
Implementation of Finite Field Arithmetic

Operations for Large Prime and Binary Fields

using java BigInteger C lass

Ni Ni Hla
University of Computer Studies, Yangon

Myanmar

Tun Myat Aung
University of Computer Studies, Yangon

Myanmar

Abstract—Many cryptographic protocols are based on the

difficulty of factoring large composite integers or a related

problem. Therefore, we implement the finite field arithmetic

operations for large prime and binary fields by using java

BigInteger class to study our research under large integers for

public key cryptosystems and elliptic curve.

Keywords — Finite Field Arithmetic; Prime Field; Binary Field,

Large Integer

I. INTRODUCTION
The origins and history of finite fields can be traced back

to the 17th and 18th centuries, but there, these fields played
only a minor role in the mathematics of the day. In more
recent times, however, finite fields have assumed a much more
fundamental role and in fact are of rapidly increasing
importance because of practical applications in a wide variety
of areas such as coding theory, cryptography, algebraic
geometry and number theory.

Nowadays, a finite field is very important structure in
cryptography. Many cryptographic applications use finite field
arithmetic. Public key systems based on various discrete
logarithm problems are frequently implemented over finite
fields to provide structure and efficient arithmetic.

The finite field arithmetic operations need to be
implemented for the development and research of stream
ciphers, block ciphers, public key cryptosystems and
cryptographic schemes over elliptic curves. Many
cryptographic protocols are based on the difficulty of factoring
large composite integers or a related problem. Therefore, we
implement the finite field arithmetic operations for large prime
and binary fields by using java BigInteger class to study our
research under large integers.

The organization of this paper is as follows: section 2 is
devoted to finite fields and their properties. In section 3, how
to implement finite field arithmetic operations under prime
field and binary field are described. Some algorithms applied
in the implementation are listed in section 4. The results of
implementation for finite field arithmetic operations under
prime field and binary field are shown in section 5. Finally, we
conclude our discussion in section 6.

II. INTRODUCTION TO FINITE FIELDS

A finite field is a field containing a finite number of
elements. Fields are abstractions of familiar number systems
(such as the rational numbers Q, the real numbers R, and the
complex numbers C) and their essential properties. They
consist of a set F together with two operations, addition
(denoted by +) and multiplication (denoted by ·), that satisfy
the usual arithmetic properties:

 (F,+) is an abelian group with (additive) identity denoted
by 0.

 (F\{0}, ·) is an abelian group with (multiplicative) identity
denoted by 1.

 The distributive law holds: (a+b) · c = (a · c) + (b · c) for
all a, b, c ∈ F.

If the set F is finite, then the field is said to be finite. Galois
showed that for a field to be finite, the number of elements
should be pm , where p is a prime number called the
characteristic of F and m is a positive integer. The finite fields
are usually called Galois fields and also denoted as GF(pm). If
m = 1, then GF is called a prime field. If m ≥ 2, then F is called
an extension field. The order of a finite field is the number of
elements in the field. Any two fields are said to be isomorphic
if their orders are the same[4].

A. Field Operations

A field F is equipped with two operations, addition and
multiplication. Subtraction of field elements is defined in
terms of addition: for a,b ∈ F, a −b = a +(−b) where −b is the
unique element in F such that b+(−b) = 0 (−b is called the
negative or additive inverse of b). Similarly, division of field
elements is defined in terms of multiplication: for a,b ∈ F with
b = 0, a/b = a · b−1 where b−1 is the unique element in F such
that b · b−1 = 1. (b−1 is called the multiplicative inverse of b.)

B. Prime Field

Let p be a prime number. The integers modulo p,
consisting of the integers {0,1,2, . . ., p −1} with addition and
multiplication performed modulo p, is a finite field of order p.
We shall denote this field by GF(p) and call p the modulus of
GF(p). For any integer a, a mod p shall denote the unique
integer remainder r, 0 ≤r ≤ p−1, obtained upon dividing a by
p; this operation is called reduction modulo p.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080209
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

450

Example 1. (prime field GF(29)) The elements of GF(29)
are {0,1,2, . . .,28}. The following are some examples of
arithmetic operations in GF(29).

(i) Addition: 17+20 = 8 since 37 mod 29 = 8.
(ii) Subtraction: 17−20 = 26 since −3 mod 29 = 26.
(iii) Multiplication: 17 · 20 = 21 since 340 mod 29 = 21.
(iv) Inversion: 17−1 = 12 since 17 · 12 mod 29 = 1.

C. Binary Field

Finite fields of order 2m are called binary fields or

characteristic-two finite fields. One way to construct GF(2m) is

to use a polynomial basis representation. Here, the elements of

GF(2m) are the binary polynomials (polynomials whose

coefficients are in the field GF(2) = {0,1}) of degree at most m

−1:

𝐺𝐹(2𝑚) = 𝑎𝑚−1𝑥𝑚−1 + 𝑎𝑚−2𝑥𝑚−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 +
𝑎0: 𝑎𝑖 ∈ {0,1}.

