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I. INTRODUCTION 
The origins and history of finite fields can be traced back 

to the 17th and 18th centuries, but there, these fields played 
only a minor role in the mathematics of the day. In more 
recent times, however, finite fields have assumed a much more 
fundamental role and in fact are of rapidly increasing 
importance because of practical applications in a wide variety 
of areas such as coding theory, cryptography, algebraic 
geometry and number theory.  

Nowadays, a finite field is very important structure in 
cryptography. Many cryptographic applications use finite field 
arithmetic. Public key systems based on various discrete 
logarithm problems are frequently implemented over finite 
fields to provide structure and efficient arithmetic. 

The finite field arithmetic operations need to be 
implemented for the development and research of stream 
ciphers, block ciphers, public key cryptosystems and 
cryptographic schemes over elliptic curves. Many 
cryptographic protocols are based on the difficulty of factoring 
large composite integers or a related problem. Therefore, we 
implement the finite field arithmetic operations for large prime 
and binary fields by using java BigInteger class to study our 
research under large integers. 

The organization of this paper is as follows: section 2 is 
devoted to finite fields and their properties. In section 3, how 
to implement finite field arithmetic operations under prime 
field and binary field are described.  Some algorithms applied 
in the implementation are listed in section 4. The results of 
implementation for finite field arithmetic operations under 
prime field and binary field are shown in section 5. Finally, we 
conclude our discussion in section 6.  

II. INTRODUCTION TO FINITE FIELDS 

A finite field is a field containing a finite number of 
elements. Fields are abstractions of familiar number systems 
(such as the rational numbers Q, the real numbers R, and the 
complex numbers C) and their essential properties. They 
consist of a set F together with two operations, addition 
(denoted by +) and multiplication (denoted by ·), that satisfy 
the usual arithmetic properties: 

 (F,+) is an abelian group with (additive) identity denoted 
by 0. 

 (F\{0}, ·) is an abelian group with (multiplicative) identity 
denoted by 1. 

 The distributive law holds: (a+b) · c = (a · c) + (b · c) for 
all a, b, c ∈ F. 

If the set F is finite, then the field is said to be finite. Galois 
showed that for a field to be finite, the number of elements 
should be pm , where p is a prime number called the 
characteristic of F and m is a positive integer. The finite fields 
are usually called Galois fields and also denoted as GF(pm). If 
m = 1, then GF is called a prime field. If m ≥ 2, then F is called 
an extension field. The order of a finite field is the number of 
elements in the field. Any two fields are said to be isomorphic 
if their orders are the same[4]. 

A.  Field Operations 

A field F is equipped with two operations, addition and 
multiplication. Subtraction of field elements is defined in 
terms of addition: for a,b ∈ F, a −b = a +(−b) where −b is the 
unique element in F such that b+(−b) = 0 (−b is called the 
negative or additive inverse of b). Similarly, division of field 
elements is defined in terms of multiplication: for a,b ∈ F with 
b = 0, a/b = a · b−1 where b−1 is the unique element in F such 
that b · b−1 = 1. (b−1 is called the multiplicative inverse of b.) 

B.  Prime Field 

Let p be a prime number. The integers modulo p, 
consisting of the integers {0,1,2, . . ., p −1} with addition and 
multiplication performed modulo p, is a finite field of order p. 
We shall denote this field by GF(p) and call p the modulus of 
GF(p). For any integer a, a mod p shall denote the unique 
integer remainder r, 0 ≤r ≤ p−1, obtained upon dividing a by 
p; this operation is called reduction modulo p. 
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Example 1. (prime field GF(29)) The elements of GF(29) 
are {0,1,2, . . .,28}. The following are some examples of 
arithmetic operations in GF(29). 

(i) Addition: 17+20 = 8 since 37 mod 29 = 8. 
(ii) Subtraction: 17−20 = 26 since −3 mod 29 = 26. 
(iii) Multiplication: 17 · 20 = 21 since 340 mod 29 = 21. 
(iv) Inversion: 17−1 = 12 since 17 · 12 mod 29 = 1. 

C. Binary Field 

Finite fields of order 2m are called binary fields or 

characteristic-two finite fields. One way to construct GF(2m) is 

to use a polynomial basis representation. Here, the elements of 

GF(2m) are the binary polynomials (polynomials whose 

coefficients are in the field GF(2) = {0,1}) of degree at most m 

−1: 

𝐺𝐹(2𝑚)  = 𝑎𝑚−1𝑥𝑚−1 + 𝑎𝑚−2𝑥𝑚−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 +
𝑎0: 𝑎𝑖 ∈ {0,1}. 

An irreducible binary polynomial f (x) of degree m is 

chosen. Irreducibility of f(x) means that f(x) cannot be factored 

as a product of binary polynomials each of degree less than m. 

Addition of field elements is the usual addition of 

polynomials, with coefficient arithmetic performed modulo 2. 

