
Implementation of Log and Exponential Function

in FPGA

J. Sujitha
Ece Department

Pbr Vits,Kavali

V. Ramohan Reddy
Asst.Professor,Ece Department

Pbr Vits, Kavali.

Abstract: The present pattern back toward components

intense indication handling has discovered a comparative

deficiency of knowledge of components signal processing

architectures. Many components effective methods are

available, but these are usually not well known due to the

popularity of software systems over the past one fourth

millennium. Among these techniques is a set of shift-add

techniques together known as CORDIC for handling a

extensive range of functions such as certain trigonometric,

hyperbolic and linear functions. This paper presents

architecture of CORDIC, embedded with a sealing that has

only little variety of adders and shifters. This paper suggests

multiplier-less structure for the execution of exponential and

logarithmic functions based on CORDIC technique.

Keywords: CORDIC, Exponential, Logarithmic, FPGA

INTRODUCTION:

The advantages in the very large scale integration (VLSI)

Technology and the advent of

electronic design automation tools have been directing the

current research in the areas of digital signal processing,

communications, etc in terms of the style of high-speed

VLSI architectures for actual time algorithms and systems

which have applications in the above mentioned areas. The

development rate of VLSI technology was predicted by

Gordon Moore and since 1965 technologies have been

developed by the industry fitting his predicted curve, which

was introduced as the so called Moore's law. These have

provided momentum to the designers for transforming

algorithm into architecture. Many DSP algorithms, like

Image enhancement, Segmentation, Image scaling use

elementary functions like logarithmic, trigonometric,

exponential, division and multiplication.

Two of the ways of implementing

these functions are by using table lookup method and

through polynomial expansions. The above mentioned

methods require large number of multiplications or

divisions and additions or subtractions. Coordinate rotation

digital computer (CORDIC), a special purpose computer to

compute many non-linear transcolental functions, was

proposed by Volder in 1959. Additions to the CORDIC

concept depending on work by David. Walther and others

solutions to a wider type of features[1 2]. As we are aware

of that the multiplications take a large area (especially DSP

blocks) and high delay in giving output. In order to

overcome this problem, we proposed a new method. This

paper attempts to the implementation of Hardware efficient

and multiplier less exponential and logarithmic function

using CORDIC technique[3].In this paper we aim at

reducing hardware by using addition and shifting,

improving the speed greater than 175MHz.

LITERATURE OF SURVEY:

The available methods to compute the logarithm of a

number using digital circuits can be divided in two main

groups. On the one hand, we have the look-up table based

algorithms and, on the other, iterative methods. The first

approach is faster and straightforward, but only useful for

low precision. For implementing it, requires large amount

of memory for increasing the accuracy. This is due to the

size of the look-up table. We only evaluated iterative

algorithms that need small look-up tables. The second

group is slower, but suitable for high precision. Taylor's

series expansion is among the most popular methods to

manually compute logarithms, but it has a slow

convergence and requires slow operations like the division.

Hence, they are slow when no embedded multipliers are

available. Many studies explore hybrid implementations

that take advantages from both groups.

Our project required an algorithm that could be

implemented on FPGAs from any vendor. It should be

platform independent. Our algorithm requires less memory

and no multiplier at all to implement exponential and

logarithm function.

Powering Function:

The complexity of the powering function, x
y

(where x is the base and y the exponent),makes very

difficult to implement an efficient and accurate operator in

a direct way without any range reduction. However it can

be reduced to a combination of other operations and

calculated straight forward with the transformation:

Z= x
y
= e

yxlnx
 (1)

A direct implementation of this approach with three sub-

operators(a logarithm,a multiplier and a exponential)

presents three main problems that have to be effectively

handled:

 1.The enormous complexity of both exponential and

logarithm functions. However, the use of table driven

methods in combination with range reduction algorithms

makes possible their implementation.

1404

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111092

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

2. The computation with a negative base results in Not a

Number even though the powering function is defined for

negative bases and integer exponents.

3. Equation (1) can lead to a large error in the result.

Although the sub-operators were almost exact the relative

error from each sub-operator spreads through the equation

generating the final large relative error. Extending the

precision of the partial results in an effective way will

minimize these relative errors.

