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Abstract  
 

Conservation principles are used to represent all 

physical transformations occurring in the universe, 

accordingly are also adopted to design runner conduit 

for thermoplastic melt injection. Conservation 

principles for thermoplastic melt injection through 

runner conduit are implemented by considering 

cylindrical co-ordinates system relevant to its 

geometrical configuration for deriving governing 

equations. While the continuity equation ensures 

volumetric conservation of thermoplastic melt, the 

momentum equation represents equilibrium of forces 

on thermoplastic melt injection through runner conduit. 

During an injection moulding cycle heat and work done 

energy transformations are balanced by implementing 

first and second law of thermodynamics. Thermoplastic 

melt state change through the runner conduit for a 

particular cycle is appreciated by heat conduction 

equation. Traditionally inertia and entropy 

contribution is neglected to skip rigorousness, 

nevertheless they continue to prevail. Especially in very 

frequently used non-circular runner cross section 

conduits, their influence is highly significant. Hence the 

current endeavour attempts to computationally model, 

continuousness, equilibrium, energy balance and phase 

transformative runner design criteria by implementing 

conservation principles. 

 

Keywords: Runner Design, Plastic Injection Mould, 

Conservation Principles 

 

 

1. Introduction  
Designing moulds necessitate fundamental insight 

into physical injection moulding behaviour of chosen 

melt relative to desired component characteristics as 

well as complementary classical principles of 

mechanics. Off mould design runner system is the 

focussed subject of investigation. Runner conduit is one 

of the integral and influential elements of injection 

mould design to process plastic parts [1]. Specific 

spatial region defining runner conduit is considered in 

isolation from everything else as a well-defined control 

surface or system boundary [2]. Non-newtonian 

thermoplastic melt is then injected through runner 

system conduit to contrive component impression 

space. Since runner conduit involves continuous melt 

injection through its inlet and exit boundary surfaces, it 

will be an open system often referred here afterwards as 

control volume [3]. Here the runner conduit is 

considered as a Euclidian flow field and thus 

thermoplastic melt properties are defined as 

spatiotemporal functions [4]. Hence here we consider 

an elemental volume of thermoplastic melt inside 

runner conduit and conservation laws are implemented 

by differential approach [5]. 

The condition of thermoplastic melt at any instant of 

time is typically referred as its state and expressed as a 

function of melt characteristics [6], which are basically 

a non-newtonian. Though it experiences the runner 

conduit for fraction of cycle, it directly influences the 

ideal feed system design. Consequent to injection 

action, exclusive melt state metrics and their extents are 

used to design effective runner parameters by 

implementing mass, momentum and energy principles 

[7]. Thus its control volume formulation is critically 

important to represent overall balance [8]. 

The mass conservation principle implements 

continuity of thermoplastic melt injection rate. The 

momentum conservation principle appreciates forces 

acting on thermoplastic melt over the entire runner 

conduit [9]. Similarly energy conservation principle 

apprehends energy change of thermoplastic melt 

throughout the process. Here two simultaneous modes 

of energy transformations are recognised, injection 

work and solidification heat transfer. The primary 

objective of mould designer is to realize maximum 

injection power (rate of injection work transfer) from 

runner conduit design criteria. The energy conservation 

principle articulates energy is conserved during a 
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process but doesn’t hint anything about whether the 

Nomenclature 

m Mass Kg 

V Volume 3m  

P Pressure 2Kgf / m
 

T Temperature K  

k Thermal conductivity W/m 

A Cross-section area 2m  

U  
Linear velocity m / s  

rU  
Velocity in radial direction m / s  

U  
Velocity in tangential direction m / s  

U  
Velocity in arbitrary direction m / s  

a Acceleration 2m / s  

M  
Linear momentum Kg m / s

 

H  
Angular momentum Kg m / s

 
I Moment of inertia 2Kg m

 
e Specific total energy KJ / Kg

 

