
 Implementation of Elliptic Curve Scalar
Multiplier on FPGA

 V.Parthiban, Student
 M. Tech - VLSI & Embedded System

B.S.Abdur Rahman University
Chennai, India

 vjbparthi@gmail.com

Ms.S.Syed Rafiammal, Assistant Professor
Department of ECE

B.S.Abdur Rahman University
Chennai, India

syedrafiammal@gmail.com

Abstract — In this paper describes scalar multiplier using
implementation of Elliptic Curve Cryptosystem (ECC) over
the binary field GF (2163).It illustrates suitable scheduling for
performing point addition and doubling in Elliptic Curve
Scalar Multiplier (ECSM).The detailed analyses, supported
with experimental results are provided to design the fastest
scalar multiplier over generic curves. It has been concluded
from the comparison of proposed method is useful for high
speed design and better utilization of LUT in FPGA.

Index Terms — Elliptic Curve Cryptosystem, ECSM, LUT,
FPGA, Galois Field.

I. INTRODUCTION
Cryptography [1] uses mathematics to encrypt and

decrypt data. It enables people to store or transmit sensitive
information via insecure network. On the other hand,
cryptanalysis is the science of breaking secure
communication. There are two persons, Alice and Bob
communicate via an insecure channel in a secure way. The
third person who is eavesdropper should not be able to read
the clear text or change it.

1. Symmetric key cryptography

2. Public key cryptography

A. Public key cryptography

In 1976, Diffie and Hellman presented public key

cryptography (PKC), which is unlike traditional public-key.
Diffie Hellman keys are not used to encrypt or decrypt the
message. They are used to create a single shared secret key
between the units.

Public key cryptography contains two keys, which
are public and private keys. A situation is assumed where
Alice wants to send a message to Bob. Alice uses Bob’s
Public key to encrypt a message and her private key to sign
the message. Bob (receiver) uses his Private Key to decrypt
the message and he uses Alice’s Public Key to verify the
signature. The standard bodies have set the key size of the
encryption key, in order to provide the desired security. The
key size decides the hardship of recovering the encrypted
data computationally without the use of the secret key. A
scenario of a public key is depicted in Figure 1 The key pair
(e,d) is selected by Bob. ‘e’ is the public key that Bob sends
to Alice over any channel but the private key ‘d’ is kept.

Alice encrypts the sending message to Bob using Bob’s
public-key. Bob decrypts the cipher text ‘c’ using the ‘d’.

Fig. 1 Public-key cryptography

B. Elliptic curve Cryptography

First introduced in the 1980s, elliptic curve

cryptography (ECC) has become popular due to its superior
strength per bit compared to existing public key algorithms
such as RSA. This superiority translates to equivalent
security levels with smaller keys, bandwidth savings, and
faster implement- tations , making ECC very appealing. The
IEEE proposed standard P1363-2000 recognizes ECC-based
key agreement and digital signature algorithms. Elliptic
curve-based cryptosystems are most closely related to
algorithms like the Digital Signature Algorithm (DSA)
which are based on the discrete logarithm problem. In the
DSA, the parameters can be chosen to provide efficient
implementations of the algorithm. In the same way, the
parameters of ECC based cryptosystems can be selected to
optimize the efficiency of the implementation.
Unfortunately, the selection of the ECC parameters is not a
trivial process and, if chosen incorrectly, may lead to an
insecure system. In response to this issue NIST recommends
ten finite fields, five of which are binary fields, for use in
the ECDSA . For each field a specific curve, along with a
method for generating a pseudo-random curve, are supplied.
These curves have been intentionally selected for both
cryptographic strength and efficient implementation. Such a
recommendation has significant implications on design
choices made while implementing elliptic curve
cryptographic functions. In standardizing specific fields for
use in elliptic curve cryptography (ECC), NIST allows ECC
implementations to be heavily optimized for curves over a
single finite field [2]. As a result, performance of the
algorithm can be maximized and resource utilization,

392

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

whether it code size for software or logic gates for
hardware, can be minimized.
The performance of an Elliptic Curve Cryptosystem is
mostly determined by the efficient implementation of finite
field arithmetic. In this work an efficient curve
implementation for ECC over different approaches on finite
field is presented. And we explained the Domain Parameters
over prime field GF (p) and binary field GF (2m)

