
 Implementation of Elliptic Curve Scalar 
Multiplier on FPGA 

                       V.Parthiban, Student 
 M. Tech - VLSI & Embedded System 

B.S.Abdur Rahman University 
Chennai, India 

                               vjbparthi@gmail.com 

Ms.S.Syed Rafiammal, Assistant Professor 
Department of ECE 

B.S.Abdur Rahman University 
Chennai, India 

syedrafiammal@gmail.com 
 
 

Abstract — In this paper describes scalar multiplier using 
implementation of Elliptic Curve Cryptosystem (ECC) over 
the binary field GF (2163).It illustrates suitable scheduling for 
performing point addition and doubling in Elliptic Curve 
Scalar Multiplier (ECSM).The detailed analyses, supported 
with experimental results are provided to design the fastest 
scalar multiplier over generic curves. It has been concluded   
from the comparison of proposed method is useful for high 
speed design and better utilization of LUT in FPGA.  

Index Terms —  Elliptic Curve Cryptosystem, ECSM, LUT, 
FPGA, Galois Field. 

I.  INTRODUCTION 
Cryptography [1] uses mathematics to encrypt and 

decrypt data. It enables people to store or transmit sensitive 
information via insecure network. On the other hand, 
cryptanalysis is the science of breaking secure 
communication. There are two persons, Alice and Bob 
communicate via an insecure channel in a secure way. The 
third person who is eavesdropper should not be able to read 
the clear text or change it.  

 
1. Symmetric key cryptography 
 
2. Public key cryptography 

 
A. Public key cryptography 

 
In 1976, Diffie and Hellman presented public key 

cryptography (PKC), which is unlike traditional public-key. 
Diffie Hellman keys are not used to encrypt or decrypt the 
message. They are used to create a single shared secret key 
between the units. 

Public key cryptography contains two keys, which 
are public and private keys. A situation is assumed where 
Alice wants to send a message to Bob. Alice uses Bob’s 
Public key to encrypt a message and her private key to sign 
the message. Bob (receiver) uses his Private Key to decrypt 
the message and he uses Alice’s Public Key to verify the 
signature. The standard bodies have set the key size of the 
encryption key, in order to provide the desired security. The 
key size decides the hardship of recovering the encrypted 
data computationally without the use of the secret key. A 
scenario of a public key is depicted in Figure 1 The key pair 
(e,d) is selected by Bob. ‘e’ is the public key that Bob sends 
to Alice over any channel but the private key ‘d’ is kept. 

Alice encrypts the sending message to Bob using Bob’s 
public-key. Bob decrypts the cipher text ‘c’ using the ‘d’. 

 
Fig. 1 Public-key cryptography 
 
B. Elliptic curve Cryptography 

 
First introduced in the 1980s, elliptic curve 

cryptography (ECC) has become popular due to its superior 
strength   per bit compared to existing public key algorithms 
such as RSA. This superiority translates to equivalent 
security levels with smaller keys, bandwidth savings, and 
faster implement- tations , making ECC very appealing. The 
IEEE proposed standard P1363-2000 recognizes ECC-based 
key agreement and digital signature algorithms. Elliptic 
curve-based cryptosystems are most closely related to 
algorithms like the Digital Signature Algorithm (DSA) 
which are based on the discrete logarithm problem. In the 
DSA, the parameters can be chosen to provide efficient 
implementations of the algorithm. In the same way, the 
parameters of ECC based cryptosystems can be selected to 
optimize the efficiency of the implementation. 
Unfortunately, the selection of the ECC parameters is not a 
trivial process and, if chosen incorrectly, may lead to an 
insecure system. In response to this issue NIST recommends 
ten finite fields, five of which are binary fields, for use in 
the ECDSA . For each field a specific curve, along with a 
method for generating a pseudo-random curve, are supplied. 
These curves have been intentionally selected for both 
cryptographic strength and efficient implementation. Such a 
recommendation has significant implications on design 
choices made while implementing elliptic curve 
cryptographic functions. In standardizing specific fields for 
use in elliptic curve cryptography (ECC), NIST allows ECC 
implementations to be heavily optimized for curves over a 
single finite field [2]. As a result, performance of the 
algorithm can be maximized and resource utilization, 
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whether it code size for software or logic gates for 
hardware, can be minimized. 
The performance of an Elliptic Curve Cryptosystem is 
mostly determined by the efficient implementation of finite 
field arithmetic. In this work an efficient curve 
implementation for ECC over different approaches on finite 
field is presented. And we explained the Domain Parameters 
over prime field GF (p) and binary field GF (2m)    
               

II.MATHEMATICAL BACKGROUND 
 
Elliptic curves over real numbers are defined as the 

set of points (x, y) which satisfy the elliptic curve equation 
of the form 
                    y2=x3+ax+b 
Where a and b are real numbers. Each choice of a and b 
produces a different elliptic curve. The elliptic curve in  
forms a group if 4a3+27b2≠ 0. An elliptic curve group over 
real numbers consists of the points on the corresponding 
elliptic curve, together with a special point O called the 
point at infinity. Elliptic curve groups are an additive group 
that is, their basic function is addition. The negative of a 
point P = (x, y) is its reflection in the x-axis: the point - P is 
(x, -y). If the point P is on the curve, the point - P is also on 
the curve. 