û  
Specific internal energy KJ / Kg

 
T  

Resultant torque N m  

M  
Resultant moment N m  

F  
Resultant force 2N / m  

rF
 

Force acting in radial direction 2N / m  

F  
Force acting in tangential direction 2N / m  

F  
Force acting in arbitrary direction 2N / m  

Q  
Rate of heat transfer KW  

q Rate of heat transfer per unit mass KW  

vW
 

Rate of work done by viscous forces KW  

pW
 

Rate of work done by pressure forces KW  

dS Entropy change KJ / Kg
 

vC
 

Specific heat at constant volume KJ / KgK
 

pC
 

Specific heat at constant pressure KJ / KgK
 

n  
Unit normal vector  

r  
Position vector  

Greek symbols 


 Density 3Kg / m  

  Specific volume 3m / Kg  

  
Angular Velocity m / s  

  Angular acceleration 2m / s  
  Surface force 2N / m  
  Shear stress 2N / m  


 Viscous dissipation function  
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energy exchange is reversible or not. However in most 

circumstances, melt injection through runner conduit 

for a particular cycle is an irreversible process. So an 

additional quantity called entropy is required to balance 

energy transformations. To gain better understanding of 

realizable energy transformations the concept of 

entropy is implemented [10]. 

Hence fundamental conservation of injection 

mechanics from mass, momentum and energy 

perspective is essential to realize specific relationships 

among chosen thermoplastic, desired component and 

available machine. All these relationships along with 

processing objectives facilitate designing an idealistic 

runner system. 

2. Conservation laws 
Plastic injection phenomena through runner conduit 

can be explained by using conservation laws. The 

conservation equations fundamentally seek to tell us 

how three important field variables are distributed in 

space and time. According to conservation laws any 

measurable property of the system does not change as 

the system evolves/ undergoes a change. Thus during 

any process the quantities of the system will be 

conserved. This concept of conservation can be applied 

on thermoplastic melt diffusing through runner conduit 

of injection mould to determine the properties of 

thermoplastic melt throughout runner conduit.  

Let us begin by considering a three dimensional 

runner conduit of a thermoplastic injection mould in 

cylindrical co-ordinates system having a representative 

melt element between ‘ r ’ and ‘ r dr ’ as shown in  

figure 1, subtending an angle ‘ d ’ at the centre. Since 

there are no sources or sinks in the conduit, we can 

conveniently postulate that the mass of representative 

melt element does not change in position and time i.e., 

mass is conserved spatiotemporally. If ‘ U ’ is melt 

velocity then ‘ rU ’ is velocity in radial direction, ‘ U ’ 

is velocity in tangential direction and ‘ U ’ in arbitrary 

injection direction respectively. Here ‘  ’ is linear 

arbitrary path function in the YZ plane on machine. 

2.1 Conservation of Mass 
The continuity equation comes from the basic 

principle that matter can neither be created nor be 

destroyed. This principle is then applied to a small 

volume of thermoplastic melt under injection resulting 

in equation representing continuity.  

Lemma 

“Melt state change at any instant within runner 

conduit is always equal to influx and efflux melt state 

change rates across the runner conduit inlet and outlet 

respectively” 

   
rcv

out in

dV AU AU 0
t


  


 


   (1) 

 

Proof 

Consider injection in arbitrary direction, 

Mass of melt entering/unit time 

 
Figure 1: Three dimensional runner conduit in cylindrical co-ordinates [5] 
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 = density × velocity in  -direction × inlet cross 

section area 

  = U rd dr                                                                 

Similarly mass of melt leaving/unit time    

 
U

U d rd dr
 

   
 
 



  


                        

Thus, total change of mass in -direction/unit time  

= mass entering - mass leaving                                    

 
U

rdrd d   
 

   
 
 


  


      

U
dV

 
   

 
 





                              

Correspondingly, 

Total change of mass in θ-direction/unit time  

U1
dV

r

 
     




                                    

Total change of mass in r-direction/unit time  

r rU U
dV

r r

 
     

                               

Therefore net change of melt mass in element/unit time 

is  

r r
UUU U 1

dV dV dV
r r r

    
                    

  
 

 

r r
UUU U 1

dV
r r r

 
      

   
 


 

    

r
UU(rU )

r dV
r

 
     

   
 


 

 (2) 

Instantaneous mass of melt within the runner conduit 

element = Density × Volume 

 = dV  

So rate of change of melt in element  
( dV)

t







 

Since runner element volume ‘dV’ is stationary and 

invariable with respect to time or independent of time 

change it becomes dv
t







 

Hence by applying conservation law we get,  

r
UU(rU )

dV r dV 0
t r

 
     

    
 




 
  (3) 

r
( U )( U )( rU )

r 0
t r


   

   




 

r r
( U )( U )U ( U ) 1

0
t r r r


    

   


 

 
 (4) 

Now by substituting vector gradient operator, 

r r
UUU U 1

.U = 
r r r


   

  



 
  (5) 

Hence equation reduces (4) to 

 . U 0
t


 




   (6) 

The above equation is called continuity equation. 