To the best of our knowledge there are only two

previous works focused on the exponential function [4] [5],

and only one for the logarithm function [6] (from the same

authors of [5]). The first one [4], employs an algorithm that

does not exploit the FPGA characteristics, and

consequently presents poor performance. The other two

implementations [5, 6] are part of a common work and is

designed suiting with FPGA flexibility (using internal

tailored fixed arithmetic and exploiting the parallelism

features of the FPGA) achieving much better results. They

are parameterizable implementations that, additionally to

single floating point format, also allow smaller exponent

and mantissa bit-widths and are both based on input range

reduction and table-driven methods to calculate the

function in the reduced range. Our ex and ln x units, based

on these units, include the following innovative features:

Single precision floating point arithmetic

extension [5, 6] were designed considering only normalized

numbers, not denormalized. Additional logic has been

introduced to handle denormalized numbers at the output of

ex and the input of ln x.

1. Redesign of units to deal only with single precision. The

feature of bit-width configurability of the base designs has

been removed. Thus, the resources needed have been

reduced because specific units, just for single precision,

have been developed.

2. Simplification of constant multiplications. As suggested

in [5], conventional multipliers have been removed where

the multiplications involved constant coefficients,

improving performance and reducing size.

3. Unsigned arithmetic. In [5, 6] internal fixed arithmetic

with sign is used. However, some operations (like the ones

involving range reduction and calculation of the exponent

for the result in ex) are consecutive and related, and the

sign of the result can be inferred from the input sign. For

such operations signed arithmetic has been replaced by

unsigned arithmetic with the corresponding logic reduction.

4. Improved pipelining. The speed is enhanced by

systematically introducing pipeline stages to the data path

of the exponential and logarithm units and their subunits.

The paper [7] explains about the implementation

of power and log function based on a simple modification

of power series expansion of Taylor series. In power

function implementation, the paper aims at reducing the

exponent number to a smaller value. It requires a large

amount of block ram and hardware multipliers as well. It

becomes platform dependent and the clock frequency may

vary from vendor to vendor. The degradation in throughput

rate is due to the use of 18 X 18 embedded multipliers in it.

The powering unit also requires more number of stages

which may be reduced further.

In the proposed method, we are going to reduce delay and

improve the throughput rate by avoiding the embedded

multipliers and block RAMs. In this paper, we are not

completely avoid look up tables, but any value of logarithm

or exponential can be calculated, by adjusting the look up

table values to the desired number.

PROPOSED METHOD:

The proposed method avoids multiplication and division

operations, and is thus appropriate for execution in

application on processor chips that absence such guidelines

(or where the guidelines are slow) or in components on a

automated reasoning system or devoted chip. This method

is suitable when shifters are available in abundant. It is an

extension to the implementation of sine and cosine

explained in CORDIC. The proposed algorithm evaluates

the power functions for both positive and negative values.

There are some always the same by which it is simple to

increase. For example, growing by 2n, where n is a

beneficial or a damaging integer, can be carried out by

basically moving a variety by n locations. The move will

be to the remaining (division) if n is positive, to the right

(multiplication) if n is adverse. It is nearly as simple to

increase by variety of the form ±2
n
±1. These simply

involve an add (or) subtract a shift.

Implementation of EXP:

For implementing y = exp(x). The criteria is going

to produce a series of principles for x and y, and we are

going to create sure that for each pair

y=exp(4)·

y′=exp(4)·exp(-(x-k))

=exp(4)·exp(-x)·exp(k)

=y·exp(k).

In other terms, if we deduct k from x, we have to increase y

by exp(k). All we have to do now is create sure that exp(k)

is a awesome variety, so we can increase by it quickly, and

the relax is uncomplicated. Observe that k itself does not

have to be awesome, as we are only subtracting that, not

growing by it. Here are some awesome principles of exp(k)

and the corresponding (not actually nice) principles of k.

K Exp(k)

5.5452 256

2.7726 16

1.3863 4

0.6931 2

0.4055 3/2

0.2231 5/4

0.1178 9/8

0.0606 17/16

0.0308 33/32

0.0155 65/64

0.0078 129/128

1405

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111092

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

The flow of algorithm is as follows for positive powers of

x:

Here in each iteration, we subtract the input from the

nearest value of exp(k) as listed in the table. If the

difference is negative, we multiply the output by the

corresponding exp(k). The process continues withmore

entities in our table of k, finally we get the result. In the

same way the flow chart is mentioned for nagative powers

of x.

