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Abstract: The present pattern back toward components 

intense indication handling has discovered a comparative 

deficiency of knowledge of components signal processing 

architectures. Many components effective methods are 

available, but these are usually not well known due to the 

popularity of software systems over the past one fourth 

millennium. Among these techniques is a set of shift-add 

techniques together known as CORDIC for handling a 

extensive range of functions such as certain trigonometric, 

hyperbolic  and linear functions. This paper presents 

architecture of CORDIC, embedded with a sealing that has 

only little variety of adders and shifters. This paper suggests 

multiplier-less structure for the execution of exponential and 

logarithmic functions based on CORDIC technique. 
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INTRODUCTION: 
 

The advantages in the very large scale integration (VLSI) 

Technology and the advent of  

electronic design automation tools have been directing the 

current research in the areas of digital signal processing, 

communications, etc in terms of the style of high-speed 

VLSI architectures for actual time algorithms and systems 

which have applications in the above mentioned areas. The 

development rate of VLSI technology was predicted by 

Gordon Moore and since 1965 technologies have been 

developed by the industry fitting his predicted curve, which 

was introduced as the so called Moore's law. These have 

provided momentum to the designers for transforming 

algorithm into architecture. Many DSP algorithms, like 

Image enhancement, Segmentation, Image scaling use 

elementary functions like logarithmic, trigonometric, 

exponential, division and multiplication.  

Two of the ways of implementing 

these functions are by using table lookup method and 

through polynomial expansions. The above mentioned 

methods require large number of multiplications or 

divisions and additions or subtractions. Coordinate rotation 

digital computer (CORDIC), a special purpose computer to 

compute many non-linear transcolental functions, was 

proposed by Volder in 1959. Additions to the CORDIC 

concept depending on work by David. Walther and others 

solutions to a wider type of features[1 2]. As we are aware 

of that the multiplications take a large area (especially DSP 

blocks) and high delay in giving output. In order to 

overcome this problem, we proposed a new method. This 

paper attempts to the implementation of Hardware efficient 

and multiplier less exponential and logarithmic function 

using CORDIC technique[3].In this paper we aim at 

reducing hardware by using addition and shifting, 

improving the speed greater than 175MHz. 

 

LITERATURE OF SURVEY: 
 

The available methods to compute the logarithm of a 

number using digital circuits can be divided in two main 

groups. On the one hand, we have the look-up table based 

algorithms and, on the other, iterative methods. The first 

approach is faster and straightforward, but only useful for 

low precision. For implementing it, requires large amount 

of memory for increasing the accuracy. This is due to the 

size of the look-up table. We only evaluated iterative 

algorithms that need small look-up tables. The second 

group is slower, but suitable for high precision. Taylor's 

series expansion is among the most popular methods to 

manually compute logarithms, but it has a slow 

convergence and requires slow operations like the division. 

Hence, they are slow when no embedded multipliers are 

available. Many studies explore hybrid implementations 

that take advantages from both groups.  

Our project required an algorithm that could be 

implemented on FPGAs from any vendor. It should be 

platform independent. Our algorithm requires less memory 

and no multiplier at all to implement exponential and 

logarithm function.  
 

Powering Function:  

The complexity of the powering function, x
y
 

(where x is the base and y the exponent),makes very 

difficult to implement an efficient and accurate operator in 

a direct way without any range reduction. However it can 

be reduced to a combination of other operations and 

calculated straight forward with the transformation: 

Z= x
y
= e

yxlnx 
                            (1) 

A direct implementation of this approach with three sub-

operators(a logarithm,a multiplier and a exponential) 

presents three main problems that have to be effectively 

handled: 

 1.The enormous complexity of both exponential and 

logarithm functions. However, the use of table driven 

methods in combination with range reduction algorithms 

makes possible their implementation. 
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2. The computation with a negative base results in Not a 

Number even though the powering function is defined for 

negative bases and integer exponents. 