The above equation describes that the thermoplastic 

melt injection is compressible and melt is conserved 

through the runner conduit [11], during complete 

injection moulding cycle. 

2.2 Conservation of Momentum 
We hereby develop governing equations for runner 

conduit design considering dynamic forces consequent 

to thermoplastic melt injection. According to 

Newtonian mechanics thermoplastic melt injection 

through runner conduit should obey Newton’s Second 

Law of Motion for Conservation of Momentum. The 

implied momentum could be linear or angular and its 

corresponding actions are force  F  and moment 

 M respectively. 

2.2.1 Conservation of Linear Momentum 

Lemma 

“At any moment resultant force acting on 

thermoplastic melt is proportional to its instantaneous 

injection momentum change rates in that direction and 

momentum change rates across the runner conduit inlet 

and outlet” 

 
   

out in

mU
i.e., F mU mU

t


  


     (7) 

We have,        

 
rcv

mU
UdV

t t

 


  
   and 

     
out

out in in

mU mU U U dA      

 
out

rcv
in

F UdV U U dA
t


  


      (8) 
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The term  U U dA represents momentum change 

rates through mass transfer across runner conduit inlet 

and outlet. 

Proof 

The element is so small that volume integral simply 

reduces to a derivative term 

rcv
i.e.,  UdV UdV

t t

 
  

    (9) 

Consider rate of momentum change in r-direction 

Rate of momentum change at inlet of runner conduit 

 r= U U rd d    

Rate of momentum change at exit of runner conduit 

 
 

r

r

U U
= U U dr r dr d d

r

 
  
 
 


       

Rate of momentum change in r-direction 

 
   

r

r r

U U
ˆU U dr n. r dr d d U U rd d

r

 
    
 
 


     

   r r
r

U U r. U UU U
dV        = dV

r r r

    
    
    
   

 
 

Similarly in ‘ ’ and ‘ ’ -directions 

Rate of momentum change in  - direction  

 U U1
dV

r

 
 
 
 




 

Rate of momentum change in   - direction 

 U U
dV

 
 
 
 




 

Therefore net momentum change rate through mass 

transfer 

     rr. U U U U U U1
dV

r r

   
   
   
 

   

 
  (10) 

Forces acting on thermoplastic melt 

The forces acting on melt mass are body forces and 

surface forces. The body forces are mainly due to 

gravity and their contribution in momentum 

conservation would be very less   because plastic melt 

within the runner conduit is a small fraction of shot 

volume (approximately 50 times), melt injection forces 

are predominantly larger (more than 100 times) than 

inertial forces and melt density itself being very less. 

Therefore body forces can be neglected for runner 

conduit design. 

Consider stresses in r-direction,  

Resultant force acting at runner conduit entrance 

(boundary)/unit time  rrn. rd d    

Since mass is entering into the runner control volume, 

unit normal vector to exit boundary 1 n   

Therefore resultant force acting at runner conduit 

entrance/unit time  rr rd d     

Resultant force acting at runner conduit exit/unit time  

 rr

rr
ˆdr n. r dr d d

r

 
    

 


    

Unit normal vector to entrance boundary, n = 1 

Thus Resultant force 

   rr

rr rr

rr rr

rr rr

= dr r dr d d rd d
r

= rdrd d      
r r

= dV
r r

 
   

 

 
 

 

 
 

 


     

 
 

 

 

So that the net resultant force in r-direction is given by 

rr rrrr

r,resultant

( )( )( ) 1
dF dV

r r r

  
    

   

 
  

 
 

Similarly in other directions, 

     r r

,resultant 

21
dF dV

r r r

  



      
    
   
 

 

     r r

,resultant

1
dF dV

r r r

   



       
    
   
 

 

Net resultant surface force due to injection/melt 

convection exerts stress on runner conduit boundary.  

rr r r

ij r

r

P

P

P

 

  

 

 

  

  

  

   

  

 

Splitting this into pressure and viscous stresses, we can 

rewrite it as 

rrr rr
( )( )dF (r )P 1 1

dV r r r r r

 
      

    

 
 

 
 

Similarly in other directions, 
2

r r r

2

( )dF (r ) ( )1 P 1 1

dV r r r rr

   
      

    

    
   

  

rdF (r ) ( ) ( )P 1 1

dV r r r

   
     