The flow of algorithm is as follows for negative powers of

x:

Here in each iteration, we subtract the input from the

nearest value of exp(k) as listed in the table. If the

difference is positive, we divide the output by the

corresponding exp(k). The process continues withmore

entities in our table of k, finally we get the result.

Implementation of LOG :

 For implementing Y=log (x), As for exp(), the

requirements is a sequence of concepts for x and y. Now

our invariant is

exp(y)·x=54

or

y=log(54/x).

Observe that y=log(54/x)=log(1)=0 as needed.

Our aim is to get x to 1 while keeping the invariant. Then y

will be given by

y=log(54/1)=log(54),

Suppose we increase x by some variety k. Then to sustain

the invariant, the new the invariant, the new y value y′ will

have to fulfill

y′=log(54/kx)

=log(54/x)+log(1/k)

=y-log(k).

All the k principles in this desk are higher than 1.

We will therefore have to begin with x less than 1 so we

begin by growing x by 1/256 (other awesome figures

would perform too) after we multiply it by the minimum

K Exp(k)

5.5452 256

2.7726 16

1.3863 4

0.6931 2

0.2877 3/4

0.1335 7/8

0.0645 15/16

0.0317 31/32

0.0157 63/64

0.0078 127/128

0.0039 255/256

1406

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111092

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

value which produces less than 1 and the corresponding

output from the lookup table is added to the previous

output. This process goes on till the end of the lookup

table.

RESULT:

Implementation Issues

LOG

 Device Stratix II

 LUT 777

 Logic registers 122

 Block memory 0

 DSP block 0

 Clock frequency 207MHz

EXP

 LUT 571

Logic registers 53

Block memory 0

DSP block 0

 Clock frequency 152MHz

For proving our algorithm, we are using stratix II device

and quartus 9.1 edition from ALTERA software. In

logarithm implementation, the input is to be multiplied by

65536 and the output we get has to be divided by 65536 in

order to get the actual value. The output values of our

algorithm are compared with the MATLAB.

While implementing exponential algorithm, we need to

multiply input by 65536 to ensure the floating point

number converts to a fixed point number. Here we are

going to truncate the value to the nearest value. This paper

aims at implementing the exp(x) where x value varies from

0 to ±50. But it can be extended further by increasing the

bit length required to store the data. But it requires more

hardware at the expense of a little delay.

CONCLUSION:

The advantage of the design proposed in this paper is that

no DSP or multiplication blocks are used. As 16 bit

precision is used, the accuracy of the design is high. The

only disadvantage of our approach is that the numbers of

iterations required are slightly more. This block can be

used in few decoding algorithms in communication

systems. The design will be used in LDPC decoder sum

product algorithm, image enhancement algorithms the

parallel architecture has high throughput (i.e. speed) as

compared to serial architecture.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing technique,”

IRE Transactions on Electronic Computers, vol. EC- 8, pp. 330–334,
Sept. 1959.

[2] B. Gisuthan and T. Srikanthan, “Pipelining flat CORDIC based
trigonometric function generators,” Microelectronics Journal,

volume 33, Pp.77–89, 2002.

[3] E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC
architectures for fast VLSI filtering and array processing,” in IEEE

International Conference on Acoustic, Speech, Signal Processing,

ICASSP’84, March 1984, volume 9, pp.250–253.
[4] C. C. Doss and R. L. Riley, \FPGA-Based execution of a effective

IEEE-754 rapid device," in IEEE Field-Programmable Custom

Computing Machines, 2004, pp.229{238.
[5] J. Detrey and F. de Dinechin, \A parameterized °oating-point

exponential function for FPGAs," in IEEE International Conference

Field-Programmable Technology, 2005, pp.27{34.
[6] ||, \A parameterized °oating-point logarithm operator for FPGAs," in

Signals, Systems and Computers, 2005. Conference Record of the

Thirty-Ninth Asilomar Conference,2005, pp. 1186{1190.
[7] Pedro Echeverra, Marisa Lopez-Vallejo,”An FPGA Implementation

of the Powering function with Single Precision Floating-Point

Arithmetic”

1407

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS111092

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