II.MATHEMATICAL BACKGROUND

Elliptic curves over real numbers are defined as the

set of points (x, y) which satisfy the elliptic curve equation
of the form
 y2=x3+ax+b
Where a and b are real numbers. Each choice of a and b
produces a different elliptic curve. The elliptic curve in
forms a group if 4a3+27b2≠ 0. An elliptic curve group over
real numbers consists of the points on the corresponding
elliptic curve, together with a special point O called the
point at infinity. Elliptic curve groups are an additive group
that is, their basic function is addition. The negative of a
point P = (x, y) is its reflection in the x-axis: the point - P is
(x, -y). If the point P is on the curve, the point - P is also on
the curve.

In elliptic curve cryptography we are only
interested in elliptic curves defined over finite fields. This
means that the coordinates of the points in the elliptic curve
can only take values that belong to the finite field over
which, the elliptic curve[3] has been defined. In particular
we define elliptic curves over binary extension fields GF
(2m), using the following adjusted curve equation,

y2+xy= x3+ax2+b (1)

Where a,b €GF (2m) and b≠ 0. Once again, the elliptic curve
includes all the points (x, y) that satisfy above equation in
GF (2m) arithmetic, plus the point at infinity O.

A. point addition

 In elliptic curve P and Q are two different points.
The Point addition is the line through two points to form the
third point in elliptic curve[4], then tangent to the third point
P+Q.

Fig.2 point addition

B.point doubling
In elliptic curve point is p.The point doubling is

line through point form the second point ,then tangent to
the second point R=2P.

Fig.3 point doubling

C. Scalar multiplication in GF (2m)
The elliptic curve scalar multiplier[5] (ECSM)

following right –to-left scalar multiplication. The algorithm
flow,
Y=k*p
k= (kL-1, kL-2,kL-3,…,k2,k1,k0)2
Y=0
S=P
for (i=0 t0 L-1)
{
if (ki=1)
Y=y+s
S=2s
}
 Above say that the scalar multiplication[10] performs using
point addition and point doubling.

C. Karatsuba algorithm

The basic step of Karatsuba algorithm[8] can be

used to compute the product of two large numbers a and b
using three multiplications of smaller numbers, each with
about half as many digits as a or b along with some
additions and digit shifts.

Let a and b represent n-digit strings in some radix R. For
any positive integer m less than n, the two numbers can be
divided as follows,

a=aiRm +a0 (2)

b=biRm +b0 (3)

Where a0 and b0 are less than Rm. The product is

a*b=(a1Rm +a0)(b1Rm +b0) (4)

393

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

a*b=a1b1R2m+(a1b0+a0b1)Rm+a0b0 (5)

a*b=u2R2m+u1Rm+u0 (6)
Where,

u2= a1b1

u1= a1b0+a0b1

u0= a0b0
These formulae require four numbers of

multiplications. But, it can be observed that the value of the
product ab can be determined using only three numbers of
multiplications, at the cost of a few more number of
additions in the following manner.
After obtaining,

u2= a1b1and u0= a0b0,

the value of u1 can be determined as

 u1= (a1+a0)(b1+b0)- u2- u0 (7)

 u1= a1b0+a0b1=(a1b1+ a1b0+a0b1+ a0b0) - a1b1- a0b0

u1= (a1+a0)(b1+b0)-a1b1- a0b0 (8)

III. EXPERIMENTAL RESULTS
This section shows our experimental results. The

karatsuba multiplier is successfully experimented using
Xilinx ISE 14.5 Simulator. The analysis of pipelined
multiplier is targeted and verified on Xilinx FPGA of family
Spartan-3E. The constraint taken to consideration is analysis
of delay. The number of pipelined stages increasing
throughput also increased.

 A Different Types of multiplier

The below table I shows an experimental results of
various multipliers.

TABLE I. COMPARISON OF DIFFERENT MULTIPLIERS

Comparison
Factor/

Multiplier

4bit Multiplier
using add &
shift method

4bit Multiplier
using full adder

4bit Multiplier
using fast adder

DELAY 14.281 ns 13.781 ns 13.657 ns

LUT’S 33/4896 29/4896 29/4896

MEMORY 253968 kb 254992 kb 254544 kb

 B. RTL View of 2 stage pipelined multiplier

 The below Fig.4 shows the RTL view of two stage
pipelined multiplier.

