
 Implementation Of Shortest Path Algorithm Using In C

P. Manikandan* , S.Yuvarani*
*-Asst.Professor in Department of Computer Application, Thanthai Hans Roever College, Perambalur-621 212

ABSTRACT

The main purpose of this study is to

evaluate the computational efficiency of

optimized shortest path algorithms. Our study

establishes the relative order of the shortest

path algorithms with respect to their known

computational efficiencies is not significantly

modified when the algorithms are adequately

coded .The complexity of Dijkstra's

algorithm depends heavily on the complexity

of the priority queue Q. If this queue is

implemented naively, the algorithm performs

in O(n2), where n is the number of nodes in

the graph. With a real priority queue kept

ordered at all times, as we implemented it,

the complexity averages O(n log m). The

logarithm function stems from the collections

class, a red-black tree implementation which

performs in O(log (m)). The algorithms are

implemented in C Language.

Keywords: Shortest path; Dijkstr’s

algorithms; undirected Graph;

I.INTRODUCTION

1.1 GRAPH

 A linear graph (or simply a graph)

G=(V,E) consists of a set of objects V={v1,

v2, ….. } called vertices, and another set

E={e1,e2,……}, whose elements are called

edges, such that each edge ek, is identified

with an unordered pair(vi,vj) of vertices. The

vertices vi, vj associated with edge ek are

called the end vertices of ek. The most

common representation of a graph is by

means of a diagram, in which the vertices are

represented as points and each edge as a line

segment joining its end vertices. Often this

diagram itself is referred to as the graph. The

object shown in Fig. 1-1, for instance, is a

graph.

 Observe that this definition permits an

edge to be associated with a vertex pair (vi,

vj). Such an edge having the same vertex as

both its end vertices is called a self-loop or

simply a loop. Edge e1 in Fig. 1-1 is a self-

loop.

Fig. 1-1 A Graph

 More than one edge associated with a

given pair of vertices, for example, edges e4

and e5 in Fig 1-1. Such edges are referred to

as parallel edges. A graph that has does not

self-loop nor are parallel edges called a

simple graph. Some authors use the term

general graph to emphasize that parallel

edges and self-loops are allowed.

 A graph is also called a linear

complex, a 1-complex, or a one-dimensional

complex. A vertex is also referred to as a

node, a junction, a point, 0-cell, or an 0-

simple, Other terms used for an edge are a

branch, a line, an element, a 1-cell, an arc,

and a 1-simplex.

II.REVIEW OF LITERATURE

 As mentioned before, graph theory

was born in 1736 with Euler’s paper in which

he solved the Konigsberg bridge problem.

For the next 100 years nothing more was

done in the field.

In 1847, G. R. Kirchhoff (1824-1887)

developed the theory of trees for their

applications in electrical networks. Ten years

later, A. Cayley (1821-1895) discovered trees

1792

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

while he was trying to enumerate the isomers

of saturated hydrocarbons CnH2n+2.

The other milestone is due to Sir W.

R. Hamilton (1805-1865). In the year 1859

he invented a puzzle and sold it for 25

guineas to a game manufacturer in Dublin.

The puzzle consisted of a wooden, regular

dodecahedron (a polyhedron with 12 faces

and 20 corners, each face being a regular

pentagon and three edges meeting at each

corner. The corners were marked with the

names of 20 important cities: London, New

York, Delhi, Paris, and so on. The object in

the puzzle was to find a route along the edges

of the dodecahedron, passing through each of

the 20 cities exactly once.

 Although the solution of this specific

problem is easy to obtain, to date no one has

found a necessary and sufficient condition for

the existence of such a route (called

Hamiltonian Circuit) in an arbitrary graph.

 This fertile period was followed by

half a century of relative inactivity. Then a

resurgence of interest in graphs started during

the 1920s. One of the pioneers in this period

was D. Konig. He organized the work of

other mathematicians and his own and wrote

the first book on the subject, which was

published in 1936.

 The past 30 years has been a period of

intense activity in graph theory both pure and

applied. A great deal of research has been

done and is being done in this area.

Thousands of papers have been published

and more than a dozen books written during

the past decade. Among the current leaders in

the field are Claude Berge, Oystein Ore

(recently deceased), Paul Erdos, William

Tutte, and Frank Harary.