An irreducible binary polynomial f (x) of degree m is

chosen. Irreducibility of f(x) means that f(x) cannot be factored

as a product of binary polynomials each of degree less than m.

Addition of field elements is the usual addition of

polynomials, with coefficient arithmetic performed modulo 2.

Multiplication of field elements is performed modulo the

reduction polynomial f(x). For any binary polynomial a(x),

a(x) mod f(x) shall denote the unique remainder polynomial

r(x) of degree less than m obtained upon long division of a(x)

by f(x); this operation is called reduction modulo f(x).

Example 2. (binary field GF(24)) The elements of GF(24)

are the 16 binary polynomials of degree at most 3:

0 𝑥2 𝑥3 𝑥3 + 𝑥2

1 𝑥2 + 1 𝑥3 + 1 𝑥3 + 𝑥2 + 1

𝑥 𝑥2 + 𝑥 𝑥3 + 𝑥 𝑥3 + 𝑥2 + 𝑥

𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 𝑥3 + 𝑥2 + 𝑥 + 1

The following are some examples of arithmetic operations

in GF(24) with reduction Polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1.

(i). Addition: (𝑥3 + 𝑥2 + 1) + (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥

(ii). Subtraction: (𝑥3 + 𝑥2 + 1) − (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥

(iii). Multiplication: (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥2 + 1

since (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥5 + 𝑥 + 1 and

(𝑥5 + 𝑥 + 1) 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 𝑥2 + 1.

(iv). Inversion: (𝑥3 + 𝑥2 + 1)−1 = 𝑥2 since

(𝑥3 + 𝑥2 + 1). 𝑥2 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 1.

III. IMPLEMENTATION OF FIELD OPERATIONS

The finite field arithmetic operations: addition, subtraction,

division, multiplication and multiplicative inverse, need to be

implemented for the development and research of stream

ciphers, public key cryptosystems and cryptographic schemes

over elliptic curves. We implement the finite field arithmetic

operations by using java BigInteger class to study our research

under large numbers.

A. Arithmetic Operations of Prime Field

The arithmetic operations of prime field need to be

implemented to study our research under prime fields.

Therefore, we implement a PrimeField class with methods of

arithmetic operations for addition, subtraction, multiplication

and division of elements (a, b) in the prime field GF(p). The

methods of PrimeField class are implemented as follows.

(i). The addition method is implemented by add and mod

methods of BigInteger class for the logic statement: a + b

= (a + b) mod p.

(ii). The subtraction method is implemented by add, subtract,

and mod methods of BigInteger class for the logic

statement: a - b = (a + (- b)) mod p. In this case, -b is an

additive inverse of prime number p. The logic statement

of additive inverse -b is (p – b).

(iii). The multiplication method is implemented by multiply

and mod methods of BigInteger class for the logic

statement: 𝑎 . 𝑏 = (𝑎 × 𝑏) 𝑚𝑜𝑑 𝑝.

(iv). The division method is implemented by multiply and

modInverse methods of BigInteger class for the logic

statement: 𝑎 ÷ 𝑏 = (𝑎 × 𝑏−1) 𝑚𝑜𝑑 𝑝. In this case, b-1

is a multiplicative inverse of prime number p.

(v). The multiplicative inverse method is adopted from the

modInverse method.

B. Arithmetic Operations of Binary Field

The arithmetic operations of binary field need to be
implemented to study our research under prime fields.
Therefore, we implement a BinaryField class with methods of
arithmetic operations for addition, subtraction, multiplication
and division of elements (a, b) in the binary field GF(2m) with
reduction polynomial p. The methods of BinaryField class are
implemented as follows.

(i). The addition method is implemented by xor method of

BigInteger class for the logic statement:𝑎 + 𝑏 = 𝑎 ⊕ 𝑏.

In this case, The addition operation is implemented by

bitwise XOR operation of all bits of the two operands.

(ii). The subtraction method is identical to the addition

method as above.

(iii). The multiplication method is implemented by shifLeft and

xor methods of BigInteger class for the logic

statement: 𝑎 . 𝑏 = (𝑎 × 𝑏) 𝑚𝑜𝑑 𝑝. The algorithm for

multiplication of two polynomials in GF(2m) is given in

Algorithm (1)[1].

(iv). The quotientAndRemainder method is implemented by

shifLeft and setBit methods of BigInteger class for the

logic statement:(𝑞, 𝑟) = (𝑎 ÷ 𝑏). The algorithm to find

quotient (q) and remainder (r) from division of two

polynomials in GF(2m) is given in Algorithm (2).

(v). The multiplicativeInverse method is implemented by

quotientAndRemainder and multiplication methods of

BinaryField class and xor method of BigInteger for the

logic statement: b · b−1 mod p= 1. The multiplicative

inverse b-1 is computed by using Extended Euclidean

GCD algorithm given in Algorithm (3)[2].

(vi). The division operation is implemented by multiplication

and multiplicativeInverse methods of BinaryField class

for the logic statement: 𝑎 ÷ 𝑏 = (𝑎 × 𝑏−1) 𝑚𝑜𝑑 𝑝. In

this case, b-1 is a multiplicative inverse of prime

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080209
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

451

polynomial p. The multiplicative inverse is adopted from

the multiplicativeInverse method.