In elliptic curve cryptography we are only 
interested in elliptic curves defined over finite fields. This 
means that the coordinates of the points in the elliptic curve 
can only take values that belong to the finite field over 
which, the elliptic curve[3] has been defined. In particular 
we define elliptic curves over binary extension fields GF 
(2m), using the following adjusted curve equation, 
             

y2+xy= x3+ax2+b                              (1) 
 

Where a,b €GF (2m) and b≠ 0. Once again, the elliptic curve 
includes all the points (x, y) that satisfy above equation in 
GF (2m) arithmetic, plus the point at infinity O. 
 
A. point addition 
 

 In elliptic curve P and Q are two different points. 
The Point addition is the line through two points to form the 
third point in elliptic curve[4], then tangent to the third point 
P+Q. 

 
Fig.2 point addition 
 
 
 
 

B.point doubling 
In elliptic curve point is p.The point doubling is 

line through point  form the second point ,then tangent to 
the second point  R=2P. 
 

 
Fig.3 point doubling 

C. Scalar multiplication in GF (2m)  
The elliptic curve scalar multiplier[5] (ECSM) 

following right –to-left scalar multiplication. The algorithm 
flow, 
Y=k*p 
k= (kL-1, kL-2,kL-3,…,k2,k1,k0)2     
Y=0 
S=P 
for (i=0 t0 L-1) 
{ 
if (ki=1) 
Y=y+s 
S=2s 
}          
 Above say that the scalar multiplication[10] performs using 
point addition and point doubling. 
 
C. Karatsuba algorithm 

 
The basic step of Karatsuba algorithm[8] can be 

used to compute the product of two large numbers a and b 
using three multiplications of smaller numbers, each with 
about half as many digits as a or b along with some 
additions and digit shifts. 
 
Let a and b represent n-digit strings in some radix R. For 
any positive integer m less than n, the two numbers can be 
divided as follows, 

 
a=aiRm +a0      (2) 

 
b=biRm +b0     (3) 

Where a0 and b0 are  less than Rm. The product is  
 

a*b=( a1Rm +a0)( b1Rm +b0)    (4) 
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a*b=a1b1R2m+(a1b0+a0b1)Rm+a0b0   (5) 
 

a*b=u2R2m+u1Rm+u0    (6) 
Where, 

u2= a1b1 
 

u1= a1b0+a0b1 
 

u0= a0b0 
These formulae require four numbers of 

multiplications. But, it can be observed that the value of the 
product ab can be determined using only three numbers of 
multiplications, at the cost of a few more number of 
additions in the following manner.  
After obtaining, 

u2= a1b1and u0= a0b0, 
  
the value of u1 can be determined as 
       
       u1= (a1+a0)(b1+b0)- u2- u0              (7) 
       
       u1= a1b0+a0b1=( a1b1+ a1b0+a0b1+ a0b0) - a1b1- a0b0 
       

u1= (a1+a0)(b1+b0)-a1b1- a0b0      (8) 

III. EXPERIMENTAL RESULTS   
This section shows our experimental results. The 

karatsuba multiplier is successfully experimented using 
Xilinx ISE 14.5 Simulator. The analysis of pipelined 
multiplier is targeted and verified on Xilinx FPGA of family 
Spartan-3E. The constraint taken to consideration is analysis 
of delay. The number of pipelined stages increasing 
throughput also increased. 

 A Different Types of multiplier 

The below table I shows an experimental results of 
various multipliers. 
 

TABLE I. COMPARISON OF DIFFERENT MULTIPLIERS 

 

Comparison 
Factor/ 

Multiplier 

4bit Multiplier 
using add & 
shift method 

4bit Multiplier 
using full adder 

4bit Multiplier 
using fast adder 

DELAY 14.281 ns 13.781 ns 13.657 ns 

LUT’S 33/4896 29/4896 29/4896 

MEMORY 253968 kb 254992 kb 254544 kb 

 B. RTL View of 2 stage pipelined multiplier 

 The below Fig.4 shows the RTL view of  two stage 
pipelined multiplier. 

Fig. 4 RTL view 2 stage pipelined multiplier 

  C.   Simulation of 2 stage pipelined multiplier 

The below Fig. 5 shows the simulation result of 

two stage pipelined multiplier. 

 

Fig. 5 output waveform of 2 stage pipelined multiplier 

 D. Simulation of karatsuba multiplier 

     The below Fig.6 shows the simulation result of  
karatsuba multiplier[9]. 

 
Fig. 6 Output waveform of karatsuba multiplier 
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IV. CONCLUSION 
 In this paper, we designed a kartsuba multiplier 

and point addition and point doubling over GF(2163). The 
comparison of delay, area parameters in the design of 
different various multipliers are analyzed. Experimental 
results have shown that our approach is very effective in 
reducing delay compare to previous method of multiplier. 
The pipelined multiplier is increasing throughput and 
reducing delay of the multiplier.  
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