3. Equation (1) can lead to a large error in the result. 

Although the sub-operators were almost exact the relative 

error from each sub-operator spreads through the equation 

generating the final large relative error. Extending the 

precision of the partial results in an effective way will 

minimize these relative errors.  

To the best of our knowledge there are only two 

previous works focused on the exponential function [4] [5], 

and only one for the logarithm function [6] (from the same 

authors of [5]). The first one [4], employs an algorithm that 

does not exploit the FPGA characteristics, and 

consequently presents poor performance. The other two 

implementations [5, 6] are part of a common work and is 

designed suiting with FPGA flexibility (using internal 

tailored fixed arithmetic and exploiting the parallelism 

features of the FPGA) achieving much better results. They 

are parameterizable implementations that, additionally to 

single floating point format, also allow smaller exponent 

and mantissa bit-widths and are both based on input range 

reduction and table-driven methods to calculate the 

function in the reduced range. Our ex and ln x units, based 

on these units, include the following innovative features: 

Single precision floating point arithmetic 

extension [5, 6] were designed considering only normalized 

numbers, not denormalized. Additional logic has been 

introduced to handle denormalized numbers at the output of 

ex and the input of ln x. 

1. Redesign of units to deal only with single precision. The 

feature of bit-width configurability of the base designs has 

been removed. Thus, the resources needed have been 

reduced because specific units, just for single precision, 

have been developed. 

2. Simplification of constant multiplications. As suggested 

in [5], conventional multipliers have been removed where 

the multiplications involved constant coefficients, 

improving performance and reducing size. 

3. Unsigned arithmetic. In [5, 6] internal fixed arithmetic 

with sign is used. However, some operations (like the ones 

involving range reduction and calculation of the exponent 

for the result in ex) are consecutive and related, and the 

sign of the result can be inferred from the input sign. For 

such operations signed arithmetic has been replaced by 

unsigned arithmetic with the corresponding logic reduction. 

4. Improved pipelining. The speed is enhanced by 

systematically introducing pipeline stages to the data path 

of the exponential and logarithm units and their subunits. 

The paper [7] explains about the implementation 

of power and log function based on a simple modification 

of power series expansion of Taylor series. In power 

function implementation, the paper aims at reducing the 

exponent number to a smaller value. It requires a large 

amount of block ram and hardware multipliers as well. It 

becomes platform dependent and the clock frequency may 

vary from vendor to vendor. The degradation in throughput 

rate is due to the use of 18 X 18 embedded multipliers in it. 

The powering unit also requires more number of stages 

which may be reduced further. 

In the proposed method, we are going to reduce delay and 

improve the throughput rate by avoiding the embedded 

multipliers and block RAMs. In this paper, we are not 

completely avoid look up tables, but any value of logarithm 

or exponential can be calculated, by adjusting the look up 

table values to the desired number. 

 

PROPOSED METHOD: 
 

The proposed method avoids multiplication and division 

operations, and is thus appropriate for execution in 

application on processor chips that absence such guidelines 

(or where the guidelines are slow) or in components on a 

automated reasoning system or devoted chip. This method 

is suitable when shifters are available in abundant. It is an 

extension to the implementation of sine and cosine 

explained in CORDIC. The proposed algorithm evaluates 

the power functions for both positive and negative values. 

There are some always the same by which it is simple to 

increase. For example, growing by 2n, where n is a 

beneficial or a damaging integer, can be carried out by 

basically moving a variety by n locations. The move will 

be to the remaining (division) if n is positive, to the right 

(multiplication) if n is adverse. It is nearly as simple to 

increase by variety of the form ±2
n
±1. These simply 

involve an add (or) subtract a shift. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Implementation of EXP: 

For implementing y = exp(x). The criteria is going 

to produce a series of principles for x and y, and we are 

going to create sure that for each pair 

y=exp(4)· 

y′=exp(4)·exp(-(x-k)) 

=exp(4)·exp(-x)·exp(k) 

=y·exp(k). 
 

