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ABSTRACT 

The main purpose of this study is to 

evaluate the computational efficiency of 

optimized shortest path algorithms. Our study 

establishes the relative order of the shortest 

path algorithms with respect to their known 

computational efficiencies is not significantly 

modified when the algorithms are adequately 

coded .The complexity of Dijkstra's 

algorithm depends heavily on the complexity 

of the priority queue Q. If this queue is 

implemented naively, the algorithm performs 

in O(n2), where n is the number of nodes in 

the graph. With a real priority queue kept 

ordered at all times, as we implemented it, 

the complexity averages O(n log m). The 

logarithm function stems from the collections 

class, a red-black tree implementation which 

performs in O(log (m)). The algorithms are 

implemented in C Language. 

Keywords: Shortest path; Dijkstr’s 

algorithms; undirected Graph; 

 

I.INTRODUCTION 

1.1 GRAPH 

 A linear graph (or simply a graph ) 

G=(V,E) consists of a set of objects V={v1, 

v2, ….. } called vertices, and another set 

E={e1,e2,……}, whose elements are called 

edges, such that each edge ek, is identified  

with an unordered pair(vi,vj) of vertices. The 

vertices vi, vj associated with edge ek are 

called the end vertices of ek. The most 

common representation of a graph is by 

means of a diagram, in which the vertices are 

represented as points and each edge as a line 

segment joining its end vertices. Often this 

diagram itself is referred to as the graph. The 

object shown in Fig. 1-1, for instance, is a 

graph. 

 Observe that this definition permits an 

edge to be associated with a vertex pair (vi, 

vj). Such an edge having the same vertex as 

both its end vertices is called a self-loop or 

simply a loop. Edge e1 in Fig. 1-1 is a self-

loop.  

 
Fig. 1-1 A Graph 

 More than one edge associated with a 

given pair of vertices, for example, edges e4 

and e5 in Fig 1-1. Such edges are referred to 

as parallel edges. A graph that has does not 

self-loop nor are parallel edges called a 

simple graph. Some authors use the term 

general graph to emphasize that parallel 

edges and self-loops are allowed. 

 A graph is also called a linear 

complex, a 1-complex, or a one-dimensional 

complex. A vertex is also referred to as a 

node, a junction, a point, 0-cell, or an 0-

simple, Other terms used for an edge are a 

branch, a line, an element, a 1-cell, an arc, 

and a 1-simplex.  

 

II.REVIEW OF LITERATURE 

 As mentioned before, graph theory 

was born in 1736 with Euler’s paper in which 

he solved the Konigsberg bridge problem. 

For the next 100 years nothing more was 

done in the field. 

 

In 1847, G. R. Kirchhoff (1824-1887) 

developed the theory of trees for their 

applications in electrical networks. Ten years 

later, A. Cayley (1821-1895) discovered trees 
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while he was trying to enumerate the isomers 

of saturated hydrocarbons CnH2n+2. 

The other milestone is due to Sir W. 

R. Hamilton (1805-1865). In the year 1859 

he invented a puzzle and sold it for 25 

guineas to a game manufacturer in Dublin. 

The puzzle consisted of a wooden, regular 

dodecahedron (a polyhedron with 12 faces 

and 20 corners, each face being a regular 

pentagon and three edges meeting at each 

corner. The corners were marked with the 

names of 20 important cities: London, New 

York, Delhi, Paris, and so on. The object in 

the puzzle was to find a route along the edges 

of the dodecahedron, passing through each of 

the 20 cities exactly once. 

 Although the solution of this specific 

problem is easy to obtain, to date no one has 

found a necessary and sufficient condition for 

the existence of such a route (called 

Hamiltonian Circuit) in an arbitrary graph. 

 This fertile period was followed by 

half a century of relative inactivity. Then a 

resurgence of interest in graphs started during 

the 1920s. One of the pioneers in this period 

was D. Konig. He organized the work of 

other mathematicians and his own and wrote 

the first book on the subject, which was 

published in 1936. 

 The past 30 years has been a period of 

intense activity in graph theory both pure and 

applied. A great deal of research has been 

done and is being done in this area. 

