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Abstract— The present work proposes a revised solution 

methodology for the design of digital infinite impulse response 

(IIR) filters using the biogeography-based optimization (BBO) 

algorithm. BBO is a population based stochastic optimization 

algorithm which is inspired by the mathematics of 

biogeography. So far BBO has been effectively applied to variety 

of application areas. BBO searches the solution space through 

basic migration and mutation operators in order to find the 

global optimum solution. The conventional BBO algorithm owns 

good local exploitation capability but is deficient in global 

exploration. Moreover, it experiences premature convergence 

and simply falls into the local minima. To remedy this defect 

and to improve the performance of BBO an improved variant, 

called the opposition based biogeography based optimization 

(OBBO) is proposed in this paper. In OBBO, for improving the 

population diversity, the polyphyletic migration operator is 

incorporated in place of the basic migration operator and for 

the purpose of starting with a better solution set, opposition-

based learning strategy is included. Then, the OBBO algorithm 

is applied for the IIR filter designing problem. The 

multivariable optimization is taken as the design criterion to 

obtain the robust and stable digital IIR filter considering the 

minimization of the magnitude approximation error and ripple 

magnitudes of both the pass-band and the stop-band while 

satisfying the stability constraints that are imposed throughout 

the design process. Further, constraints are considered as 

additional objective function to be maximized using membership 

function of constraint violation. OBBO algorithm is effectively 

applied for designing the low-pass (LP) and high-pass (HP) 

filters. To demonstrate the effectiveness of OBBO for designing 

the digital IIR filters, the results obtained are compared with 

some well established algorithms and it is observed that the 

employed algorithm produces superior or atleast comparable 

results and can be also be applied for the design of higher order 

filters.  

Keywords—Digital IIR filters, biogeography-based 

optimization, opposition based learning, multiparameter 

optimization, filter design. 

I.  INTRODUCTION  

The digital IIR filters are the most important part of 

application areas like the digital signal processing, digital 

image processing and digital video processing. Because of the 

numerous advantages over the analog filters, the digital filters 

are in demand in almost all the applications related to the field 

of science and technology. Digital IIR filters often provide a 

much better performance, improved selectivity and less 

computational cost than their equivalent FIR filters. Moreover, 

the IIR filters usually have much sharper roll-offs in their 

frequency responses than the FIR filters of equal complexity. 

Compared with an FIR filter design problem, an IIR filter 

design problem is more challenging. The design task of IIR 

digital filters is to approximate a given ideal frequency 

response by a stable IIR digital filter under some design 

criterion. If both magnitude and phase/group delay responses 

are considered, an IIR digital filter design problem is 

essentially a non-convex optimization problem due to the 

presence of the denominator of the transfer function [1].  

The designing of the digital IIR filters is considered as a 

very important subject in the field of signal processing and a 

large amount of work has been carried out in this field. The 

digital IIR filter designing essentially follows two approaches 

namely, the transformation approach and the optimization 

approach. The former method firstly takes into account the 

designing of an analog filter for a given set of prescribed 

specifications and then it is transformed into the digital IIR 

filter [2]. But this approach usually returns a single solution in 

most of the cases and requires too much of pre-knowledge. 

Because of the nonlinear and multimodal error surface of the 

digital IIR filters, the conventional gradient-based algorithm 

simply got trapped at local minima [3]. To overcome this 

problem design techniques that can efficiently achieve the 

global minima in the multimodal error surface are needed. 

Under the optimization approach, in the past years, various 

methods have been proposed [4-22]. These methods struggle 

to obtain optimal filter design models and use the magnitude 

approximation error, and ripple magnitudes of both pass-band 

and stop-band as the performance measures for the optimal 

and stable digital IIR filters designs. 

In the past years, many evolutionary heuristic search 

optimization algorithms have been applied to design and 

optimize the digital IIR filters. The important digital IIR filter 

design approaches include the genetic algorithms (GAs) [4-6], 

hierarchical genetic algorithm (HGA) [7], genetic algorithm 

improved using the hybrid taguchi method (HTGA) [8], 

taguchi immune algorithm (TIA) [9], particle swarm 

optimization [10-13], predator pray optimization (PPO) 

algorithm [14], real structured genetic (RSGA) algorithm [15], 
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simulated annealing (SA) [16] differential evolution (DE) 

algorithm [17, 18], artificial immune algorithm [19], ant 

colony optimization [20] and artificial bee colony 

optimization [21]. In continuation to these works, algorithms 

like hybrid differential evolution with exploratory search [22], 

real coded genetic algorithms (RCGA) [23], gravitational 

search algorithm [24], integrated cat swarm and differential 

evolution (CSO-DE) [25], hybrid [26] and heuristic search 

method (HSM) [27] have been implemented for designing of 

optimal digital IIR filters. Many of the evolutionary 

optimization algorithms mentioned above exhibit problems 

such as local search stagnation, premature convergence, 

control parameters tuning and in many cases arrives at the 

same solution repeatedly [15, 28]. Therefore, it is required to 

put efforts in improving the existing evolutionary heuristic 

optimization techniques or for the development of new 

technique to overcome the various problems that exist in most 

of the algorithms used for designing the optimal digital filters.  

