
Implementation Of Effective Defect Tracking System In Software

Egineering

Kankanala Raja
1
,K.Praveen

2

1Department of CSE, DRK Institute of Science & Technology, Ranga Reddy, Andhra Pradesh, India

2Associate Professor

Department of IT, DRK Institute of Science & Technology, Ranga Reddy, Andhra Pradesh, India

Abstract

Defect Tracking Systems in testing is the process

which report the defects and also provides the

complete information regarding defects. In the

testing phase the tester will identify the defects.

Whenever the tester encounter number of defects he

adds the defect id and information in the

database.The tester reports to both project manager

and developer. The defect details in the database

table are accessible to both project manager and

developer.

The project manager assigns projects to the

developers. The developer develops the projects as

per customer requirements. The project manager

itself assigns the developed applications to the

Testers for testing. The tester tests the application

and identify the defects in the application. When the

tester encounter number of defects, he generates a

unique id number for each individual defect. The

defect information along with its id are mailed to the

project manager and developer. This is defect Report.

These are stored in the database. This is useful for

further reference.

Defect information includes the defect id, defect

name, defect priority, project name, defect location,

defect type.This whole process continues until all the

defects are got fixed in the application.The defect

report is mailed to the project manager and the

developer as soon as the defect is identified. This

makes that no error will go unfixed because of poor

communication. It makes ensure that anyone who

needs to know about a defect can learn of it soon

after it is reported.

Defect Tracking System plays an vital role in the

testing phase. But it supports assigning projects for

the developer, tester by the project manager. The

Defect Tracking System maintains the different users

separately i.e., it provides separate environments for

project manager, developer and tester.

1.Introduction

Tracking of defects plays an important role in the

testing environment of a software project.

 According to [0] Testing is a crucial part of the

software life cycle, and recent trends in software

engineering evidence the importance of this activity

all along the development process. Testing activities

have to start already at the requirements specification

stage, with ahead planning of test strategies and

procedures, and propagate down, with derivation and

refinement of test cases, all along the various

development steps since the code-level stage, at

which the test cases are eventually executed, and

even after deployment, with logging and analysis of

operational usage data and customer‟s reported

failures. Testing is a challenging activity that

involves several highdemanding tasks: at the

forefront is the task of deriving an adequate suite of

test cases, according to a feasible and costeffective

test selection technique. However, test selection is

just a starting point, and many other critical tasks

face test practitioners with technical and conceptual

difficulties (which are certainly under-represented in

the literature): the ability to launch the selected tests

(in a controlled host environment, or worse in the

tight target environment of an embedded system);

deciding whether the test outcome is acceptable or

not (which is referred to as the test oracle problem);

if not, evaluating the impact of the failure and finding

its direct cause (the fault), and the indirect one (via

Root Cause Analysis); judging whether testing is

sufficient and can be stopped, which in turn would

require having at hand measures of the effectiveness

of the tests: one by one, each of these tasks presents

tough challenges to testers, for which their skill and

expertise always remains of topmost importance.

Defect tracking is a system that is applied for any

system software so that system performs well. In a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

survey [14] conducted to software engineers of

companies like Mozilla, Eclipse, and Apache found

that the information items presented in defect reports

have played very important role in fixing defects.

Insufficient or improper reports caused delay in

fixing defects and thus causing crossing deadlines.

The information items that can be found

in the defect reports include screenshots, test cases,

expected behavior observed behavior, stack traces

and steps to reproduce etc. Generally this is the

minimum preferred information needed by engineers

to fix defects easily. However, the prior research in

this area [1] and [2] revealed that the defect reporters

omitted these

essential information fields in their defect reports

making them poorly designed reports. Such reports

are of little use to developers for the purpose of

fixing defects.If your defect report is effective

changes are higher that it will get fixed. So fixing of

the defect are issue is dependent upon how

effectively you report it. These systems are used on a

wide scale and are treated as essential repositories

that help in finding status of defects and eradicating

them instantly. Any one can write a defect report, but

not everyone can write an effective defect report. A

tester should be able to distinguish between an

average defect report and a good defect report.