    

     

  
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Hence net resultant forces is given by   

resultant

rrrr

2

r r r

2

dF P 1 P P
 

dV r r

( )( )(r )1 1
                       

r r r r

( )(r ) ( )1 1
                      

r r rr

                   

    
     

     

 
    

   

   
    

   

 

   

 

 

 

   

 

r(r ) ( ) ( )1 1
   

r r r

                

   
   

   

    

 

  

  (11) 

That is, 

resultant viscous

dF dF
P

dV dV

   
     

   
  (12) 

viscous

dF
.

dV

 
  

 
  

resultant

dF
P .

dV

 
    
 

   (13)

 
The resultant force is thus the sum of the pressure 

gradient vector and the divergence of the viscous stress 

tensor. 

According to conservation law, 

Substituting (9), (10) & (13) in equation (8) we get  

       rU r. U U U U U U1
P .

t r r

    
      
    
 

    


 
  

  (14) 

Equation on the right side can be split into, 

       

 

rU r. U U U U U U1

t r r

dU
U . U

t dt

    
   
    
 

 
   

 

    

 


 

 

We know that, from continuity equation number (6) 

 . U 0
t


 




  

Hence, 

       rU r. U U U U U U1 dU

t r r dt

    
    
    
 

    


 
 

resultant

dF dU
i.e.,

dV dt

 
 

 
   (15)  

Hence equation becomes,       

dU
P .

dt
      (16) 

The above equation is also called Cauchy equation 

This can be expanded as follows 

Momentum in r-direction 

rrrr

2

r r r r

r

( )( )(r )P 1 1

r r r r r

U UU U U U
       U U

t r r r

 
     
    

    
     
    
 

 

 


 

 


 

 

Momentum in  -direction 
2

r r r

2

r

r

( )(r ) ( )1 P 1 1

r r r rr

(U ) U U U U U U
= U U

t r r r

   
     

    

    
         

   

     


   

  


 

 

Momentum in  -direction 

r

r

(r ) ( ) ( )P 1 1

r r r

U U U UU
               U U

t r r

   
    
    

    
     

     

  

   


  

  


 

 

 Since the contribution of body forces is negligible, 

the rate of change of momentum of thermoplastic melt 

inside runner conduit is completely depended on 

surface forces which is a combination of pressure and 

viscous forces 

2.2.2 Conservation of Angular Momentum 

Lemma 

 “Resultant torque acting on thermoplastic melt at 

any instant is equal to instantaneous angular 

momentum change within the conduit and angular 

momentum change rates at runner conduit inlet & exit” 

out in

H
i.e.,  T  H H

t


  


     (17) 

Where,   H Angular momentum.  

Also we have 

 
rcv

H
r U dV

t t

 
 

  
  

 
out

out in in

H H r U U dS       

The vector cross product  r U represents angular 

momentum per unit mass. Where ‘ r ’ is position vector 

from origin or fixed central axis and U is linear 

velocity. Thus we can designate  r U dV   as 

angular momentum acting on representative melt
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element. So the right hand side of equation (17) 

becomes

 

   

out in

out

rcv
in

H
H H

t

r U dV r U U dS
t


 




   


 

  

 (18)

  

Since body torque is negligible as stated in section 

2.2.1 only surface torque acting on runner conduit 

accounts to net moment. Since contribution of pressure 

forces on angular momentum is negligible, the surface 

torque will mainly due to viscous torques. So left hand 

side of equation (17) becomes, 

 
rcs

T r dS     (19) 

Substituting equation (18) and (19) in (17), we get 

     
out

rcs rcv
in

 r dS r U dV r U U dS
t


     

      (20)

 

For surface integral,

  

   ˆ ˆr r n. r n. r           

By using Gauss Divergence Theorem, the left hand side 

of equation is converted from surface integral to 

volume integral 

     
rcs rcs rcv

ˆr dS n. r dS . r dV           
 

 
out

in

Similarly,  r U U dS 

 

  
rcv

becomes . r U U dV  

 

 Thus equation (20) becomes, 

      
rcv rcv

rcv

. r dV r U dV . r U U dV
t


       

    

 

      . r r U . r U U
t


     


    (21) 

But we have  

 
  

 
   

r U
. r U U

t

d r U
 r U . U

dt t

 
 



  
      

 

 

Hence equation (21) becomes, 

 
     

d r U
r U . U . r

dt t

  
        

 
 (22)

  

 

From equation (6) we have 

 . U 0
t

 
   

   

Thus above equation (22) reduces to 

 
 

d r U
. r

dt


     (23)

 
This is called angular momentum equation 

 The above equation describes that rate of change of 

angular momentum of the thermoplastic melt inside the 

runner conduit is proportional to viscous forces which 

causes the angular motion. Angular momentum being 

negligible in circular or axis-symmetric runner conduits 

has a significant influence particularly on parametric 

distribution in non-circular cross section runner 

conduits. 