Thousands of papers have been published 

and more than a dozen books written during 

the past decade. Among the current leaders in 

the field are Claude Berge, Oystein Ore 

(recently deceased), Paul Erdos, William 

Tutte, and Frank Harary. 

 

 

III. COMPUTER REPRESENTATION 

OF A GRAPH 

 An algorithm has some inputs – the 

data with which the algorithm begins (just as 

a recipe for a dish calls for raw ingredients). 

Naturally, the input for our algorithms here 

will be one or more graphs (or digraphs). A 

graph is generally presented to and is stored 

in a digital computer in one of the following 

five forms. Each has advantages and 

disadvantages. The choice depends on the 

graph, the problem, the language, the type of 

machine, and whether or not the graph is 

modified during the course of the 

computation. 

 

A) Adjacency Matrix: The most popular 

form in which a graph or digraph is fed to 

computer is its adjacency matrix. After 

assigning a distinct number to each of the n 

vertices of the given graph (or digraph) G, 

the n by n binary matrix X(G) is used for 

representing G during input, storage, and 

output. 

   Since each of the n
2
 entries is either a 

0 or 1, the adjacency matrix requires n
2 

bits 

of computer memory. Bits can be packed into 

words. Let w be the word length  and n be the 

number of vertices in the graph. Then each 

row of the adjacency matrix may be written 

as a sequence of n bits in [n/w] machine 

words. ([x] Denotes the smallest integer not 

less than x.) The number of words required to 

store the adjacency matrix is, therefore, 

n[n/w].  

 

B) Incidence Matrix: Occasionally, an 

incidence matrix is also used for storing and 

manipulation of a graph. An incidence matrix 

requires n. e bits of storage, which might be 

more than the n
2
 bits needed for an adjacency 

matrix, because the number of edges e is 

usually greater than the number of vertices n.  

On rare occasions it may be 

advantageous to use the incidence matrix 

rather than the adjacency matrix, in spite of 

the increased requirements in storage. 

Incidence matrices are particularly favored 

for electrical networks and switching 

networks. 
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C) Edge Listing: Another representation 

often used is to list all edges of the graph as 

vertex pairs, having numbered the n vertices 

in some arbitrary order. This graph been 

undirected, we would simply ignore the 

ordering in each vertex pair. 

Edge listing is a very convenient form for 

inputting a graph into the computer, but the 

storage, retrieval, and manipulation of the 

graph within the computer become quite 

difficult.  

 

D) Two Linear Arrays: A slight variation of 

edge listing is to represent the graph by two 

linear arrays, say F=(f1,f2,….fe) and 

H=(h1,h2,…..he).  

 
Fig. 3-1 A digraph. 

 

Each entry in these arrays is a vertex label. 

The i
th

 edge ei is from vertex fi to vertex hi if 

G is a digraph.  

 

E) Successor Listing: Another efficient 

method used frequently for graphs in which 

the ratio e/n is not large is by means of n 

linear arrays.  

After assigning the vertices, in any 

order, the numbers 1, 2, ….n, we represent 

each vertex k by a linear array, whose first 

element is k and whose remaining elements 

are the vertices that are immediate successors 

of k, that is, the vertices which have a 

directed path of length one from k. 

IV.SHORTEST-PATH ALGORITHMS 

 

 A large number of optimization 

problems are mathematically equivalent to 

finding shortest paths in a graph. Some of 

these algorithms are better than others, some 

are more suited for a particular structure than 

others, and some are only minor variations of 

earlier algorithms. 

 There are different types of shortest-

path problems. Most frequently encountered 

among these are the following five, of which 

we shall solve the first three: 

1. Shortest path between two specified 

vertices. 

2. Shortest paths between all pairs of 

vertices. 

3. Shortest paths from a specified vertex 

to all others. 

4. Shortest path between specified 

vertices that passes through specified 

vertices. 

5. The second, third, and so on, shortest 

path. 

 

Algorithm 1: Shortest Path from a 

Specified Vertex to another Specified 

Vertex 

 The problem of finding the shortest 

path from a specified vertex s to another 

specified vertex t, can be stated as follows: 

 A simple weighted digraph G of n 

vertices is described by an n by n matrix 

D=[dij],where Dij=length(or distance or 

weight) of the directed edge from vertex I to 

vertex j, dij0, dii=0, dij=, if there is no edge 

from i to j ( in carrying out a program  is 

replaced by a large number, say 9999999). 