In other terms, if we deduct k from x, we have to increase y 

by exp(k). All we have to do now is create sure that exp(k) 

is a awesome variety, so we can increase by it quickly, and 

the relax is uncomplicated. Observe that k itself does not 

have to be awesome, as we are only subtracting that, not 

growing by it. Here are some awesome principles of exp(k) 

and the corresponding (not actually nice) principles of k. 

 

K Exp(k) 

5.5452 256 

2.7726 16 

1.3863 4 

0.6931 2 

0.4055 3/2 

0.2231 5/4 

0.1178 9/8 

0.0606 17/16 

0.0308 33/32 

0.0155 65/64 

0.0078 129/128 
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The flow of algorithm is as follows for positive powers of 

x: 

 

 

 
 

Here in each iteration, we subtract the input from the 

nearest value of exp(k) as listed in the table. If the 

difference is negative, we multiply the output by the 

corresponding exp(k). The process continues withmore 

entities in our table of k, finally we get the result. In the 

same way the flow chart is mentioned for nagative powers 

of x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flow of algorithm is as follows for negative powers of 

x:  

 
 

Here in each iteration, we subtract the input from the 

nearest value of exp(k) as listed in the table. If the 

difference is positive, we divide the output by the 

corresponding exp(k). The process continues withmore 

entities in our table of k, finally we get the result. 

 

Implementation of LOG : 

 For implementing Y=log (x), As for exp(), the 

requirements is a sequence of concepts for x and y. Now 

our invariant is  

exp(y)·x=54  

or  

y=log(54/x).  

Observe that y=log(54/x)=log(1)=0 as needed. 

Our aim is to get x to 1 while keeping the invariant. Then y 

will be given by  

y=log(54/1)=log(54),  

Suppose we increase x by some variety k. Then to sustain 

the invariant, the new the invariant, the new y value y′ will 

have to fulfill  

y′=log(54/kx)  

=log(54/x)+log(1/k)  

=y-log(k).  

 

All the k principles in this desk are higher than 1. 

We will therefore have to begin with x less than 1 so we 

begin by growing x by 1/256 (other awesome figures 

would perform too) after we multiply it by the minimum 

K Exp(k) 

5.5452 256 

2.7726 16 

1.3863 4 

0.6931 2 

0.2877 3/4 

0.1335 7/8 

0.0645 15/16 

0.0317 31/32 

0.0157 63/64 

0.0078 127/128 

0.0039 255/256 
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value which produces less than 1 and the corresponding 

output from the lookup table is added to the previous 

output. This process goes on till the end of the lookup 

table. 

 

RESULT: 
 

 
 

 

 
Implementation Issues 

LOG 

    Device  Stratix II 

                            LUT                 777 

     Logic registers 122 

                 Block memory     0 

                   DSP block    0 

            Clock frequency        207MHz 

 

EXP 

 

  LUT                571 

Logic registers  53 

Block memory                0 

DSP block  0 

         Clock frequency  152MHz 

  

For proving our algorithm, we are using stratix II device 

and quartus 9.1 edition from ALTERA software. In 

logarithm implementation, the input is to be multiplied by 

65536 and the output we get has to be divided by 65536 in 

order to get the actual value. The output values of our 

algorithm are compared with the MATLAB.  

While implementing exponential algorithm, we need to 

multiply input by 65536 to ensure the floating point 

number converts to a fixed point number. Here we are 

going to truncate the value to the nearest value. This paper 

aims at implementing the exp(x) where x value varies from 

0 to ±50. But it can be extended further by increasing the 

bit length required to store the data. But it requires more 

hardware at the expense of a little delay.  

 

CONCLUSION: 
 

The advantage of the design proposed in this paper is that 

no DSP or multiplication blocks are used. As 16 bit 

precision is used, the accuracy of the design is high. The 

only disadvantage of our approach is that the numbers of 

iterations required are slightly more. This block can be 

used in few decoding algorithms in communication 

systems. The design will be used in LDPC decoder sum 

product algorithm, image enhancement algorithms the 

parallel architecture has high throughput (i.e. speed) as 

compared to serial architecture. 
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