III. COMPUTER REPRESENTATION

OF A GRAPH

 An algorithm has some inputs – the

data with which the algorithm begins (just as

a recipe for a dish calls for raw ingredients).

Naturally, the input for our algorithms here

will be one or more graphs (or digraphs). A

graph is generally presented to and is stored

in a digital computer in one of the following

five forms. Each has advantages and

disadvantages. The choice depends on the

graph, the problem, the language, the type of

machine, and whether or not the graph is

modified during the course of the

computation.

A) Adjacency Matrix: The most popular

form in which a graph or digraph is fed to

computer is its adjacency matrix. After

assigning a distinct number to each of the n

vertices of the given graph (or digraph) G,

the n by n binary matrix X(G) is used for

representing G during input, storage, and

output.

 Since each of the n
2
 entries is either a

0 or 1, the adjacency matrix requires n
2

bits

of computer memory. Bits can be packed into

words. Let w be the word length and n be the

number of vertices in the graph. Then each

row of the adjacency matrix may be written

as a sequence of n bits in [n/w] machine

words. ([x] Denotes the smallest integer not

less than x.) The number of words required to

store the adjacency matrix is, therefore,

n[n/w].

B) Incidence Matrix: Occasionally, an

incidence matrix is also used for storing and

manipulation of a graph. An incidence matrix

requires n. e bits of storage, which might be

more than the n
2
 bits needed for an adjacency

matrix, because the number of edges e is

usually greater than the number of vertices n.

On rare occasions it may be

advantageous to use the incidence matrix

rather than the adjacency matrix, in spite of

the increased requirements in storage.

Incidence matrices are particularly favored

for electrical networks and switching

networks.

1793

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

C) Edge Listing: Another representation

often used is to list all edges of the graph as

vertex pairs, having numbered the n vertices

in some arbitrary order. This graph been

undirected, we would simply ignore the

ordering in each vertex pair.

Edge listing is a very convenient form for

inputting a graph into the computer, but the

storage, retrieval, and manipulation of the

graph within the computer become quite

difficult.

D) Two Linear Arrays: A slight variation of

edge listing is to represent the graph by two

linear arrays, say F=(f1,f2,….fe) and

H=(h1,h2,…..he).

Fig. 3-1 A digraph.

Each entry in these arrays is a vertex label.

The i
th

 edge ei is from vertex fi to vertex hi if

G is a digraph.

E) Successor Listing: Another efficient

method used frequently for graphs in which

the ratio e/n is not large is by means of n

linear arrays.

After assigning the vertices, in any

order, the numbers 1, 2, ….n, we represent

each vertex k by a linear array, whose first

element is k and whose remaining elements

are the vertices that are immediate successors

of k, that is, the vertices which have a

directed path of length one from k.

IV.SHORTEST-PATH ALGORITHMS

 A large number of optimization

problems are mathematically equivalent to

finding shortest paths in a graph. Some of

these algorithms are better than others, some

are more suited for a particular structure than

others, and some are only minor variations of

earlier algorithms.

 There are different types of shortest-

path problems. Most frequently encountered

among these are the following five, of which

we shall solve the first three:

1. Shortest path between two specified

vertices.

2. Shortest paths between all pairs of

vertices.

3. Shortest paths from a specified vertex

to all others.

4. Shortest path between specified

vertices that passes through specified

vertices.

5. The second, third, and so on, shortest

path.

Algorithm 1: Shortest Path from a

Specified Vertex to another Specified

Vertex

 The problem of finding the shortest

path from a specified vertex s to another

specified vertex t, can be stated as follows:

 A simple weighted digraph G of n

vertices is described by an n by n matrix

D=[dij],where Dij=length(or distance or

weight) of the directed edge from vertex I to

vertex j, dij0, dii=0, dij=, if there is no edge

from i to j (in carrying out a program is

replaced by a large number, say 9999999).

In general, dij≠dji, and the triangle

inequality need not be satisfied. That is,

dij+djk may be less than dik. [In fact, if the

triangle inequality is satisfied, for every i, j,

and k, the problem would be trivial because

the direct edge(x,y) would be the shortest

path from vertex x to vertex y.] The distance

of a directed path P is defined to be the sum

of the lengths of the edges in P. The problem

is to find the shortest possible path and its

length from a starting vertex s to a terminal

vertex t.