In this paper, the BBO algorithm is introduced to design 

optimal digital IIR filters. BBO is inspired by the science of 

biogeography and operates by probabilistically sharing 

information between the individuals in the population of 

species representing the candidate solutions in the search 

space. Until now, BBO has shown quite good performance on 

the various well known benchmark functions [29] and has 

been applied to numerous real world applications [30-35].  

The convergence speed of BBO is quite good but similar to 

other evolutionary algorithms it easily got stuck in the local 

minima and suffers from premature convergence. 

This occurs because the exploration as well as the 

exploitation processes is equally essential and too much stress 

on exploitation leads to a pure local search, whereas too much 

stress on exploration leads to a pure random search. To 

remedy these limitations, many variants of BBO have been 

proposed [36-40] and applied to various problems. In the 

present work, instead of the basic migration operator, the 

polyphyletic migration operator is used in the BBO algorithm 

to increase its population diversity [41]. With the intention of 

starting with better solutions, the oppositional learning 

strategy is also included. In the design process, multivariable 

optimization is applied as a design measure which undertakes 

the design of optimal stable digital IIR filter at the same time 

satisfying the different performance prerequisites like 

minimizing the magnitude approximation error and ripple 

magnitude of the pass-band and the stop-band. The designing 

of LP and HP filters is independently carried by the proposed 

algorithm and for performance estimation the results are 

compared with some existing filter design techniques. The 

experimental results and comparisons demonstrate that BBO 

is distinctly suitable for designing optimal digital IIR filters. 

The remainder of the paper is structured as follows: 

Section 2 describes the formulation of the problem statement 

for digital IIR filter design. The details and underlying 

mechanism of the BBO and OBBO algorithms are described 

in section 3. Section 4 explains in detail the steps of the 

OBBO algorithm for designing the digital IIR filters. The 

performance of the proposed method has been evaluated and 

the results obtained are compared with the design results given 

by some well established optimization algorithms like HGA 

[7], HTGA [8], TIA [9], HSM [27], RCGA [23], hybrid 

method [26], PPO [14], hybrid DE [22], and CSO-DE [25] in 

section 5. Finally, section 6 contains the concluding remarks 

and scope for future work. 

II. DIGITAL IIR  FILTER DESIGN PROBLEM 

 

The design of digital IIR filter is usually realized by the 

following difference equation [3]: 

       
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where, M and N are the number of  xi and xN+k filter 

coefficients, respectively, such that N ≥ M.   nu  and  ny  are 

its input and output, respectively. An equivalent transfer 

function of digital IIR filter is expressed as follows: 
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For designing of digital IIR filter the values of the filter 

coefficients xi and xM+k, which produce the desired response, 

are needed to be found out. In general the digital IIR filter is 

realized by cascading different first-order and second-order 

sections together. The transfer function of the cascaded digital 

IIR filter is denoted by H(w, X) , where X indicates the filter 

coefficients. The magnitude of H(w, X) is denoted by |H(w, X 

| and the basic structure of H(w, X) can be stated as [2]: 
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where, vector  TDxxxX 21 denotes the filter 

coefficients of dimension D×1, such that, 142  NMD and 

  2142  kMl . 

In the IIR filter design process, the coefficients are 

optimized to minimize the approximation error function for 

the magnitude. The magnitude response is specified at K 

discrete and equally spaced frequency points in the pass-band 

as well as the stop-band. The absolute error is denoted by 

 Xe  and is stated below: 

      


K

k
kkd XwHwHXe

0

,     (4) 

where,  kd wH  is the desired magnitude response of IIR 

filter and is given as: 

 
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k

k
kd

0
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   (5) 

The ripple magnitudes of pass-band and stop-band are 

denoted by  xp  and  xs  , respectively and are given as: 

        ,;,min,max passbandwXwHXwHX kkwkwp kk


        (6) 

     stopbandwXwHX kkws k
 ;,max    (7) 

The design of stable digital IIR filter normally requires the 

inclusion of stability constraints. Therefore, the stability 

constraints found by using the Jury method [34] on the 

coefficients of the digital IIR filter stated in (9.1) - (9.5), are 

included in the optimization process. The multivariable 

constrained optimization problem is then stated as: 
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Minimize e(X)     (8) 

Subject to the stability constraints: 

 Mkx k ,,2,101 12       (9.1) 

 Mkx k ,,2,101 12       (9.2) 

  NkkMlxl ,2,1,214201 3     (9.3) 

  NkkMlxx ll ,,2,1,214201 32   (9.4) 

  MkkMlxx ll ,2,1,214201 32    (9.5) 

A.   Membership Function of Magnitude Response Error  

The digital IIR filter designing mainly aims to minimize 

the magnitude response of the defined frequency band in 

which the frequency is either allowed to pass or attenuated. 