Insufficient or improper reports can cause delay in

fixing of defects and thus resulting in extending of

the given deadlines. A defect report should clearly

specify the characteristics‟ like having clearly

specified defect number, reproducible and be

specific. Generally, developers expect descriptions

beyond the information found in the present defect

reports. Depending upon the defect priority and the

severity the testing of the defect is done. Priority is

generally set as p1 to p5. P1 as “fixing the defect

with high priority” and p5 as “fix when time

permits”. Severity says the impact of the defect.

A. DEFINITION

A Software Defect / Defect is a condition in a

software product which does not meet a software

requirement (as stated in the requirement

specifications) or end-user expectations (which may

not be specified but are reasonable). In other words, a

defect is an error in coding or logic that causes a

program to malfunction or to produce

incorrect/unexpected results.

 A program that contains a large number of

defects is said to be defectgy.

 Reports detailing defects in software are

known as defect reports.

 Applications for tracking defects are known

as defect tracking tools.

 The process of finding the cause of defects

is known as dedefectging.

 The process of intentionally injecting

defects in a software program, to estimate

test coverage by monitoring the detection of

those defects, is known as bedefectging.

Software Testing proves that defects exist but NOT

that defects do not exist.

B. CLASSIFICATION

Software Defects/ Defects are normally classified as

per:

 Severity / Impact

 Probability / Visibility

 Priority / Urgency

 Related Dimension of Quality

 Related Module / Component

 Phase Detected

 Phase Injected

Related Module /Component

Related Module / Component indicates the module or

component of the software where the defect was

detected. This provides information on which module

/ component is defectgy or risky.

 Module/Component A

 Module/Component B

 Module/Component C

 …

Phase Detected

Phase Detected indicates the phase in the software

development lifecycle where the defect was

identified.

 Unit Testing

 Integration Testing

 System Testing

 Acceptance Testing

Phase Injected

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

Phase Injected indicates the phase in the software

development lifecycle where the defect was

introduced. Phase Injected is always earlier in the

software development lifecycle than the Phase

Detected. Phase Injected can be known only after a

proper root-cause analysis of the defect.

 Requirements Development

 High Level Design

 Detailed Design

 Coding

 Build/Deployment

Note that the categorizations above are just

guidelines and it is up to the project/organization to

decide on what kind of categorization to use. In most

cases, the categorization depends on the defect

tracking tool that is being used. It is essential that

project members agree beforehand on the

categorization (and the meaning of each

categorization) so as to avoid arguments, conflicts,

and unhealthy bickering later.

I. RELATED WORK

Software development project report undergo many

challenges like working with different stakeholders in

a project, teams would be facing difficulty in

transparency of defects due to lack of process for

defect logging, standard defect tracking, no clear

communication, improper communication process.

An error, fault, failure, mistake, flaw can be called as

“defect” with respect to a software system. SDLC

undergoes many phases. Even though the

development team focuses well during all the phases

while developing a particular product there may be

some mistakes in any phase. In today‟s market

conditions, we have so many freeware tools available

for test or defect management tools. Some projects

also afford to have cost assigned to defect

management tools and buy required amount of

licenses. Before, people use to use a simple way for

defect tracking by sending mail to a related technical

department. This is difficult to keep track the defect

as the emails are scattered. So, then testers started

using manual testing (manual defect tracking) via

email.

When quality for a product is not met, customer gets

dissatisfied. According to [7] a defect in software

system occurs for a is not accident defect that occurs

due to specific reason.

A. Defect Tracking Life Cycle

This defect Tracking Life cycle follows the concept

of Bugzilla Defect Life Cycle[16] . The design of the

system had been done according to the user

requirements and brief analysis of a new system.

