integer and double floating point

values also with certain optimizations.

Table 1: Characteristics of SpMxV

We use our design of 8 SEs to compare with software on

microprocessor. The machine is dual 2.8GHz intel Pentium

4 with 16KB L1, 512KB L2 Cashe and 1GB memory. The

speedup of our design over pentium4 is shown in Fig 5.

The two test matrices are belong to Bai group taken from

Florida Sparse matrix collection[8]. As the number of non

zero elements increases the performance is increased.

Fig 5: Speedup over 2.8GHz Pentium4

VI. CONCLUSIONS

We used CRS format for storing sparse matrices in SpMxV

design. Compared to [1], our design has significant area,

speed improvement and depends less on matrix sparsity.

Our future work includes implementing our design on the

Cray XD1 supercomputer for scientific applications and

performance analysis.

REFERENCES

[1] Junqing Sun, Gregory, Olaf Storaasli. “Sparse Matrix-
Vector Multiplication Design on FPGAs”, IEEE, Feb 2007.

[2] Shwetha Jain-Mendon and Ron Sass, “Performance Evaluation of

Sparse Matrix-Matrix Multiplication”, IEEE, June 2013.
[3] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication

on FPGAs”, FPGA, Feb 2005.
[4] K. D. Underwood. “FPGAs vs. CPUs: Trends in peak floating-

point performance”, FPGA, Feb 2004.

[5] H. A. ElGindy and Y. L. Shue., “On Sparse Matrix-Vector
Multiplication with FPGA- based System”, FCCM, Apr 2002.

[6] M. deLorimier and A. DeHon. “Floating-Point Sparse Matrix-

Vector Multiply for FPGAs”.International Symposium on Field
Programmable Gate Arrays, Feb 2005.

[7] Y. El-kurdi, W. J. Gross and D. Giannacopoulos. “Sparse Matrix-

Vector Multiplication for Finite Element Method Matrices on

FPGAs”.2006 IEEE Symposium on Field Programmable Custom

Computing Machines, April 2006.

[8] T. Davis, University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices, NA Digest,

92(42), October 16, 1994, NA Digest, 96(28), July 23, 1996, and

NA Digest, 97(23), June 7, 1997.

 [1] Proposed

Target Device XC2VP70-7

Design Single FP

Achievable

Frequency
 200 MHz 210 MHz

Slices 10528

(31%)

6877

(20%)

MULT18x18 32 (9%) 32 (9%)

Vol. 3 Issue 7, July - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS071341

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1674