Owing to imprecise nature of designer's judgment, it is 

presumed that designer may have fuzzy goals for each 

objective functions. The fuzzy sets are defined by membership 

function. The membership function of magnitude response 

error for the pass-band frequency is given in Fig. 1 and is 

mathematically expressed as: 
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       (10)  

where, ω represents the pass-band frequency. 

 p
L

p   1  and  p
U

p   1  are tolerable limits 

acceptable for the magnitude in the pass-band. 
min

p and

max
p are the minimum and maximum magnitude values for 

which the membership function is defined in the pass-band. 

In the same way, the membership function of magnitude 

response error for the stop-band frequency is given in Fig. 2 

and is mathematically expressed as: 
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Fig. 1 Membership function for magnitude response in pass-band 

 
Fig. 2 Membership function for magnitude response in stop-band 

 

where,  represents the stop-band frequency. s  is the 

acceptable limit of the magnitude in the stop-band and max
s

is the maximum magnitude value for which the membership 

function is defined in the stop-band. 

Aggregating the membership functions, the objective is 

formulated for the magnitude response error in the pass-band 

and the stop-band and is mathematically expressed as: 
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where, nA and nB  represents the sampling frequencies in 

the pass-band and stop-band, respectively. 

B.   Constraint Handling 

To design the digital IIR filter, the stability constraints in 

(9.1) – (9.5), which are obtained by using the jury method on 

the coefficients of the digital IIR filter, are included in the 

optimization process. The cumulative membership function of 

constraints is considered as another objective to be maximized 

and is defined below. 
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where, the membership function for the first constraint is 

defined as: 
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And the membership function for the forth constraint is 

defined. 
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Similarly, the membership functions for second, third and 

fifth constraint are defined. 

The optimization problem is then redefined as below, 

whereby the cumulative membership function of constraints is 

considered as another objective to be maximized. 

Maximize  21 , ffF
T

    (16) 

III. BIOGERGRAPHY BASED OPTIMIZATION 

 

The BBO algorithm is a population based global 

optimization algorithm. It is based on the mathematical 

models of the natural phenomenon of biogeography, which 

deals with the distribution of species over time and space [44]. 

In this algorithm, each individual which corresponds to a 
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candidate solution is called a “habitat” which is 

geographically isolated from other habitats. Each habitat has a 

performance index called the habitat suitability index (HSI) 

for measuring its goodness or suitability for living. BBO 

imitates the immigration (colonization) and emigration 

(extinction) of species between habitats in a multidimensional 

space.  Habitats that are well suited for biological species are 

said to have high HSI and habitats that are less suited have a 

low HSI. HSI of all the habitats depends upon number of 

features like rainfall, environment temperature, diversity of 

vegetation, topography etc. All of these features that portray 

the habitability of the habitat are called the suitability index 

variables (SIVs) and are composed of D-dimensional real 

vector. The movement of species between the habitats is 

governed by two important parameters called the immigration 

rate (λ) and the emigration rate (µ) [45]. The rate at which the 

new species arrive in a habitat is known as the immigration 

rate and the rate at which the old species become extinct from 

the habitat is known as the emigration rate. These rates are 

functions of the number of species in the habitat. Habitats with 

smaller populations are more susceptible to extinction (i.e. the 

immigration rate is high). But as more species inhabit the 

habitat, the immigration rate reduces and the emigration rate 

increases. The greater the total number of species in the 

habitat, which corresponds to a high HSI, the better the 

solution it contains. In BBO, good solutions (i.e. habitats with 

many species) share their features with poor solutions (i.e. 

habitats with few species), and poor solutions accept a lot of 

new features from good solutions. The immigration and 

emigration rates when there are K species in the habitat can be 

calculated using the sinusoidal migration model [46, 47] and 

are given as follows:  

NPk
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where, I is the maximum possible immigration rate, which 

occurs when there are zero species on the island and E is the 

maximum possible emigration rate, which occurs when the 

island contains the maximum number of species, maxK  that it 

can support. Fig. 3 shows the relationships between the fitness 

of habitats (a function of the number of species), emigration 

rate and immigration rate. The equilibrium point 𝐾0 is reached 

at the point of intersection of immigration curve and the 

emigration curve. The operation of BBO algorithm is 

managed by two basic operators i.e., migration and mutation 

operators. The migration operation helps to share the 

information among the habitats and the mutation operation is 

used to increase the population diversity. These concepts are 

used in BBO to find good solution for a given optimization 

problem. 

