

 Implementation of RSA Algorithm on FPGA
Ankit Anand, Pushkar Praveen

Centre for Development of Advanced Computing, (CDAC) Noida, India

Abstract

This paper presents the design and implementation of a

flexible key RSA encryption that can be used as a

standard device in the secured communication system

based on Montgomery algorithm. The VHDL

modelling of this RSA encryption design has the

unique characteristics of supporting multiple key sizes,

and it can easily be fit into the systems that require

different levels of security. In order to implement the

RSA operation a simple nested loop addition and

subtraction have been used. This has made the

processing time faster and used comparatively smaller

amount of space in the FPGA. RSA is fully described

using VHDL on Xilinx ISE software. Target device

3s1600efg320-4 also belongs to the same company.

This is an advantage since Xilinx ISE software

provides full support for all the code-to-FPGA

processes for Xilinx FPGAs. The RSA encryption

implementation has made use of 13,779 units of logic

elements and achieved a clock frequency of 69.09MHz.

Keywords— Cryptosystem, Encryption, Decryption,

RSA, Security, VHDL.

Introduction

Now these days’ electronic data communications and

Computer networks have made, it very much important

to develop new ways to guarantee their security. As the

time passes demand of security in the communication

channel increases, and the development of a new and

efficient hardware security module has started to get

the primary preference. A large number and wide

varieties of works have been done on the hardware

implementation of RSA encryption algorithm. The

hardware implementation of RSA encryption scheme

has been proposed by Khalil. Where they use

Montgomery algorithm with modular multiplication

and systolic array architecture. This design scheme

focuses on the implementation of a 1024-bit RSA

cryptographic processor. But these design have the

drawback of a slower processing time, though some of

them use a faster clock. Shand have proposed a

software implementation of RSA cryptography. A

different approach has been taken by Chris for

implementing RSA cryptographic scheme. But, it does

not provide the flexibility of using many practical

applications as it can only be implemented with a fixed

key size.

RSA

The RSA cryptosystem was invented by Rivest,

Shamir, and Adleman in 1977. This is the most

commonly used public-key cryptographic algorithm,

and it is considered secure when sufficiently long keys

are used. The security of RSA depends on the difficulty

of factoring large integers. Difficulty of factoring n to

find the original primes p,q defines the strength of

RSA. Hence the larger the value of primes, the harder

the factorization. Again, typical values for these primes

are 512 to 4096bits. We can easily understand it from

the algorithm given below

1) Select any prime numbers p, q

2) Compute n = p*q

3) Compute phi = (p-1)*(q-1)

4) Select e, such that 1< e < phi, and gcd(phi, e)

= 1

5) Find d such that ed = 1 mod phi

6) Public key KU = {e, n}

7) Private key KR = {d, n}

For any plaintext M < n,

Encryption, C = M
e
 (mod n)

Decryption, M = C
d
 (mod n)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org

Steps of encryption and decryption transform:

RSA involves a public key and a private key. The

public key can be known to everyone and is used for

encrypting messages. Messages encrypted with the

public key can only be decrypted using the private key.

The keys are generated by following steps:

1. Choose two distinct large random prime numbers p

and q.

2. Compute n = pq. The number n is used as the

modulus for both the public and private keys.

3. Compute the Euler’s function: ϕ (n) = (p −1) (q −1).

4. Choose an integer e such that 1< e < ϕ (n); e and ϕ

(n) share no factors other than 1 (i.e. e and ϕ (n) are co-

primes); e is released as the public key exponent.

5. Compute d to satisfy the congruence relation de ≡ 1

(mod ϕ (n)); i.e. ed ≡ 1 (mod φ(n)).

 Or, d = (1 + x φ (n)) / e

A popular choice for the public exponents is e = 2
16

+1= 65537. Some applications choose smaller values

such as e = 3, 5, 17 or 257 instead. This is done to

make encryption and signature verification faster on

small devices like smart cards but small public

exponents can lead to greater security risks. The public

key consists of the modulus n and the public (or

encryption) exponent e. The private key consists of the

modulus n and the private (or decryption) exponent d

which must be kept secret and the decryption exponent

d has to be greater than n
0.292

, otherwise the RSA

crypto- system can be broken.