 

2.3 Conservation of Energy 

 Here we seek to adopt Joule’s energy principle to 

mathematically express conservation on the basis of 

First of law of thermodynamics by explicitly 

quantifying various energy entities and balancing them 

in accordance with the conservation notion. So in 

runner design we recognise melt heat, injection 

momentum work and polymer’s internal energy as 

different forms of energy. In physical mould design 

sense, heat is thought of an energy exchange by melt in 

runner conduit to the surrounding in-deformable mould 

runner insert. 

2.3.1 First Law of Thermodynamics 

Lemma 

 “The algebraic sum of thermoplastic melt heat 

transfer rates across runner conduit inlet and exit plus 

rate of injection force acting on it throughout runner 

conduit is proportional to rate of internal energy 

change within runner conduit and rate of internal 

energy changes across the runner conduit inlet and 

exit”  

   v p
rcv rcs

Q W W e dV e U.n dA
t


   

     (24)

 
Here ‘e’ is total energy and it is sum of internal and 

kinetic energy. 
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2

U
ˆi.e., e= u+

2
 

The product  U.n dA  represents melt change rate at 

runner conduit inlet and exit 

 pHere rate of work done by pressure forces W
 

     p

P
W  = P U.n dA = U.n dA    


 (25) 

 

Hence the equation (24) becomes 

   v

P
Q W e dV e U.n dA 

t

 
    

  
  


 (26)

 

This is very convenient form of energy equation since 

pressure work is now combined with energy of 

thermoplastic melt leaving at runner conduit outlet; we 

no longer have to deal with pressure work.  

 v

out in

P P
Q W e dV m e m e

t

   
        

    
  

 
 (27) 

Proof 

Consider rate of energy leaving at runner conduit exit 

by mass transfer in r-direction, 

p
Let = e

 
 

 


  

Rate of energy change at runner conduit inlet 

 rU rd d    

 
Rate of energy change at runner conduit outlet 

 
 

r

r

U
U dr r dr d d

r

 
   
 
   
 
   

Therefore rate of energy change in r-direction 

 
   

r

r r

U
= U dr r dr d d U rd d

r

 
   
 
 

 
          

 r
r

UU
= dV

r r

 
 
 
 

  
 

 r r. U
= dV

r

 
 
 
 

 
 

Similarly in " "  and  " "  directions 

Rate of energy change in " "  direction 

  U1
dV

r

 
 
 
 

 

  

Rate of energy change in  - direction 

 U
dV

 
 
 
 

 

  

Therefore net rate of energy change 

     rr. U U U1
= dV

r r

   
  
   
 

      

 
 (28) 

Net rate of heat change of thermoplastic melt in 

runner conduit  

To evaluate net heat change  Q , we neglect radiation 

and consider only heat conduction through the 

thermoplastic melt. 

According to Fourier law of heat conduction, 

“Rate of heat change per unit area is proportional to 

gradience of temperature” 

q k T    (29) 

Where k= thermal conductivity 

Consider rate of heat change through radial direction 

Rate of heat change at conduit inlet  

 rq rd d  
 

Rate of heat change at conduit outlet 

 r

r

q
q dr r dr d d

r

 
    

 
 

 

By subtracting inlet term with outlet term, we obtain 

heat change in that direction 

Hence rate of heat change in radial direction 

   

 

r

r r

r

r

r

q
q rd d q dr r dr d d

r

q
q drd d rdrd d

r

rq
dV

r

 
    

 

 
    

 

 
  

 

   

     

Similarly in other directions,  

Rate of heat change in tangential direction 

q1
dV

r

 
  

 



  

Rate of heat change in longitudinal direction 

q
dV

 
  

 



  

Therefore net rate of heat change on thermoplastic melt 

 r
qrq q1

dV
r r

Q .qdV

 
    

   

 



 
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From above, rate of heat change is proportional to 

runner conduit volume. Thus Introducing Fourier law 

of heat conduction, we have net rate of heat conducted  

   Q . k T dV   (30) 