Each defect in the system will have an status,

priority, and severity. The status indicates the current

progress with respect to an issue.

Defect tracking is the process of finding defects in a

product, (by inspection, testing, or recording

feedback from customers), and making new versions

of the product that fix the defects.

Defect tracking is important in software engineering

as complex software systems typically have tens or

hundreds of thousands of defects: managing,

evaluating and prioritizing these defects is a difficult

task. Defect tracking systems are computer database

systems that store defects and help people to manage

them.

Using Defect tracking tool the following process is

followed:

a.Loggingintothetool

b.DefectLifeCycle

c.Creatingadefect

d.Changingstatusofdefects

e.Generatingmetricsandreports

B. Defect Life Cycle (Defect Life cycle) is the

journey of a defect from its identification to its

closure. The Life Cycle varies from organization to

organization and is governed by the software testing

process the organization or project follows and/or the

Defect tracking tool being used.

Nevertheless, the life cycle in general resembles the

following:

 Fig:1 Defect Tracking Life Cycle

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

Status Alternative Status

NEW

ASSIGNED OPEN

DEFERRED

DROPPED REJECTED

COMPLETED
FIXED, RESOLVED,

TEST

REASSIGNED REOPENED

CLOSED VERIFIED

Defect Status Explanation

 NEW: Tester finds a defect and posts it with

the status NEW. This defect is yet to be

studied/approved. The fate of a NEW defect

is one of ASSIGNED, DROPPED and

DEFERRED.

 ASSIGNED / OPEN: Test / Development /

Project lead studies the NEW defect and if it

is found to be valid it is assigned to a

member of the Development Team. The

assigned Developer‟s responsibility is now

to fix the defect and have it COMPLETED.

Sometimes, ASSIGNED and OPEN can be

different statuses. In that case, a defect can

be open yet unassigned.

 DEFERRED: If a valid NEW or

ASSIGNED defect is decided to be fixed in

upcoming releases instead of the current

release it is DEFERRED. This defect is

ASSIGNED when the time comes.

 DROPPED / REJECTED: Test /

Development/ Project lead studies the NEW

defect and if it is found to be invalid, it is

DROPPED / REJECTED. Note that the

specific reason for this action needs to be

given.

 COMPLETED / FIXED / RESOLVED /

TEST: Developer „fixes‟ the defect that is

ASSIGNED to him or her. Now, the „fixed‟

defect needs to be verified by the Test Team

and the Development Team „assigns‟ the

defect back to the Test Team. A

COMPLETED defect is either CLOSED, if

fine, or REASSIGNED, if still not fine.

 If a Developer cannot fix a defect, some

organizations may offer the following

statuses:

o Won’t Fix / Can’t Fix: The

Developer will not or cannot fix the

defect due to some reason.

o Can’t Reproduce: The Developer is

unable to reproduce the defect.

o Need More Information: The

Developer needs more information

on the defect from the Tester.

 REASSIGNED / REOPENED: If the Tester

finds that the „fixed‟ defect is in fact not

fixed or only partially fixed, it is reassigned

to the Developer who „fixed‟ it. A

REASSIGNED defect needs to be

COMPLETED again.

 CLOSED / VERIFIED: If the Tester / Test

Lead finds that the defect is indeed fixed and

is no more of any concern, it is CLOSED /

VERIFIED. This is the happy ending.

C. DEFECT SEVERITY CLASSIFICATION

The actual terminologies, and their meaning, can vary

depending on people, projects, organizations, or

defect tracking tools, but the following is a normally

accepted classification.

 Critical: The defect affects critical

functionality or critical data. It does not have

a workaround. Example: Unsuccessful

installation, complete failure of a feature.

 Major: The defect affects major

functionality or major data. It has a

workaround but is not obvious and is

difficult. Example: A feature is not

functional from one module but the task is

doable if 10 complicated indirect steps are

followed in another module/s.