1794

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

 Description of the Algorithm:

Dijkstra’s algorithm labels the vertices of the

given digraph. At each stage in the algorithm

some vertices have permanent labels and

others temporary labels. The algorithm

begins by assigning a permanent label 0 to

the starting vertex s, and a temporary label

to the remaining n-1 vertices. From then on,

in each iteration another vertex gets a

permanent label, according to the following

rules:

1. Every vertex j that is not yet permanently

labeled gets a new temporary label whose

value is given by Min [old label of j, (old

label of i+dij)], Where i is the latest vertex

permanently labeled, in the previous

iteration, and dij is the direct distance

between vertices i and j. If i and j are not

joined by and edge, then dij=.

2. The smallest value among all the

temporary labels is found, and this becomes

the permanent label of the corresponding

vertex. In case of a tie, select any one of the

candidates for permanent labeling.

Steps 1 and 2 are repeated alternately until

the destination vertex t gets a permanent

label.

The first vertex to be permanently labeled

is at a distance of zero from s. The second

vertex to get a permanent label (out of the

remaining n-1 vertices) is the vertex closest

to s. Form the remaining n-2 verices, the

next one to be permanently labeled is the

second closest vertex to s. And so on. The

permanent label of each vertex is the shortest

distance of that vertex from s. As an

illustration of Dijkstr’s procedure, let us find

the distance form vertex B to G in the

digraph shown in Fig.4-1.

Fig.4-1 Simple weighted sub graph

 All steps are easily programmed

except for the job of distinguishing the

permanently labeled vertices from the

temporarily labeled ones, which is slightly

tricky. An efficient method of accomplishing

this is to associate indices 1,2,…,n with the

vertices, and keep a binary vector VECT of

order n. When the i
th

 vertex becomes

permanently labeled, the i
th

 element in this

binary vector changes from 0 to 1.

 A flow chart of this algorithm is given

in Fig.4-3. The algorithm described does not

actually list the shortest path from the starting

vertex to the terminal vertex; it only gives the

shortest distance. The shortest path can be

easily constructed by working backward from

the terminal vertex such that we go to that

predecessor whose label differs exactly by

the length of the connecting edge. (A tie

indicates more than one shortest path).

Alternatively, the shortest path can be

determined by keeping a record of the

vertices from which each vertex was labeled

permanently. This record can be maintained

by another linear array of length n, such that

whenever a new permanent label is assigned

to vertex j, the vertex from which j is directly

reached is recorded in the j
th

 position of this

array.

Remarks

1. In this algorithm, had we continued

the labeling until every vertex got a

permanent label (rather than stopping at the

permanent labeling of the destination vertex

t), we would have gotten an algorithm for the

shortest paths from starting vertex s to all

other vertices.

2. If we take a shortest path from the

starting vertex s to each of the other

vertices(which are accessible from s), then

the union of these paths will be an

arborescence T rooted at vertex s. Every path

in T from s is the (unique) shortest path in the

digraph (or graph, as the case may be). Such

a tree is called the shortest-distance

1795

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

arborescence. For example, the shortest-

distance arborescence of Fig.4.1 is given in

Fig.4.2

Fig. 4-2. Shortest-distance arborescence of

Fig.4-1.

Fig. 4-3 shortest distance from s to t.

3. In this algorithm, as more vertices acquire

permanent labels the number of additions and

comparisons needed to modify the temporary

labels continues to decrease. In the case

where every vertex gets permanently labeled,

we need n(n-1)/2 additions and 2n(n-1)

comparisons. Thus the computation time is

proportional to n
2
.

4. Notice that for a given n the computation

time is independent of the number of edges

the digraph may have. Another random graph

with 80 vertices but only 1000 edges also

took 36/60 second for the same computation.

5. If the digraph is sparse [i.e., the number

of edges e is much smaller than n(n-1)], it is

possible to reduce the time of computation.

This can be achieved by incorporating

another test which alters the temporary labels

of only those vertices that are successors of

the most recent permanently labeled vertex

6. If the given digraph G is not weighted,

every edge in G has a weight of one, and

matrix D is the same as the adjacency matrix.

Then the problem is simpler. We perform

logical operations rather than real arithmetic.