In general, dij≠dji, and the triangle 

inequality need not be satisfied. That is, 

dij+djk may be less than dik. [In fact, if the 

triangle inequality is satisfied, for every i, j, 

and k, the problem would be trivial because 

the direct edge(x,y) would be the shortest 

path from vertex x to vertex y.] The distance 

of a directed path P is defined to be the sum 

of the lengths of the edges in P. The problem 

is to find the shortest possible path and its 

length from a starting vertex s to a terminal 

vertex t. 
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 Description of the Algorithm: 

Dijkstra’s algorithm labels the vertices of the 

given digraph. At each stage in the algorithm 

some vertices have permanent labels and 

others temporary labels. The algorithm 

begins by assigning a permanent label 0 to 

the starting vertex s, and a temporary label  

to the remaining n-1 vertices. From then on, 

in each iteration another vertex gets a 

permanent label, according to the following 

rules: 

1. Every vertex j that is not yet permanently 

labeled gets a new temporary label whose 

value is given by Min [old label of j, (old 

label of i+dij)],  Where i is the latest vertex 

permanently labeled, in the previous 

iteration, and dij is the direct distance 

between vertices i and j. If i and j are not 

joined by and edge, then dij=. 

2. The smallest value among all the 

temporary labels is found, and this becomes 

the permanent label of the corresponding 

vertex. In case of a tie, select any one of the 

candidates for permanent labeling. 

Steps 1 and 2 are repeated alternately until 

the destination vertex t gets a permanent 

label. 

The first vertex to be permanently labeled 

is at a distance of zero from s. The second 

vertex to get a permanent label (out of the 

remaining n-1 vertices) is the vertex closest 

to s. Form the remaining  n-2 verices, the 

next one to be permanently labeled is the 

second closest vertex to s. And so on. The 

permanent label of each vertex is the shortest 

distance of that vertex from s. As an 

illustration of Dijkstr’s procedure, let us find 

the distance form vertex B to G in the 

digraph shown in Fig.4-1.  

 
Fig.4-1 Simple weighted sub graph 

 

 All steps are easily programmed 

except for the job of distinguishing the 

permanently labeled vertices from the 

temporarily labeled ones, which is slightly 

tricky. An efficient method of accomplishing 

this is to associate indices 1,2,…,n  with the 

vertices, and keep a binary vector VECT of 

order n. When the i
th

 vertex becomes 

permanently labeled, the i
th

 element in this 

binary vector changes from 0 to 1. 

 A flow chart of this algorithm is given 

in Fig.4-3. The algorithm described does not 

actually list the shortest path from the starting 

vertex to the terminal vertex; it only gives the 

shortest distance. The shortest path can be 

easily constructed by working backward from 

the terminal vertex such that we go to that 

predecessor whose label differs exactly by 

the length of the connecting edge. (A tie 

indicates more than one shortest path). 

Alternatively, the shortest path can be 

determined by keeping a record of the 

vertices from which each vertex was labeled 

permanently. This record can be maintained 

by another linear array of length n, such that 

whenever a new permanent label is assigned 

to vertex j, the vertex from which j is directly 

reached is recorded in the j
th

 position of this 

array. 

 

Remarks 

1. In this algorithm, had we continued 

the labeling until every vertex got a 

permanent label (rather than stopping at the 

permanent labeling of the destination vertex 

t), we would have gotten an algorithm for the 

shortest paths from starting vertex s to all 

other vertices.  

2. If we take a shortest path from the 

starting vertex s to each of the other 

vertices(which are accessible from s), then 

the union of these paths will be an 

arborescence T rooted at vertex s. Every path 

in T from s is the (unique) shortest path in the 

digraph (or graph, as the case may be). Such 

a tree is called the shortest-distance 
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arborescence. For example, the shortest-

distance arborescence of Fig.4.1 is given in 

Fig.4.2 

 
Fig. 4-2. Shortest-distance arborescence of 

Fig.4-1. 

 

 

 
Fig. 4-3 shortest distance from s to t. 