 Minor: The defect affects minor

functionality or non-critical data. It has an

easy workaround. Example: A minor feature

that is not functional in one module but the

same task is easily doable from another

module.

 Trivial: The defect does not affect

functionality or data. It does not even need a

workaround. It does not impact productivity

or efficiency. It is merely an inconvenience.

Example: Petty layout discrepancies,

spelling/grammatical errors.

Severity is also denoted as:

 S1 = Critical

 S2 = Major

 S3 = Minor

 S4 = Trivial

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

Defect Severity is one of the most common causes of

feuds between Testers and Developers. A typical

situation is where a Tester classifies the Severity of

Defect as Critical or Major but the Developer refuses

to accept that: He/she believes that the defect is of

Minor or Trivial severity.

Though we have provided you some guidelines in

this article on how to interpret each level of severity,

this is still a very subjective matter and chances are

high that one will not agree with the definition of the

other. You can however lessen the chances of

differing opinions in your project by discussing (and

documenting, if necessary) what each level of

severity means and by agreeing to at least some

standards (substantiating with examples, if

necessary.)

D. Defect Priority indicates the importance or

urgency of fixing a defect. Though priority

may be initially set by the Software Tester,

it is usually finalized by the Project/Product

Manager.

Priority can be categorized into the following levels:

 Urgent: Must be fixed in the next build.

 High: Must be fixed in any of the upcoming

builds but should be included in the release.

 Medium: May be fixed after the release / in

the next release.

 Low: May or may not be fixed at all.

E. DEFECT REPORT TEMPLATE

In most companies, a defect reporting tool is used

and the elements of a report can vary. However, in

general, a defect report can consist of the following

elements.

ID Unique identifier given to the defect.

(Usually Automated)

Project Project name.

Product Product name.

Release

Version

Release version of the product. (e.g. 1.2.3)

Module Specific module of the product where the

defect was detected.

Detected

Build Version

Build version of the product where the

defect was detected (e.g. 1.2.3.5)

Description Detailed description of the defect.

Describe as much as possible but without

repeating anything or using complex

words. Keep it simple but comprehensive.

Steps to

Replicate

Step by step description of the way to

reproduce the defect. Number the steps.

Actual Result The actual result you received when you

followed the steps.

Expected

Results

The expected results.

Attachments Attach any additional information like

screenshots and logs.

Remarks Any additional comments on the defect.

Defect

Severity

Severity of the Defect.

Defect

Priority

Priority of the Defect.

Reported By The name of the person who reported the

defect.

Assigned To The name of the person that is assigned to

analyze/fix the defect.

Status The status of the defect.

Fixed Build

Version

Build version of the product where the

defect was fixed (e.g. 1.2.3.9)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

REPORTING DEFECTS EFFECTIVELY

It is essential that you report defects effectively so

that time and effort is not unnecessarily wasted in

trying to understand and reproduce the defect. Here

are some guidelines:

 Be specific:

o Specify the exact action: Do not

say something like „Select

ButtonB‟. Do you mean „Click

ButtonB‟ or „Press ALT+B‟ or

„Focus on ButtonB and click

ENTER‟? Of course, if the defect

can be arrived at by using all the

three ways, it‟s okay to use a

generic term as „Select‟ but bear in

mind that you might just get the fix

for the „Click ButtonB‟ scenario.

[Note: This might be a highly

unlikely example but it is hoped

that the message is clear.]

o In case of multiple paths, mention

the exact path you followed: Do not

say something like “If you do „A

and X‟ or „B and Y‟ or „C and Z‟,

you get D.” Understanding all the

paths at once will be difficult.

Instead, say “Do „A and X‟ and you

get D.” You can, of course,

mention elsewhere in the report

that “D can also be got if you do „B

and Y‟ or „C and Z‟.”

o Do not use vague pronouns: Do not

say something like “In

ApplicationA, open X, Y, and Z,

and then close it.” What does the

„it‟ stand for? „Z‟ or, „Y‟, or „X‟ or

„ApplicationA‟?”