 
Fig. 3 Species model of a single habitat [48] 

A. Population Initilaization 

For applying the BBO algorithm to solve the optimization 

problems, the primary step is to decide the number of species 

that are to be used in the algorithm. Each species in the habitat 

has position made up of D-dimensions and a fitness value 

according to the fitness function. The position of specie 

represents the solution set and the fitness value represents the 

accommodation of the specie to the fitness function. For a D-

dimensional optimization problem, a habitat is an D1  array. 

The population consists of NP parameters vector

NPkX k ,...,2,1,  . Within the solution search space, the initial 

population containing the candidate solutions is initialized as 

follows: 

   DdNPkXXRXX ddd
t

kd ,...,2,1;,...,2,1
minmaxmin



        (19) 

where, t
kdX represents the position of the thk specie in 

𝑑𝑡ℎ  dimension. max
dX and min

dX  are the lower and the 

upper bounds of the thk specie and R represents a uniform 

random number between 0 and 1. To get the feasible 

solutions, the initially generated population must satisfy the 

equality and inequality constraints. Therefore, the random 

perturbation method is applied to check if there occur any 

violations of the stability constraints. 

B. Opposition Based Learning 

The BBO optimization methods start with some initial 

random solutions that are improved by moving towards 

optimal solution. The computation time, among others, is 

related to the distance of these initial guesses from the optimal 

solution. It can be improved by the chance of starting with a 

better solution by simultaneously checking the opposite 

solution in the search space. The guess or its opposite guess 

has been chosen as an initial solution. A guess is farther from 

the solution than its opposite guess with 50% probability [49]. 

Therefore, starting with better guesses adjudged by its 

objective function has the potential to accelerate convergence. 

The same approach can be applied not only to initial solutions 

but also continuously to each solution in the current 

population, during the run. 
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where, lower
dX   and upper

dX  are lower and upper limits 

of filter coefficients and are expressed as: 

 
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dupper
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C. Fitness Evaluation 

To solve the digital IIR filter design problem by 

employing the multi-objective optimization, the objective 

function is changed to the following generalized form:  

  NPkffF kk ,,2,1;minmax 2,1     (23) 

D. Migration 

In BBO, the migration operation which deals with the 

immigration and emigration rates, facilitates the sharing of 

information among the different habitats in the solution search 

space and modifies the selected habitat’s SIVs and can be 

expressed as:  

edkd XX        (24) 

where, kdX and edX  represent the immigration and the 

emigration habitat, respectively.  

This basic migration operation exhibit simple exploitation 

ability by allowing the sharing of information between the 

habitats and the new solutions are produced simply by 

copying the features from a constant pool. This results in a 

lack of the exploration ability of OBBO to produce new 

solutions from new areas in the search space. To overcome 

this drawback and to balance the exploitation and exploration 

features, an improved migration operator called the 

polyphyletic migration, is used in OBBO [41]. The basic 

information sharing between habitat and habitat’s SIVs 

modification operation can be explained by the following 

expression: 

   NPrekXXXv rdedkdedkd ,...,2,1;    (25) 

where, kdv is the candidate solution and eX  represent the 

emigration habitat. rX  is a random habitat that satisfies 

ekr  and kd  is a uniform random number distributed 

between the range (-1,1). The polyphyletic migration 

operation is illustrated in Algorithm 1.  
Algorithm 1: Polyphyletic migration operation 

For a target habitat kX  

1: for k=1 to NP do 

2:     if   krand 1,0 then 

3:         Select habitat eX  with respect to the       

immigration rate, e  

4:         if   e1,0rand  then 

5:             Randomly select ekr   

6:             rdedkdedkd XXXv    

7: else 

8:             Randomly select ks   

9:             sdkd Xv   

10: end if 

11: else 

12:       kdkd Xv   

13:  end if 

14:  end for 

The polyphyletic migration operator has three advantages. 

First, it directly copy information from habitat and uses the 

fairly good habitat as the base to produce a symmetrical 

perturbation. So, it fetches more new information from the 

unexploited feasible space. Second, it ensures the emigration 

of new features from other habitats. The third advantage is 

that the emigration habitat principally focuses on the 

exploitation while the other two habitats which are randomly 

selected from the current population mainly emphasize the 

exploration. These three types of habitats help to attain a good 

balance between exploitation and exploration processes. 

E. Mutation 

In BBO, the mutation operator is used to increase the 

population diversity, which helps to lessen the chances of 

trapping in the local minima [36]. The immigration and 

emigration processes can be represented mathematically by a 

probabilistic model. Consider the probability, kP  that a habitat 

contains K species. kP  changes from time t to time tt  as 

follows: 

     tPtPtttPttP kkkkkkkk
  11111    

       (26) 

where, k and k are the immigration and emigration 

rates when there are K species in the habitat. This equation 

holds because in order to have K species at time tt  , one of 

the following conditions must hold: 

a) There were K species at time t, and no immigration 

or emigration occurred between t and tt  . 

b) There were  1K  species at time t, and single 

specie has immigrated. 

c) There were  1K  species at time t, and single 

specie has emigrated. 