Multiplication of field elements is performed modulo the 

reduction polynomial f(x). For any binary polynomial a(x), 

a(x) mod f(x) shall denote the unique remainder polynomial 

r(x) of degree less than m obtained upon long division of a(x) 

by f(x); this operation is called reduction modulo f(x). 

Example 2. (binary field GF(24)) The elements of GF(24) 

are the 16 binary polynomials of degree at most 3: 

 
0 𝑥2 𝑥3 𝑥3 + 𝑥2 

1 𝑥2 + 1 𝑥3 + 1 𝑥3 + 𝑥2 + 1 

𝑥 𝑥2 + 𝑥 𝑥3 + 𝑥 𝑥3 + 𝑥2 + 𝑥 

𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 𝑥3 + 𝑥2 + 𝑥 + 1 

 

The following are some examples of arithmetic operations 

in GF(24) with reduction Polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1. 

 

(i). Addition: (𝑥3 + 𝑥2 + 1) + (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥 

(ii). Subtraction: (𝑥3 + 𝑥2 + 1) − (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥 

(iii). Multiplication: (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥2 + 1 

since (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥5 + 𝑥 + 1  and 

(𝑥5 + 𝑥 + 1) 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) =  𝑥2 + 1. 

(iv). Inversion: (𝑥3 + 𝑥2 + 1)−1 = 𝑥2 since  

(𝑥3 + 𝑥2 + 1). 𝑥2 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 1. 

 

III. IMPLEMENTATION OF FIELD OPERATIONS 

The finite field arithmetic operations: addition, subtraction, 

division, multiplication and multiplicative inverse, need to be 

implemented for the development and research of stream 

ciphers, public key cryptosystems and cryptographic schemes 

over elliptic curves. We implement the finite field arithmetic 

operations by using java BigInteger class to study our research 

under large numbers. 

A.  Arithmetic Operations of Prime Field 

The arithmetic operations of prime field need to be 

implemented to study our research under prime fields. 

Therefore, we implement a PrimeField class with methods of 

arithmetic operations for addition, subtraction, multiplication 

and division of elements (a, b) in the prime field GF(p). The 

methods of PrimeField class are implemented as follows. 

(i). The addition method is implemented by add and mod 

methods of BigInteger class for the logic statement: a + b 

= ( a + b ) mod p.  

(ii). The subtraction method is implemented by add, subtract, 

and mod methods of BigInteger class for the logic 

statement: a - b = (a + (- b )) mod p. In this case, -b is an 

additive inverse of prime number p. The logic statement 

of additive inverse -b is (p – b). 

(iii). The multiplication method is implemented by multiply 

and mod methods of BigInteger class for the logic 

statement:  𝑎 .  𝑏 = (𝑎 × 𝑏) 𝑚𝑜𝑑 𝑝.  

(iv). The division method is implemented by multiply and 

modInverse methods of BigInteger class for the logic 

statement:  𝑎 ÷   𝑏 = (𝑎 × 𝑏−1) 𝑚𝑜𝑑 𝑝. In this case, b-1 

is a multiplicative inverse of prime number p.  

(v). The multiplicative inverse method is adopted from the 

modInverse method. 

B. Arithmetic Operations of Binary Field 

The arithmetic operations of binary field need to be 
implemented to study our research under prime fields. 
Therefore, we implement a BinaryField class with methods of 
arithmetic operations for addition, subtraction, multiplication 
and division of elements (a, b) in the binary field GF(2m) with 
reduction polynomial p. The methods of BinaryField class are 
implemented as follows. 

(i). The addition method is implemented by xor method of 

BigInteger class for the logic statement:𝑎 + 𝑏 = 𝑎 ⊕ 𝑏. 

In this case, The addition operation is implemented by 

bitwise XOR operation of all bits of the two operands. 

(ii). The subtraction method is identical to the addition 

method as above. 

(iii). The multiplication method is implemented by shifLeft and 

xor methods of BigInteger class for the logic 

statement: 𝑎 .  𝑏 = (𝑎 × 𝑏) 𝑚𝑜𝑑 𝑝. The algorithm for 

multiplication of two polynomials in GF(2m) is given in 

Algorithm (1)[ 1]. 

(iv). The quotientAndRemainder method is implemented by 

shifLeft and setBit methods of BigInteger class for the 

logic statement:(𝑞, 𝑟) = (𝑎 ÷ 𝑏). The algorithm to find 

quotient (q) and remainder (r) from division of two 

polynomials in GF(2m) is given in Algorithm (2). 

(v). The multiplicativeInverse method is implemented by 

quotientAndRemainder and multiplication methods of 

BinaryField class and xor method of BigInteger for the 

logic statement: b · b−1 mod p= 1. The multiplicative 

inverse b-1 is computed by using Extended Euclidean 

GCD algorithm given in Algorithm (3)[ 2]. 