7. We have assumed the distances dij are all

nonnegative numbers. If some of the

distances are negative, Algorithm 2 will not

work.(Negative distances in a network may

represent costs and the positive ones profits.)

The reason for the failure of Algorithm 2 is

that once a vertex is permanently labeled its

label cannot be altered. Shortest-path

algorithms have, however, been proposed

that will solve this problem, provided the

sum of all dij around every directed circuit is

positive. The computation time of the

existing algorithms that can handle negative

dij is n3 and not n
2
.

8. It was suggested by T.A.J Nicholson that

carrying the shortest-path algorithm

simultaneously from both ends s and t would

improve the speed. Dreyfus has, however,

shown that the double-ended procedure

would improve the efficiency only in certain

types of digraphs. In the case where nearly all

n vertices must be permanently labeled from

either one and or the other, the double-ended

procedure is actually less efficient than

Dijkstra’s one-ended procedure.

/* TO FIND THE SHORTEST PATH OF A

GRAPH USING DJIKSTRA ALGORITHM

*/

#include<stdio.h>

#include<limits.h>

/* Maximum Number of Nodes in a Graph */

#define MAXNODE 10

#define PERM 1

#define TENT 2

#define infinity INT_MAX

typedef struct NODELABEL

1796

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

{

int predecessor;

int length; /* Optimal distance from Source

*/

int label; /* label is tentative or permanent */

}NODELABEL;

/* Function: Short path Prototype:

 int Short Path(a, n, s, t, path, dist)

Input: a-Adjacency Matrix describing the

graph n-Number of Nodes in the graph

s-Source Nodet-Target Node or Sink Node

Output: Path - list of optimal path from

source to sink dist - Minimum Distance

between source and sink

Returns: 0 - if there is no path count

indicating the number of nodes along the

optimal path, otherwise */

int Short Path(a, n, s, t, path, dist)

int a[MAXNODE][MAXNODE], n, s, t,

path [MAXNODE], *dist;

{

NODELABEL state[MAXNODE];

int i, k, min, count;

int r Path[MAXNODE];

*dist=0;

/* Initialize all nodes as tentative nodes */

for(i=1; i<=n; i++)

{

state[i].predecessor=0;

state[i].length=infinity;

state[i].label=TENT;

}

/* Make source Node as Permanent */

state[s].predecessor=0;

state[s].length=0;

state[s].label=PERM;

/* Start from source node */

k=s;

do

{

/* Check all the paths from Kth node and find

their distance

form K node */

for(i=1; i<=n; i++)

{

/* -ve if no direct path, 0 if to the same

otherwise direct

path */

if(a[k][i]>0 && state[i].label==TENT)

{

if(state[k].length+a[k][i]<state[i].length)

{

state[i].predecessor=k;

state[i].length=state[k].length+a[k][i];

}

}

}

/* Find the tentatively labeled node with

smaller cost */

min=infinity;

k=0;

for(i=1; i<=n; i++)

{

if(state[i].label==TENT &&

state[i].length<min)

{

min=state[i].length;

k=i;

}

}

/* Is Source Or Sink Node is Isolated */

if(k==0)

return(0);

state[k].label=PERM;

}while(k!=t);

/* Store Optimal Path */

k=t;

count=0;

do

{

count = count + 1;

rPath[count]=k;

k=state[k].predecessor;

}while(k!=0);

/* Reverse nodes since algorithm stores path

in reverse

direction */

for(i=1; i<=count; i++)

path[i]=rPath[count-i+1];

for(i=1; i<count; i++)

1797

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

*dist+=a[path[i]][path[i+1]];

return(count);

}

void main()

{

int a[MAXNODE][MAXNODE], i, j;

int path[MAXNODE];

int from, to, dist,count, n;

printf("\nHow many Nodes?");

scanf("%d", &n);

printf("%2d", n);

for(i=1; i<=n; i++)

{

printf("\n Enter Node %d Connectivity: ",i);

for(j=1; j<=n; j++)

{

scanf("%d", &a[i][j]);

printf("%2d", a[i][j]);

}

}

printf("\n From to Where?");

scanf("%d %d", &from, &to);

printf("%d %d", from,to);

count = ShortPath(a,n,from, to, path, &dist);

if(dist)

{

printf("\nShortest Path:");

printf("%d",path[1]);

for(i=2;i<=count;i++)

printf("->%d",path[i]);

printf("\n Minimum Distance = %d\n", dist);

}

else

printf("\n Path does not exist \n");

}

OUTPUT

How many Nodes? 3

 3

Enter Node 1 Connectivity:

 0 0 7

 0 0 7

Enter Node 2 Connectivity:

0 0 0

0 0 0

Enter Node 3 Connectivity:

3 0 3

3 0 3

From to Where?