Mathematics used for RSA

For hardware implementation of RSA, an intelligent

algorithm is needed in order to reach a higher

efficiency. Hence, exponentiation is achieved by

performing a number of squaring and multiplications.

Given the integers M, e, and n, the e has to be changed

to binary in order to start the algorithm to compute M
e
.

 Output C = M
e
 (e contains h-bits)

 If eh-1 = 1, then C: =M else C: =1

 For i = h-2 down to 0

 a. C: = C x C

 b. if e i = 1, then C:= C x M

 Return C

Let us assume e = 43 = 1010112. So the h = 6 (e

contains 6 bits). Using Left-to-Right method, as e5 = 1,

C = M algorithm starts as the following table:

 Table 1: LR method of computing exponentiation

Hardware Implementation

During the hardware design the whole process is

divided into five modules.

I. Initial module

II. Montgomery multiplication

III. Core module

 IV. Final module

 V. RSA Top module

(I) Initial Module: This module consist all the inputs,

initialize and produce16 bit output. This is then used by

the next module as the input.

(II) Montgomery Multiplication: The core performs a

classical modular exponentiation. The data needed is

the following:

1. Bit size: this is a constant value which specifies the

bit length of value y, it is necessary in order to perform

private-key exponentiation (The usual value of this

 ei A B

4

0 (M)
2

(M)
2

3

1 (M
2
)

2

(M)
4
 * M

2

0 (M
5
)

2

(M)
10

1

1 (M
10

)
2

(M)
20

* M

0

1 (M
21

)
2

(M)
42

 * M = M
43

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org

field will be “512”) or public-key exponentiation (It

can vary between a few bits). It can be calculated as

log2(y) being y the key used to cipher.

2. X: This is the plain text input which will be

ciphered.

3. Y: This is the key input, which will be used to

cipher X

4. M: This is the module M input.

5. r_c: this is a 512 bit length constant needed by the

ciphering algorithm in order to achieve a high

performance.

6. Start in: active it when load the first 16 bits of m.

7. valid in: should be active high (logical value of 1 as

long as the data is being introduced).

8. S: This port is the data output of the exponentiation.

9. Valid out: as its name says, it indicates when the

values on S are valid.

The Montgomery multiplier is the biggest part of the

architecture. Depending on the mode signal four

different operations are performed. Table shows all

available modes of operation.

Mode Description

 00 Pass through the sum and carry

 01 Right shift of sum and carry

 10 Shift in of interface data

 11 Shift out data to the interface

Table 2: Operation mode of the Montgomery multiplier

The pass through mode is used for converting the

carry-save representation into the binary representation.

The control unit has to ensure that all other inputs

except the sum and carry inputs are set to zero. The

right shifting of the sum and carry inputs is used during

the computation. The third mode is used to load input

data. The fourth mode is used the control unit has to

ensure that the right inputs were applied at the right

time.

The RSA implementation uses an address width of two

bits, so four different values can be stored in the single-

port RAM. The following values are stored in the

single-port RAM (SPRAM):

At address ’00’: r2 is stored which is needed for the

transformation of integers from the Z domain to the

Montgomery domain.

At address ’01’: the number one is stored which is

needed for the transformation from the Montgomery

domain to the Z domain.

At address ’10’: is stored and it is replaced with a after

the transformation to the Montgomery domain.

At address ’11’: the result of one Montgomery

multiplication is stored. It will be overwritten after the

next multiplication is finished.

(III) Core Module: This module is used for generating

different cores like Single port Ram Core for storing

the data, FIFO for first in first out the data and also the

FIFO feedback.

(IV) Final Module: This is the last module which

computes all the previous output values and produces

the 1024 bit data.

(V) Top Module: This module is the control unit for

controlling the functioning of the rest of the modules

and to ensure that the RSA algorithm flow is followed

and maintained. The RSA Core is actually a modular

exponentiation and it is realized by mapping the

modular exponentiation algorithm onto hardware. The

Top modules include the Montgomery Multiplication

Block RAM blocks and a Controller. Our design

approach is not to hard-wire the modulus into the logic

circuit but by storing the operands in RAMs.