 Be detailed:

o Provide more information (not

less). In other words, do not be

lazy. Developers may or may not

use all the information you provide

but they sure do not want to beg

you for any information you have

missed.

 Be objective:

o Do not make subjective statements

like “This is a lousy application” or

“You fixed it real bad.”

o Stick to the facts and avoid the

emotions.

 Reproduce the defect:

o Do not be impatient and file a

defect report as soon as you

uncover a defect. Replicate it at

least once more to be sure. (If you

cannot replicate it again, try

recalling the exact test condition

and keep trying. However, if you

cannot replicate it again after many

trials, finally submit the report for

further investigation, stating that

you are unable to reproduce the

defect anymore and providing any

evidence of the defect if you had

gathered.)

 Review the report:

o Do not hit „Submit‟ as soon as you

write the report. Review it at least

once. Remove any typos.

F. Defect Detection Efficiency (DDE) is the

number of defects detected during a

phase/stage that are injected during that

same phase divided by the total number of

defects injected during that phase.

DDE = (Number of Defects Injected AND

Detected in a Phase / Total Number of

Defects Injected in that Phase) x 100 %

Defect Density is the number of confirmed defects

detected in software/component during a defined

period of development/operation divided by the size

of the software/component.

USES

 For comparing the relative number of

defects in various software components so

that high-risk components can be identified

and resources focused towards them.

 For comparing software/products so that

quality of each software/product can be

quantified and resources focused towards

those with low quality.

II. Initial Experiment

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

Effective Defect Tracking System was developed by

using Spring-MVC frame work.Spring MVC is used

to develop the applications quickly. The

functionalities of Effective Defect Tracking System

is categorized in to the following modules such as

Administration, Project Management,

BugManagement, Activity and Reports.

In Administration module Project Manager or

Administrator adds the employees such as

Developers or programmers,Testers or Reporters and

Guests or Clients.After providing the employee

profile an individual automatically gets the mail

from the system so that employee can interact with

the system directly.

In project Management module the complete project

information like number of modules and number of

builds.Where each build refers to a screen of the

concerned the project.Project manager or

Administrator assigns the Modules of the project to

the developer or programmer,and after completion of

the Build,administrator assigns particular to the tester

in the testing department.

In Bug Management module tester registers the

defects and information of test cases ,Steps to

Reproduce, relvent StackTrace and Screenshots.In

this Module tester assigns the priority and status of

the Defect.Below Figure 2 shows the Bug Entry

process,where reporter enter the detailed information.

Fig 2– Main UI of Defect Tracking Application

III. Evaluation

The proposed directions for Implementation of

Effective Defect Tracking System in Software

Egineering are tested using the defect tracking

application. The application is capable of tracking

defects with sufficient information that leads to fixing

defects quickly and efficiently. This results in saving

lot of time and expenditure. The team which is

developing project will be having an advantage as

budget by following the defect effictient process.

The development time and cost can be reduced by

using defect detection efficiency ,defect density and

defect age.

The defect detecting process is very simple by

following the concepts like Project based modules

and module based builds which refered as

Component or BuildID .Each defect is refered to a

concerned BuildId and that is directly associate to the

Developer.Below figure shows the tracking defect in

BugManagement module.

Conclusion

Tracking of defects in a project plays an important

role in an overall project life cycle because it ensures

the quality of the project.If defect araised in a project,

then it must be resolved by using report given by the

testing department. The developer develops the

projects as per customer requirements. The project

manager itself assigns the developed applications to

the Testers for testing. The tester tests the application

and identify the defects in the application. When the

tester encounter number of defects, he generates a

unique id number for each individual defect. The

defect information along with its id are mailed to the

project manager and developer. This is defect Report.

These are stored in the database. This is useful for

further reference.In future this proposed system can

be enhanced by the upcoming technologies like cloud

computing etc.