 

3. In this algorithm, as more vertices acquire 

permanent labels the number of additions and 

comparisons needed to modify the temporary 

labels continues to decrease. In the case 

where every vertex gets permanently labeled, 

we need n(n-1)/2 additions and 2n(n-1) 

comparisons. Thus the computation time is 

proportional to n
2
. 

4. Notice that for a given n the computation 

time is independent of the number of edges 

the digraph may have. Another random graph 

with 80 vertices but only 1000 edges also 

took 36/60 second for the same computation. 

5. If the digraph is sparse [i.e., the number 

of edges e is much smaller than n(n-1)], it is 

possible to reduce the time of computation. 

This can be achieved by incorporating 

another test which alters the temporary labels 

of only those vertices that are successors of 

the most recent permanently labeled vertex 

6. If the given digraph G is not weighted, 

every edge in G has a weight of one, and 

matrix D is the same as the adjacency matrix. 

Then the problem is simpler. We perform 

logical operations rather than real arithmetic. 

7. We have assumed the distances dij are all 

nonnegative numbers. If some of the 

distances are negative, Algorithm 2 will not 

work.(Negative distances in a network may 

represent costs and the positive ones profits.) 

The reason for the failure of Algorithm 2 is 

that once a vertex is permanently labeled its 

label cannot be altered. Shortest-path 

algorithms have, however, been proposed 

that will solve this problem, provided the 

sum of all dij around every directed circuit is 

positive. The computation time of the 

existing algorithms that can handle negative 

dij is n3 and not n
2
. 

8. It was suggested by T.A.J Nicholson that 

carrying the shortest-path algorithm 

simultaneously from both ends s and t would 

improve the speed. Dreyfus has, however, 

shown that the double-ended procedure 

would improve the efficiency only in certain 

types of digraphs. In the case where nearly all 

n vertices must be permanently labeled from 

either one and or the other, the double-ended 

procedure is actually less efficient than 

Dijkstra’s one-ended procedure. 

 

/* TO FIND THE SHORTEST PATH OF A 

GRAPH USING DJIKSTRA ALGORITHM 

*/ 

#include<stdio.h> 

#include<limits.h> 

/* Maximum Number of Nodes in a Graph */ 

#define MAXNODE 10 

#define PERM 1 

#define TENT 2 

#define infinity INT_MAX 

typedef struct NODELABEL 
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{ 

int predecessor; 

int length; /* Optimal distance from Source 

*/ 

int label; /* label is tentative or permanent */ 

}NODELABEL; 

/* Function: Short path Prototype: 

 int Short Path(a, n, s, t, path, dist) 

Input: a-Adjacency Matrix describing the 

graph n-Number of Nodes in the graph 

s-Source Nodet-Target Node or Sink Node 

Output: Path - list of optimal path from 

source to sink dist - Minimum Distance 

between source and sink  

Returns: 0 - if there is no path count 

indicating the number of nodes along the 

optimal path, otherwise */ 

int Short Path( a, n, s, t, path, dist ) 

int  a[MAXNODE][MAXNODE], n, s, t, 

path [MAXNODE], *dist; 

{ 

NODELABEL state[MAXNODE]; 

int i, k, min, count; 

int r Path[MAXNODE]; 

*dist=0; 

/* Initialize all nodes as tentative nodes */ 

for(i=1; i<=n; i++) 

{ 

state[i].predecessor=0; 

state[i].length=infinity; 

state[i].label=TENT; 

} 

/* Make source Node as Permanent */ 

state[s].predecessor=0; 

state[s].length=0; 

state[s].label=PERM; 

/* Start from source node */ 

k=s; 

do 

{ 

/* Check all the paths from Kth node and find 

their distance 

form K node */ 

for(i=1; i<=n; i++) 

{ 

/* -ve if no direct path, 0 if to the same 

otherwise direct 

path */ 

if(a[k][i]>0 && state[i].label==TENT) 

{ 

if(state[k].length+a[k][i]<state[i].length) 

{ 

state[i].predecessor=k; 

state[i].length=state[k].length+a[k][i]; 