Simulated Results:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org

 Figure 1: Simulated Result of Top Module

Synthesis Result:

 Figure 2: RSA_Top Module Hardware

Figure 3: Detailed Schematic of Hardware generation

of Top Module of RSA

 Table 3: Device Utilization Summary

Timing Summary:

Minimum period: 14.473ns (Maximum Frequency:

69.093MHz)

Minimum input arrival time before clock: 8.905ns

Maximum output required time after clock: 10.657ns

Maximum combinational path delay: 10.457ns.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org

Conclusion:

The main aim of this project is the development of high

performance RSA. We start with reviewing basic

theoretical foundations of RSA. Today’s FPGA are

ready for RSA implementations operation on full word

size, using Montgomery algorithm it is possible to

implement RSA with common word sizes like 1024

bits, 1536 bits, and 2048 bits. The results also shows

that a proper interface design and a well implemented

device driver are needed to provide the same

throughput on application layer as on the hardware

layer and we have got the waveform successfully after

simulation and also got the hardware design for RSA

after synthesis.

Refrences:

[1] International Journal of Scientific & Engineering

Research Volume 2, Issue 5, May-2011 ISSN 2229-

5518.

[2] http://www.rsasecurity.com/rsalabs/pkcs/pkcs-

1/index.html.

[3] Institute for Applied Information Processing and

Communications Graz University of Technology,

High-Speed RSA Implementation for FPGA Platforms

by Thomas W¨ockinger in January 2005.

[4] Adriana Borodzhieva, Plamen Manoilov, Software

Tool for Implementing RSA Algorithm, International

Scientific Conference Computer Science’2008.

[5] W. Diffie and M. E. Hellman, .New Directions in

Cryptography,. IEEE Trans. on Information Theory,

vol. IT-22, pp. 644-654, November 1976.

[6] R. L. Rivest, A. Shamir, and L. Adleman, .A

method for obtaining digital signatures and public-key

cryptosystems,. Communications of the ACM, vol. 21,

pp. 120-126, February 1978.

[7] http://www.di-mgt.com.au/rsa_alg.html.

[8] Peter J. Ashenden. The Designer’s Guide to VHDL.

Morgan Kaufmann Publishers, 2nd edition, 2002.

[9] Cetin Kaya Koc, “High Speed RSA

Implementation”, RSA Laboratories, Version 2.0,

1994.

[10] John Fry - Martin Langhammer. “RSA & Public

Key Cryptography in FPGA”2000.

[11] C. Mclvor. M. McLoone. I. McCanny. A. IDaly

and W. Mamane, "FastMontgomery Modular

Multiplication and RSA Crpographic Processor

Architectures.”37Ih Asilornar Conference on signal,

system and computers, nov 2003.

 [12] O.Nibouche. A. Bouridane and M. Nibouche,

"New Iterative Algorithms and Arclritectures of

Modular Multiplication for Ctyptography", Proceedings

of the 8"lntemational IEEE Conference on Electronics.

Circuits, and Systems, ICECS Malta 2001.

[13] W. L. Freking and K. K. Parhi. Performance-

scalable array architectures for modular multiplication.

In Proceeings of rhe IEEE lnreniational Conference on

Application-Specific Sysrems, Archirecrures, and

Processors, pages 149-160. IEEE. 2008.

[14] P. L. Montgomery, “Modular Multiplication

without Trial Division,” Mathemat. of Computat., vol

44, pp 512-521, April 1985.

[15] Mohamed Khalil, Koay Kah Hoe,” VHDL Module

Generator: A Rapid-prototyping Design Entry Tool for

Digital ASICs,” Jurnal Teknologi, 3 1 (D)I 999, Univ.

Teknologi Malaysia, Dec. 1999, pp.45-61.

 [16] Public-key cryptographic standards.

http://www.rsasecurity.com, 2004.

[17] Peter J. Ashenden. The Designer’s Guide to

VHDL. Morgan Kaufmann Publishers, 2nd edition,

2006.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

6www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

7www.ijert.org