If time t is small enough so that the probability of more 

than one immigration or emigration can be ignored, then 

taking the limits of the Eqn. (24) as 0t gives the 

following equation: 
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       (27) 

where, 1k is the immigration rate for one less than the 

species count of habitat i and 1k is the emigration rate for 

one more than the species count of habitat k and are 

mathematically expressed as: 

 







 


NP

spc
k

1
11      (28) 

 







 


NP

spc
k

1
1       (29) 

where, spcrepresents the species count of the habitat k and 

NP represents the maximum number of species in the habitat. 

The probability is then updated as: 

tPPP kkk 


     (30) 







NP

k
k

k
k

P

P
P

0

     (31) 

In BBO, the mutation rate, ratem  of a SIV in the habitat 

kX  is selected to be replaced by a randomly generated SIV 

according to a probability of existence kP . The mutation rate,

ratem   can be expressed as follows: 
















max

1
P

P
Pm k

muterate     (32) 

where, muteP  is a user defined parameter called the initial 

mutation probability and  kPP maxmax  . The mutation 

operator is described in Algorithm 2.  

F. Stopping Criterion 

OBBO is population based optimization technique and its 

stopping criterion is same as all other population based 

algorithms. Usually the maximum number of iterations 

(generations) is used as the stopping criteria. After completion 

of the generations the diversity of the solution is verified. If 

the obtained solution is found to be reliable, then the program 

is terminated otherwise the generation number is incremented 

as  1 gg and the whole procedure is repeated until an 

optimal solution to the problem is obtained. 

 
Algorithm 2: Mutation operation 

1: for k=1 to NP do 

2: Compute the probability kP  and time derivative of kP
 

i.e. 


kP  using Eqn. (26) and Eqn. (27), respectively. 

3: Update the probability using Eqn. (30) and Eqn. (31) 

4: Compute the mutation rate, mrate using Eqn. (32). 

5:      Select kdX with respect to kP  

6:      if   ratem1,0rand  then 

7:         Replace kdX with a random SIV 

8:   end if 

9: end for 

 

IV. IMPLEMENTATION OF OBBO FOR DIGITAL IIR 

FILTER DESIGN 

For the designing of the digital IIR filters the OBBO 

algorithm is implemented with the incorporation of the 

polyphyletic migration operator instead of the basic migration 

operator together with the mutation operator. The inclusion of 

the polyphyletic migration operator not only increases the 

population diversity but also increases the exploitation and the 

exploration abilities of OBBO. Here, OBBO tries to have an 

optimal IIR filter structure while satisfying the stability 

constraints that are imposed during the designing and 

considers the minimization of magnitude approximation error 

and ripple magnitudes of both the pass-band and the stop-

band. The implementation of OBBO algorithm for digital IIR 

filter design is explained step by step as follows: 

 
Algorithm 3: The main procedure of OBBO algorithm 

1: Initialize the BBO parameters viz. Population size (NP), 
Maximum immigration rate (I), Maximum emigration rate (E), 

Mutation probability ( muteP ), Maximum number of iterations 

(MGEN) 

2: Initialize the population or the random set of habitats, kdX using 

Eqn. (19). Each habitat corresponds to a candidate solution to the 

optimization problem. 

3: Evaluate the fitness i.e. the HSI for each habitat. 
4: Apply opposition and again evaluate the fitness. 

5: Sort the population from best to worst and keep the best habitats. 

6: Initialize the generation counter, 1g   and improve=1 

while the stopping criteria is not met do  
7:        Sort the entire population from best to worst. 

8:        Map the HSI to the number of species. 

9: Calculate the immigration rate, λ and emigration rate,    µ for 
each specie count using Eqn. (17) and Eqn. (18),    

respectively. 

10: Compute the rate of change of probabilities using Eqn. (32). 
11: Compute the probabilities for each species count    and use λ 

and µ to modify the habitats. 

12: For migration operation apply the Algorithm 1 on the 
population. 

13: Evaluate the fitness of newly obtained migrated population 

i.e. the HSI for each habitat. 
14: Perform the Algorithm 2 on the population. 

15: Sort them in ascending order and keep the best habitats.  

16:        Ensure the population does not have duplicates. 
17:        Procure the global best habitat (solution). 