} 

} 

} 

/* Find the tentatively labeled node with 

smaller cost */ 

min=infinity; 

k=0; 

for(i=1; i<=n; i++) 

{ 

if(state[i].label==TENT && 

state[i].length<min) 

{ 

min=state[i].length; 

k=i; 

} 

} 

/* Is Source Or Sink Node is Isolated */ 

if(k==0) 

return(0); 

state[k].label=PERM; 

}while(k!=t); 

/* Store Optimal Path */ 

k=t; 

count=0; 

do 

{ 

count = count + 1; 

rPath[count]=k; 

k=state[k].predecessor; 

}while(k!=0); 

/* Reverse nodes since algorithm stores path 

in reverse 

direction */ 

for(i=1; i<=count; i++) 

path[i]=rPath[count-i+1]; 

 

for(i=1; i<count; i++) 
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*dist+=a[path[i]][path[i+1]]; 

return(count); 

} 

void main() 

{ 

int a[MAXNODE][MAXNODE], i, j; 

int path[MAXNODE]; 

int from, to, dist,count, n; 

printf("\nHow many Nodes?"); 

scanf("%d", &n); 

printf("%2d", n); 

for(i=1; i<=n; i++) 

{ 

printf("\n Enter Node %d Connectivity: ",i); 

for(j=1; j<=n; j++) 

{ 

scanf("%d", &a[i][j]); 

printf("%2d", a[i][j]); 

} 

} 

printf("\n From to Where?"); 

scanf("%d %d", &from, &to); 

printf("%d %d", from,to); 

count = ShortPath(a,n,from, to, path, &dist); 

if(dist) 

{ 

printf("\nShortest Path:"); 

printf("%d",path[1]); 

for(i=2;i<=count;i++) 

printf("->%d",path[i]); 

printf("\n Minimum Distance = %d\n", dist); 

} 

else 

printf("\n Path does not exist \n"); 

} 

 

OUTPUT 

How many Nodes?      3 

   3 

Enter Node 1 Connectivity:  

 0 0 7 

 0 0 7 

Enter Node 2 Connectivity: 

0 0 0 

0 0 0 

Enter Node 3 Connectivity: 

3 0 3 

3 0 3 

From to Where?  

 1   3 

1 3 

Shortest Path: 13 

Minimum Distance = 7 

 

How many Nodes?   5 

5 

Enter Node 1 Connectivity: 

 0 85 80 20 0 

 0 85 80 20 0 

Enter Node 2 Connectivity :  

0 0 20 0 95 

0 0 20 0 95 

Enter Node 3 Connectivity: 

70 20 0 80 0 

70 20 0 80 0 

Enter Node 4 Connectivity:  

0 75 0 0 75 

0 75 0 0 75 

Enter Node 5 Connectivity: 

70 10 20 80 0 

70 10 20 80 0 

From to Where?  1   5 

1 5 

Shortest Path: 145 

Minimum Distance = 95 

 

V. CONCLUSION 

 

 This study is the first to use C 

programming language to evaluate the 

efficiency of shortest path algorithms, and it 

yields several interesting conclusions. 

 

 To the first question that prompted 

our research effort, we provided empirical 

evidence that the relative order of his shortest 

computational efficiency is not modified 

when the algorithms are coded in C. 

Algorithms that use thresholds are still, in 

general, the fastest. We also have shown here 

that C implementations (using pointers) of 

shortest path algorithms are significantly 

1798

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569



more efficient than traditional ones (using 

arrays). 

 

The improvement in computing times 

is essentially due to the fact that in C-

implementations, the forward star of each 

node may be scanned without performing any 

multiplication. The capabilities that explain 

this property have a second important effect 

as the data structure used to keep the scan 

eligible list Q may also by managed (search, 

insertions, deletions etc.) by using only 

additions and no multiplications. 

Consequently, by using C implementations 

with pointers, one may expect to speed up 

factor may reach 30%.  

 

We have also shown that the level of 

difficulty required to implement shortest path 

algorithms in C by using pointers is not 

greater than that required by traditional 

implementations that use arrays. Thus, the 

significant efficiency gains reported in this 

paper are due to the choice of the proper use 

of its data structure manipulation capabilities. 

We expect similar result to be achieved for 

other network as well. 
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