IV. Acknowledgement

Special thanks to my Guide Mr. Praveen K

,Associate Professor , Department of CSE, DRK

Institute of Science & Technology,JNTUH.

References

[0] Antonia Bertolino, Eda Marchetti. A Brief Essay

on Software Testing.

[1] N. Bettenburg, S. Just, A. Schr¨oter, C. Weiss, R.

Premraj, and T. Zimmermann. What makes a good

defect report? In FSE‟08:Proceedings of the 16th

International Symposium on Foundationsof Software

Engineering, pages 308–318, November 2008.

[2] S. Breu, J. Sillito, R. Premraj, and T.

Zimmermann.Frequently asked questions in defect

reports.Technical report, University of Calgary,

March 2009.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

[3] S. Artzi, S. Kim, and M. D. Ernst.Recrash:

Making software failures reproducible by preserving

object states. In ECOOP‟08: Proceedings of the 22nd

European Object-Oriented Programming Conference,

pages 542–565, 2008.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and

S. Kim. Duplicate defect reports considered harmful

... really? In ICSM‟08: Proceedings of the 24th IEEE

International Conference on Software Maintenance,

pages 337–345, 2008.

[5] S. Breu, J. Sillito, R. Premraj, and T.

Zimmermann.Frequently asked questions in defect

reports.Technical report, University of Calgary,

March 2009.

[6] Black, R. 1999. Managing the Testing Process:

The tools you need. Retrieved January 20, 2010 from

http://library.books24x7.com

[7] Limaye. 2009. Software Testing. Retrieved

February 06, 2010 from http://books.google.com.my

[8] Robbins, J. 2000. Dedefectging Applications:

Getting started dedefectging. Retrieved January 30,

2010 from http://library.books24x7.com.

[9] ZatulAmilahShaffiei, MudianaMokhsin,

SaidatulRahahHamidi (2010). Change and Defect

Tracking System: AnjungPenchalaSdn. Bhd.

International Journal of Computer Applications (0975

– 8887) Volume 10– No.3

[10] Singh, L., Drucker, L. & Khan, N. 2004.

Advanced Verification Techniques: A SystemC

Based Approach for Successful Tapeout. Retrieved

February 05, 2010 from http://books.google.com.my

[11] Smart, J.F. 2007. Javaworld.com: What issue

tracking system is best for you? Retrieved February

07, 2010 from

http://www.javaworld.com/javaworld/jw-03-

2007/jw-03- defects.html?page=1

[12] Barnson, M.P. 2001. The Defectzilla Guide.

Retrieved February 10, 2010 from

http://db.glugbom.org/Documentation/Defectzilla-

Guide/

[13] Craig, R. D. &Jaskiel, S. P. 2002. Systematic

software testing.Retrieved February 03, 2010 from

http://books.google.com.my.

[14] Akhilesh Babu. K, Tameezuddin .K, and

Kalpana Gudikandula. Effective Defect Tracking

Systems: Theories and Implementation. In IOSR

Journal of computer Engineering, ISSN: 2278-0661

Volume 4, Issue 6 (Sep-Oct. 2012), PP 31-36

[15] Goldin, L. &Rochell, L. 2002. Software

Development Defect Tracking: “Tool Isn‟t User

Friendly” or “User Isn‟t Process Friendly”. Retrieved

February 11, 2010 from

http://www.springerlink.com.newdc.oum.edu.my/con

tent/4he0d2ehj6m0y5kv/?p=111918f3b5434b9c9792

78dae45d93e0&pi=2

[16] Defectzilla Defect Life Cycle. 2007. Defect Life

Cycle. Retrieved June 15, 2010 from

http://www.softwaretestinghelp.com/defect-life-

cycle/

[17] Change and Defect Tracking System: Anjung

Penchala Sdn. Bhd. International Journal of

Computer Applications (0975 – 8887) Volume 10–

No.3, November 2010.

[18] http://softwaretestingfundamentals.com/

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