18:        if (global best is not improved) then 

19:            Improve=improve+1 

20:       else 

21:            Improve=1 

22:       if mod(improve, trial) then 
23:            Apply opposition and select best NP habitats 

24:       endif 

25:       1gg   

26: end do 

A. Low Order Digital IIR Filter Design  

For the designing of cascaded digital IIR filters and 

evaluation of filter coefficients, the OBBO algorithm has been 

employed. The designing of LP and HP filters have been 

undertaken and 200 equally spaced points are set within the 

frequency domain [0, π]. The objective of the optimization 

problem is to minimize the magnitude approximation error 

and ripple magnitudes of both the pass-band and the stop-

band, subject to the stability constraints given by (9.1) - (9.5) 

under the prescribed design conditions stated in Table I. So, 

(16) is maximized that maximizes the membership function of 

magnitude error and satisfaction level of constraints. For the 
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purpose of comparison the lowest order of the IIR filter is set 

exactly the same as given in [7] i.e. 3 for both LP and HP 

filters. 

The control parameters settings for OBBO are listed in 

Table II. The final filter models obtained for the LP and HP 

filters are given in (33)-(36), respectively. The magnitude 

responses and pole-zero plots for the LP and HP filters are 

represented in Fig. 4 and Fig. 5, respectively. The best results 

obtained by implementing OBBO for the filters are 

summarized in Table III and Table IV, where the comparison 

of the obtained results is carried out with the design results 

given by other methods like HGA [7], HTGA [8], TIA [9], 

HSM [27], RCGA [23], hybrid method [26], PPO [14], hybrid 

DE [22] and CSO-DE [25]. From Table III and Table IV, it 

can be concluded that for all the filter types, OBBO algorithm 

outperform all other algorithms in terms of providing a lower 

magnitude approximation error except in the case of BP filter, 

where the CSO-DE method listed in [24] provides a further 

lower value of the magnitude approximation error. And in 

terms of pass-band performance and stop-band performance 

also, OBBO is capable of providing smaller values of the 

ripple magnitudes and surpasses all other algorithms for all the 

cases except in the case of HP filter, where the heuristic 

method [27], shows a better pass-band performance.  

TABLE I. PRESCRIBED DESIGN CONDITIONS FOR LP AND 

HP FILTERS 

Filter 
Type 

Maximum value  

of  xiwH ,  
Pass band Stop band 

LP 1 2.00 w   w3.0  

HP 1  w8.0  7.00 w  

 

TABLE II.  VALUES OF CONTROL PARAMETERS FOR LP AND HP 

FILTERS 

Parameters Notation LP HP 

Population size NP 100 100 

Maximum number of iterations MGEN 500 500 
Maximum immigration rate I 1.0 1.0 

Maximum emigration rate E 1.0 1.0 

Step size Δt 1.0 1.0 
Top best habitat KEEP 4 3 

Mutation probability muteP  0.01 0.01 

Lower bound of immigration probability lower  0.0 0.0 

Upper bound of immigration probability upper  
1.0 1.0 

 

TABLE III. DESIGN RESULTS FOR LP FILTER 

Method 
Magnitude 

error 

Pass-band  

performance 

Stop-band 

performance 

HGA [7] 4.3395 
0.8870≤|H(eiw)|≤1.0090 

(0.1139) 

|H(eiw)|≤0.1802 

(0.1802) 

HTGA [8] 4.2511 
0.9004≤|H(eiw)|≤1.0000 

(0.0996) 

|H(eiw)|≤0.1247 

(0.1247) 

TIA [9] 4.2162 
0.9012≤|H(eiw)|≤1.0000 

(0.0988) 

|H(eiw)|≤0.1243 

(0.1243) 

HSM [27] 4.1145 
0.9246≤|H(eiw)|≤1.0110 

(0.0864) 

|H(eiw)|≤0.1238 

(0.1238) 

RCGA [23] 4.0095 
0.9335≤|H(eiw)|≤1.0160 

(0.0825) 

|H(eiw)|≤0.1510 

(0.1510) 

HYBRID [26] 3.7903 
0.9283≤|H(eiw)|≤1.0260 

(0.0977) 

|H(eiw)|≤0.1405 

(0.1405) 

 PPO [14] 3.6611 
0.9178≤|H(eiw)|≤1.0000 

(0.0822) 

|H(eiw)|≤0.1611 

(0.1611) 

Hybrid DE [22] 3.5014 
0.8838≤|H(eiw)|≤1.0190 

(0.1352) 

|H(eiw)|≤0.1505 

(0.1505) 

CSO-DE [25] 3.4678 
0.8455≤|H(eiw)|≤1.0400 

(0.1945) 

|H(eiw)|≤0.1129 

(0.1129) 

OBBO 3.4343 
0.9511≤|H(eiw)|≤1.0328 

(0.0817) 

|H(eiw)|≤0.1118 

(0.1118) 

 