(vi). The division operation is implemented by multiplication 

and multiplicativeInverse methods of BinaryField class 

for the logic statement:  𝑎 ÷   𝑏 = (𝑎 × 𝑏−1) 𝑚𝑜𝑑 𝑝. In 

this case, b-1 is a multiplicative inverse of prime 
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polynomial p. The multiplicative inverse is adopted from 

the multiplicativeInverse method. 
 

IV. ALGORITHMS 
 

Algorithm (1). shift-and-xor method 

Input:  a, b, p as polynomials 

Output: result 

Begin 

Set result= 0; 

For( i=0; i<bitLength of b; i++) 

begin 

If(bi == 1) 

Set  result =  result  xor  a. 

endIf 

Set a = shiftLeft(1) of a. 

If(aLSB == 1)  

Set  a = a  xor  p. 

endIf 

end 

Return Result  

End 
 

Algorithm (2). shift-and-setBit method 

Input: a, b as polynomials 

Output: quotient, remainder 

Begin 

Set q = 0. 

for ( term = bitLength of a – bitLength of  b; term >= 0; 

 term--)  

begin 

if (bitLength of a ==  bitLength of b + term)  

Set a = a xor shiftLeft(term of b). 

Set quotient = setBit(term of quotient). 

endIf 

end 

Set remainder = a. 

Return quotient, remainder 

End 

 

Algorithm (3). Extended Euclidean GCD algorithm 

 

Input: x, p as polynomials 

Output: a 

Begin 

 Set y = x. 

 Set x = p. 

Set a = 0. 

 Set b = 1. 

 while (𝑦 ≠ 0)  

 begin 

  Set 𝑞 = 𝑥 / 𝑦. 

  Set 𝑟 = 𝑥 𝑚𝑜𝑑 𝑦. 

  Set x = y. 

  Set y = r. 

  Set 𝑡𝑒𝑚𝑝 = 𝑎 ⨁  (𝑞 × 𝑏). 

  Set a = b. 

  Set b = temp; 

 end 

 if (x = 1) return a. 

 endIf    

End 

V. RESULTS OF IMPLEMENTATION 

We measure the performance of finite field arithmetic 
operations: addition, subtraction, division, multiplication and 
multiplicative inverse, under prime field and binary field for 
comparison of execution time on the processor Intel Core 
i5@1.60GHz, 2.30GHz. The finite field arithmetic operations 
use the large integers of the prime field and the binary field 
defined by NIST recommended elliptic curve for federal 
government [6]. The results are listed in Table (1).  

Prime Field (P-192) 

P= 627710173538668076383578942320766641608390870039 

0324961279.  
X = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012.  

Y = 07192b95ffc8da78631011ed6b24cdd573f977a11e794811. 

Addition 
Z = X + Y. 

Z = 7760966146693106881630710328677455222807224655 

64271335459. 
Subtraction 

Z = X - Y. 

Z = 4279959500820666253533559283073067015526754877 
09498034177. 

Multiplication 

Z = X . Y. 
Z = 4639807044776303443638933838541143505414608 

422678862314472. 

Division 
Z = X % Y. 

Z = 10202314840632689983978512977265729012862841272 
07709149774. 

Multiplicative Inverse of X 

Z = 4501487661668459201131201625760338945286855411 
592992703750. 

 
Binary Field (K-163) 

𝑝(𝑡) = 𝑡163 + 𝑡7 + 𝑡6 + 𝑡3 + 1 
X = 2fe13c0537bbc11ac aa07d793de4e6d5e5c94eee8 
Y = 289070fb05d38ff58321f2e800536d538ccdaa3d9 

Addition 

Z = X + Y. 
Z = 7714cfe32684eef49818f913db78b866904e4d31 

Subtraction 

Z = X - Y. 
Z = 7714cfe32684eef49818f913db78b866904e4d31 

Multiplication 

Z = X . Y. 
Z = 4d741872162b253d5a381f1f680b47e5c0ad3aa2a 

Division 
Z = X % Y. 

Z = 498d03bb544d83614e0b5963052f604eb8ec8d0cd 

Multiplicative Inverse of X 

Z = 63f514f39f4587684f96c8dd6558e69339a1efed9 
 

Table (1). The results of performance 

Finite Field  
Arithmetic Operations 

Prime Field 
(ms/100000times) 

Binary Field 
(ms/100000times) 

Addition 

Subtraction 
Division 

Multiplication 

Multiplicative inverse 

31 

62 
2262 

156 

2028 

16 

16 
70497 

2808 

70153 
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VI. CONCLUSION 

This is the first step to study our research under large 

integers for public key cryptosystems and elliptic curve. The 

performance of addition and subtraction operations of binary 

field are more efficient than prime field. The performance of 

division, multiplication and multiplicative inverse operations 

of prime field are more efficient than binary field. Therefore, a 

java BigInteger class is more efficient for the software 

implementation of finite field arithmetic operations in prime 

field. 
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