Fig. 4 RTL view 2 stage pipelined multiplier

 C. Simulation of 2 stage pipelined multiplier

The below Fig. 5 shows the simulation result of

two stage pipelined multiplier.

Fig. 5 output waveform of 2 stage pipelined multiplier

 D. Simulation of karatsuba multiplier

 The below Fig.6 shows the simulation result of
karatsuba multiplier[9].

Fig. 6 Output waveform of karatsuba multiplier

394

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

IV. CONCLUSION
 In this paper, we designed a kartsuba multiplier

and point addition and point doubling over GF(2163). The
comparison of delay, area parameters in the design of
different various multipliers are analyzed. Experimental
results have shown that our approach is very effective in
reducing delay compare to previous method of multiplier.
The pipelined multiplier is increasing throughput and
reducing delay of the multiplier.

REFERENCES

[1] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs:
State-of the- art implementations and attacks,” ACM Trans. Embedded
Comput. Syst., vol. 3, no. 3, pp. 534–574, 2004.
[2] L. Song and K. K. Parhi, “Low-energy digit-serial/parallel finite
field multipliers,” J. VLSI Signal Process., vol. 19, no. 2, pp. 149–166,
Jul.1998.
[3] J. López and R. Dahab, “Fast multiplication on elliptic curves
overGF(2m) without precomputation,” in Proc. 1st Int. Workshop
Cryptographic Hardw. Embedded Syst., 1999, pp. 316–327.
[4] G. Orlando and C. Paar, “A high performance reconfigurable
elliptic curve processor for GF(2m),” in Proc. 2nd Int. Workshop
Cryptographic Hardw. Embedded Syst., 2000, pp. 41–56.
[5] Ansari and M. Hasan, “High-performance architecture of
elliptic curve scalar multiplication,” IEEE Trans. Comput., vol. 57, no.
11, pp. 1443–1453, Nov. 2008.
[6] W. N. Chelton and M. Benaissa, “Fast elliptic curve
cryptography on FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 2, pp. 198–205, Feb. 2008.
[7] Rebeiro and D. Mukhopadhyay, “High speed compact elliptic
curve cryptoprocessor for FPGA platforms,” in Proc. 9th Int. Conf.
Cryptol. India: Progress Cryptol., 2008, pp. 376–388.
[8] Rebeiro and D. Mukhopadhyay, “Power attack resistant
efficient FPGA architecture for Karatsuba multiplier,” in Proc. 21st Int.
Conf. VLSI Design, Jan. 2008, pp. 706–711.
[9] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity
analysis and efficient implementations of bit parallel finite field
multipliers based on Karatsuba-Ofman algorithm on FPGAs,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 7, pp. 1057–
1066, Jul. 2010.
[10] C. Rebeiro, S. S. Roy, D. S. Reddy, and D. Mukhopadhyay,
“Revisiting the Itoh-Tsujii inversion algorithm for FPGA platforms,”
IEEE Trans.Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 8, pp.
1508–1512,Aug. 2011.
[11] K. Järvinen, “On repeated squarings in binary fields,” in
Selected Areas in Cryptography (Lecture Notes in Computer Science),
vol. 5867,M. Jacobson, V. Rijmen, and R. Safavi-Naini, Eds. Berlin,
Germany:Springer, 2009, pp. 331–349.
[12] F. Rodríguez-Henríquez, N. A. Saqib, A. Díaz-Pèrez, and C. K.
K¸ oc,Cryptographic Algorithms on Reconfigurable Hardware (Signals
and Communication Technology). Secaucus, NJ: Springer-Verlag, 2006
[13] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and
J. Teich,“Reconfigurable implementation of elliptic curve crypto
algorithms,” inProc. 16th Int. Parallel Distrib. Process. Symp., 2002, pp.
157–164
[14] J. Lutz and A. Hasan, “High performance FPGA based elliptic
curve cryptographic co-processor,” in Proc. Int. Conf. Inf. Technol:
Coding Comput., vol. 2. Apr. 2004, pp. 486–492.
[15] Q. Pu and J. Huang, “A microcoded elliptic curve processor for
GF(2m) using FPGA technology,” in Proc. Int. Conf. Commun., Circuits
Syst.,vol. 4. Jun. 2006, pp. 2771–2775.

395

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

NCICCT' 14 Conference Proceedings