TABLE IV. DESIGN RESULTS FOR HP FILTER 

Method 
Magnitude 

error 

Pass-band  

performance 

Stop-band 

performance  

HGA [7] 14.5078 
0.9224≤|H(eiw)|≤1.0030 

(0.0806) 

|H(eiw)|≤0.1819 

(0.1189) 

HTGA [8] 4.8372 
0.9460≤|H(eiw)|≤1.0000 

(0.0540) 

|H(eiw)|≤0.1457 

(0.1457) 

TIA [9] 4.7144 
0.9467≤|H(eiw)|≤1.0000 

(0.0533) 

|H(eiw)|≤0.1457 

(0.1457) 

HSM [27] 4.6635 
0.9584≤|H(eiw)|≤1.0080 

(0.0496) 

|H(eiw)|≤0.1477 

(0.1477) 

RCGA [23] 4.5296 
0.9677≤|H(eiw)|≤1.0186 

(0.0509) 

|H(eiw)|≤0.1540 

(0.1540) 

HYBRID [26] 3.9724 
0.9625≤|H(eiw)|≤1.0265 

(0.0640) 

|H(eiw)|≤0.1536 

(0.1536) 

 PPO [14] 3.9332 
0.9401≤|H(eiw)|≤1.0010 

(0.0609) 

|H(eiw)|≤0.1692 

(0.1692) 

Hybrid DE [22] 2.8960 
0.8955≤|H(eiw)|≤1.0140 

(0.1185) 

|H(eiw)|≤0.1100 

(0.1100) 

CSO-DE [25] 2.7119 
0.9396≤|H(eiw)|≤1.0090 

(0.0694) 

|H(eiw)|≤0.1567 

(0.1567) 

OBBO 2.6762 
0.9640≤|H(eiw)|≤1.0145 

(0.0505) 

|H(eiw)|≤0.0923 

(0.0923) 

 
  
  7572.04639.16991.0_

9546.03104.07405.0
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
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 
  
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9603.05992.02999.1
0313.0

2

2






zzz
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Fig. 4 Magnitude responses of LP and HP filters 

B. Higher order digital IIR filter design  

The developed OBBO algorithm has also been 

successfully implemented for the higher order digital IIR filter 

design problem. Similar to the lower order design, 200 equally 

spaced points are set within the frequency domain [0, π]. The 
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order of the digital IIR filter is given as M+2N; where M and 

N denotes the number of filter coefficients. Here, the objective 

of the optimization problem is to maximize the absolute error 

of magnitude response of the filter subject to the stability 

constraints given by (9.1) - (9.5) under the prescribed design 

conditions given in Table I. For the LP filter, the maximum 

number of iterations is kept as 500 and the population size of 

150 habitats is considered with the maximum immigration and 

maximum emigration rate of 1.0 each. The value of top 5 

habitats is kept during the optimization process and the 

mutation probability and step size are set as 0.01 and 1.0, 

respectively. The proposed algorithm shows the capability to 

design a stable LP filter with values of M and N equal to 3 and 

4, respectively i.e. the order of the filter is 11. This designed 

filter with an order of 11 showed better magnitude 

approximation error over all other orders. The magnitude 

approximation error and the pass-band and stop-band ripple 

values for the higher order LP filter are summed up in Table V 

and the values of the best optimized numerator and 

denominator coefficients are shown in Table VI.  

A similar approach has been followed for designing the 

higher order digital IIR HP filter. The maximum value of 

order for the digital IIR HP filter for which the implemented 

algorithm shows competitive results is given in Table V. The 

magnitude approximation error and the pass-band and stop-

band ripple values for these filters are also summed up in 

Table V and the best optimized coefficient values for the HP 

filter are given in Table VII.  

 
     Fig. 5 Pole-zero plots of LP and HP filters 

 

 

TABLE V. DESIGN RESULTS FOR HIGHER ORDER LP AND HP 

FILTERS  

Filter 
Magnitude 

Error 
Pass band 
 ripples 

Stop band 
ripples 

Filter 
order 

LP 2.3943 
0.9461≤|H(e)|≤ 1.0281 

(0.0820) 
|H(e)|≤0.0732 

(0.0732) 
11 

HP 2.0301 
0.9341≤|H(e)|≤ 1.0087 

(0.0746) 
|H(e)|≤0.0365 

(0.0314) 
10 

 

TABLE VI. COEFFICIENTS OF HIGHER ORDER DIGITAL IIR LP 

FILTER MODEL 

i ai bi pi qi ri si 

1 0.1675 -0.3507 -0.7151 0.4411 -0.9245 0.5389 

2 0.1368 -0.3456 -0.6154 0.7376 -0.8187 0.4144 

3 0.1817 -0.3763 -0.5253 0.6446 -1.0501 0.5276 

4   -0.7117 0.5657 -0.7887 0.4098 

 