 1 3

1 3

Shortest Path: 13

Minimum Distance = 7

How many Nodes? 5

5

Enter Node 1 Connectivity:

 0 85 80 20 0

 0 85 80 20 0

Enter Node 2 Connectivity :

0 0 20 0 95

0 0 20 0 95

Enter Node 3 Connectivity:

70 20 0 80 0

70 20 0 80 0

Enter Node 4 Connectivity:

0 75 0 0 75

0 75 0 0 75

Enter Node 5 Connectivity:

70 10 20 80 0

70 10 20 80 0

From to Where? 1 5

1 5

Shortest Path: 145

Minimum Distance = 95

V. CONCLUSION

 This study is the first to use C

programming language to evaluate the

efficiency of shortest path algorithms, and it

yields several interesting conclusions.

 To the first question that prompted

our research effort, we provided empirical

evidence that the relative order of his shortest

computational efficiency is not modified

when the algorithms are coded in C.

Algorithms that use thresholds are still, in

general, the fastest. We also have shown here

that C implementations (using pointers) of

shortest path algorithms are significantly

1798

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

more efficient than traditional ones (using

arrays).

The improvement in computing times

is essentially due to the fact that in C-

implementations, the forward star of each

node may be scanned without performing any

multiplication. The capabilities that explain

this property have a second important effect

as the data structure used to keep the scan

eligible list Q may also by managed (search,

insertions, deletions etc.) by using only

additions and no multiplications.

Consequently, by using C implementations

with pointers, one may expect to speed up

factor may reach 30%.

We have also shown that the level of

difficulty required to implement shortest path

algorithms in C by using pointers is not

greater than that required by traditional

implementations that use arrays. Thus, the

significant efficiency gains reported in this

paper are due to the choice of the proper use

of its data structure manipulation capabilities.

We expect similar result to be achieved for

other network as well.

VI. REFERENCE

1. Mobius, A. F. (1828), "Kann von

zwei dreiseitigen Pyramiden eine jede in

Bezug auf die andere um- und

eingeschrieben zugleich heissen?", J. Reine

Angew. Math. 3: 273–278. In Gesammelte

Werke (1886), vol. 1, pp. 439–446

2. Cayley, A. (1875), "Ueber die

Analytischen Figuren, welche in der

Mathematik Bäume genannt werden und ihre

Anwendung auf die Theorie chemischer

Verbindungen", Berichte der deutschen

Chemischen Gesellschaft 8: 1056–1059,

3 D. Konig, "Theorie der endlichen und

unendlichen Graphen" , Teubner, reprint

 (1986)

4. G. Kirchhoff, Poggendorff Annalen, 72

(1847) pp. 497–508

5. A. Cayley, "On the theory of the

analytical forms called trees”, Collected

mathematical papers, 3, Cambridge Univ.

Press (1854) pp. 242–26

VII. AUTHOR INFORMATION

 Mr.P.Manikandan recived his M.Phil

in computer science from

Bharathidasan University,

Tiruchirappalli, India in 2005. Pursuing Ph.D

in computer science at Bharathiar University,

Coimbatore, India. Currently he is working as

Asst.Professor in the Department of

Computer Application, Thanthai Hans Roever

College, Perambalur, India. His current

research interests include Data structure

algorithms, Image mining, Nano Computing,

software metrics. He has published 3 papers

in international Conference, 2 papers in

international Journals and 6 papers in national

Conferences.

 Mrs.S.Yuvarani recived her M.Phil

in computer science from Allagappa

University, karaikudi, India in 2005.

Pursuing Ph.D in computer science at

Bharathiar University, Coimbatore, India.

Currently she is working as Asst.Professor in

the Department of Computer Application,

Thanthai Hans Roever College, Perambalur,

India. Her current research interests include

Data structure algorithms, Image mining. She

has published 3 papers in international

Conference, 2 papers in international Journals

and 4 papers in national Conferences.

1799

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60569