IV. ALGORITHMS

Algorithm (1). shift-and-xor method

Input: a, b, p as polynomials

Output: result

Begin

Set result= 0;

For(i=0; i<bitLength of b; i++)

begin

If(bi == 1)

Set result = result xor a.

endIf

Set a = shiftLeft(1) of a.

If(aLSB == 1)

Set a = a xor p.

endIf

end

Return Result

End

Algorithm (2). shift-and-setBit method

Input: a, b as polynomials

Output: quotient, remainder

Begin

Set q = 0.

for (term = bitLength of a – bitLength of b; term >= 0;

 term--)

begin

if (bitLength of a == bitLength of b + term)

Set a = a xor shiftLeft(term of b).

Set quotient = setBit(term of quotient).

endIf

end

Set remainder = a.

Return quotient, remainder

End

Algorithm (3). Extended Euclidean GCD algorithm

Input: x, p as polynomials

Output: a

Begin

 Set y = x.

 Set x = p.

Set a = 0.

 Set b = 1.

 while (𝑦 ≠ 0)

 begin

 Set 𝑞 = 𝑥 / 𝑦.

 Set 𝑟 = 𝑥 𝑚𝑜𝑑 𝑦.

 Set x = y.

 Set y = r.

 Set 𝑡𝑒𝑚𝑝 = 𝑎 ⨁ (𝑞 × 𝑏).

 Set a = b.

 Set b = temp;

 end

 if (x = 1) return a.

 endIf

End

V. RESULTS OF IMPLEMENTATION

We measure the performance of finite field arithmetic
operations: addition, subtraction, division, multiplication and
multiplicative inverse, under prime field and binary field for
comparison of execution time on the processor Intel Core
i5@1.60GHz, 2.30GHz. The finite field arithmetic operations
use the large integers of the prime field and the binary field
defined by NIST recommended elliptic curve for federal
government [6]. The results are listed in Table (1).

Prime Field (P-192)

P= 627710173538668076383578942320766641608390870039

0324961279.
X = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012.

Y = 07192b95ffc8da78631011ed6b24cdd573f977a11e794811.

Addition
Z = X + Y.

Z = 7760966146693106881630710328677455222807224655

64271335459.
Subtraction

Z = X - Y.

Z = 4279959500820666253533559283073067015526754877
09498034177.

Multiplication

Z = X . Y.
Z = 4639807044776303443638933838541143505414608

422678862314472.

Division
Z = X % Y.

Z = 10202314840632689983978512977265729012862841272
07709149774.

Multiplicative Inverse of X

Z = 4501487661668459201131201625760338945286855411
592992703750.

Binary Field (K-163)

𝑝(𝑡) = 𝑡163 + 𝑡7 + 𝑡6 + 𝑡3 + 1
X = 2fe13c0537bbc11ac aa07d793de4e6d5e5c94eee8
Y = 289070fb05d38ff58321f2e800536d538ccdaa3d9

Addition

Z = X + Y.
Z = 7714cfe32684eef49818f913db78b866904e4d31

Subtraction

Z = X - Y.
Z = 7714cfe32684eef49818f913db78b866904e4d31

Multiplication

Z = X . Y.
Z = 4d741872162b253d5a381f1f680b47e5c0ad3aa2a

Division
Z = X % Y.

Z = 498d03bb544d83614e0b5963052f604eb8ec8d0cd

Multiplicative Inverse of X

Z = 63f514f39f4587684f96c8dd6558e69339a1efed9

Table (1). The results of performance

Finite Field
Arithmetic Operations

Prime Field
(ms/100000times)

Binary Field
(ms/100000times)

Addition

Subtraction
Division

Multiplication

Multiplicative inverse

31

62
2262

156

2028

16

16
70497

2808

70153

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080209
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

452

VI. CONCLUSION

This is the first step to study our research under large

integers for public key cryptosystems and elliptic curve. The

performance of addition and subtraction operations of binary

field are more efficient than prime field. The performance of

division, multiplication and multiplicative inverse operations

of prime field are more efficient than binary field. Therefore, a

java BigInteger class is more efficient for the software

implementation of finite field arithmetic operations in prime

field.

REFERENCES
[1]. Annabell Kuldmaa, Efficient Multiplication in Binary Fields, 2015.
[2]. Behrouz A. Forouzan, Cryptography and Network Security,

McGraw-Hill press, International Edition, 2008.

[3]. Darrel Hankerson, Alfred Menezes, Scott Vanstone. Guide to Elliptic
Curve Cryptography, Springer press, 2004.

[4]. Dave K. Kythe, Prem K. Kythe. Algebraic and Stochastic Coding

Theory, CRC Press, 2012.
[5]. Rudolf Lidl and Harald Niederreiter, Introduction to Finite Field

Arithmetic and their Applications, Cambridge University Press, 1986.

[6]. Recommended Elliptic Curves for Federal Government Use, NIST,
1999.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080209
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

453