TABLE VII. COEFFICIENTS OF HIGHER ORDER 

DIGITAL IIR HP FILTER MODEL 

i ai bi pi qi ri si 

1 -0.5253 -0.3763 0.4144 0.6467 0.6467 0.0176 

2 0.0176 0.4144 0.0176 0.6446 0.0176 0.0176 

3 0.6446 0.6466 0.0176 0.6446 0.0176 0.0176 

4 0.0176 -0.3763     

C. Robustness of the designed algorithm 

Like other population based stochastic algorithms, in 

OBBO population is also initialized randomly. So, 

randomness is an inherent feature of OBBO. Therefore, in 

order to check the robustness of OBBO algorithm to achieve 

global optimum design solution for order 3 LP and order 3 HP 

filter design, 100 independent trial runs have been given with 

random seed numbers for each case and the variations in the 

magnitude response has been observed. The maximum value, 

minimum value, average value and standard deviation in 

magnitude approximation error are given in Table VIII. From 

the results, it can be observed that for each case, the value of 

standard deviation is very small which indicates the 

robustness of OBBO algorithm. 

A similar approach has been followed to check the 

robustness of OBBO algorithm for the design of higher order 

digital IIR LP and HP filters and the maximum value, 

minimum value, average value and standard deviation of the 

magnitude response error are given in Table IX. The results 

obtained depict the value of standard deviation is very less in 

this case too, which proves the robustness of OBBO algorithm 

again.  
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TABLE VIII. MAXIMUM, MINIMUM, AVERAGE AND 

STANDARD DEVIATION OF MAGNITUDE ERROR FOR 

LOWER ORDER FILTERS 

Filter 

Maximum 

magnitude 

Error 

Minimum 

magnitude 

Error 

Average  

magnitude 

Error 

Standard  
Deviation  

LP 3.7145 3.4351 3.6201 0.0079 

HP 3.0933 2.6795 2.8914 0.0532 

 

TABLE IX.  MAXIMUM, MINIMUM, AVERAGE AND 

STANDARD DEVIATION OF MAGNITUDE ERROR FOR 

HIGHER ORDER FILTERS  
 

Filter 

Maximum 

 magnitude 

Error 

Minimum  

magnitude 

Error 

Average  

magnitude 

Error 

Standard 
Deviation  

LP 4.1124 2.3444 3.9762 0.1281 

HP 5.4603 2.0386 4.1724 0.1977 

D. Statistical Analysis  

For further validation of the results obtained by 

implementing OBBO for IIR filter design, the Wilcoxon’s 

signed rank test has been applied. This test performs a 

pairwise comparison between all the results obtained by using 

OBBO algorithm and the results of other existing algorithms. 

The Wilcoxon’s signed rank test (Table X) depicts that OBBO 

algorithm shows a significant improvement over HGA, 

HTGA, TIA, HSM, RCGA, hybrid method, PPO, hybrid DE 

and CSO-DE algorithms with a significant level of α=0.05 and 

facilitates the designing of not only stable but optimal digital 

IIR LP and HP filters.  

 

TABLE X. STATISTICAL ANALYSIS RESULTS BASED ON 

WILCOXON’S SIGNED RANK TEST 
Filter Performance 𝑹+ 𝑹− p-value 

LP 

Magnitude approximation 

error 

55 0 0.005062 

Pass-band performance 55 0 0.005062 

Stop-band performance 55 0 0.005062 

HP 

Magnitude approximation 

error 

55 0 0.005062 

Pass-band performance 53 2 0.009344 

Stop-band performance 55 0 0.005062 

V. CONCLUSION 

 

Till-date, a lot of work has been carried out for the 

designing of digital IIR filters. But, most of the population 

based optimization algorithms face difficulties like search 

stagnation, premature or slow convergence etc. and are not 

capable of providing promising results. This paper implements 

a revised algorithm i.e. the OBBO algorithm, for the robust 

and optimal design of digital IIR LP and HP filters. To 

increase the population diversity and to remedy the problems 

like premature convergence, trapping in the local minima etc., 

the polyphyletic migration operator and oppositional learning 

strategy are incorporated in the basic BBO algorithm. Then, 

the OBBO algorithm is implemented for optimal digital IIR 

filter design. The constraints are taken care of by considering 

them as another objective function to be optimized. The 

performance estimation of OBBO algorithm is carried out by 

comparing the obtained results with other well known 

algorithms. From the results obtained, it is clear that under 

prescribed design conditions, the OBBO algorithm is very 

much feasible and outperforms other well known algorithms 

for the designing of digital IIR filters of low as well as high 

orders. Further, the OBBO algorithm, allows each filter to be 

designed independently. Parameter tuning is still a potential 

area for further research. The OBBO algorithm possesses a 

quite good exploitation and exploration abilities to search for 

the optimal solution locally as well as globally.  
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