Rate of work done on thermoplastic melt due to 

viscous forces 

Net rate of work done by viscous forces on 

thermoplastic melt in r-direction is given by 

   rr r r r
r r

r U U( U )1
drd d

r r

    
   
 




 
 

   

Similarly in ‘θ’ and ‘  ’- directions

 
     rr U U U1

rdrd d
r r

   
  
   
 

       
 

   

     rr U U U1
rdrd d

r r

   
  
   
 

       
 

 
 

Therefore, net rate of work done by surface forces is 

given by

 

   

     

     

rr r r r
r r

r

r

r U U( U )1

r r

r U U U1
rdrd d

r r

r U U U1

r r

       
    
  
 
              
 
    
   
    
  




     

     

 

 

  
 

 

  

 

 

 . U. rdrd d      

 . U. dV    (31)

 
Hence from conservation law, Substituting (28), (30) & 

(31) in equation (27), we get 

   

       r

. k T dV . U. dV

r. U U Ue 1
dV

t r r

  

   
    
    
 

 



     

 

 

   

       r

. k T dV . U. dV

r. U U Ue 1
dV

t r r

  

   
    
    
 

 



     

 

 (32)

 

But the right hand side of the equation can be expanded 

as, 

       

     

r

r

r r

r

r

r. U U Ue 1

t r r

e e 1 e e
U U U

t r r

UUU U 1
P

r r r

r. U U U1 1
e

t r r r

U

   
   
    
 

    
    

    

 
     

   
 

       
    
 



 

 



 

     

 


 

 

  

 

P 1 P P
U U

r r

   
  

   
 

 

 

Further, 

       rr. U U Ue 1

t r r

de
 P .U e . U U. P

dt t

   
   
    
 

 
       

 

      

 


 

 

But . U 0
t

 
  

 




 

Hence right hand side of equation reduces to 

       rr. U U Ue 1

t r r

de
P .U U. P

dt

   
   
    
 

    

      

 


 (33)  

Substituting (33) in equation (32), we get 

     
de

. k T . U. . PU
dt

     

 

     

2U
ˆd u

2
. k T . U. . PU

dt

 
 

 
 

       (34)

 
From equation of mechanical energy, 

     

2

U
d

2
. PU P .U . U. : U

dt

 
 
 
            (35) 

Subtracting equation (35) from equation (34) we get, 

   
ˆdu

. k T P .U : U
dt

          (36) 
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 The above equation describes that rate of change of 

internal energy of the thermoplastic melt inside runner 

conduit is proportional to amount of energy added to 

the thermoplastic melt via heat and work done. 

2.3.2 Second Law of Thermodynamics 

Lemma 

 “Rate of injective work done on thermoplastic melt 

across the runner conduit inlet and outlet is 

proportional to thermoplastic melt energy change rates  

within the runner conduit and rate of entropy change 

across the runner conduit inlet and outlet” 

Entropy change (dS) gives us, 

TdS de Pd    

Substituting specific volume 
1




 we get,

  

2

P
TdS de d  


  (37)

       

Since injection moulding is a dynamic process, we now 

differentiate above equation (37) for a small 

representative interval to get, 

2

dS de P d
T

dt dt dt
 




 (38) 

Equation of internal energy is given by, 

 
de

.q P .U
dt

     
 

where  = Viscous dissipation function

    P .Ude .q
 

dt


    



  
 (39)

 

Equation (6) can also be written as, 

 
d

.U
dt

  


  (40) 

Substituting (39) & (40) in equation (38) we get, 

dS .q
T

dt


  



   

By rearranging we get,  

dS .q

dt T T


  


  (41) 

Using vector calculus the term 
.q

T


  is split as 

2

.q q q
. . T

T T T

    
       

   
to separate reversible 

q
.
T

 
 
 

 and irreversible 
2

1
q. T

T

 
  
 

effects of heat 

transfer. 

Hence equation (41) becomes, 

2

dS q 1
. q. T

dt T TT
    


  (42)

 
This is called Equation of Entropy 

 The above equation describes that rate of change of 

entropy during the injection moulding cycle is 

proportional to energy added to the thermoplastic melt 

during that cycle.  

2.4 Volumetric Heat Absorption 

 Thermoplastic melt state change for a particular 

cycle through the runner conduit of an injection mould 

is considered. Accounting to runner conduit 

configuration heat transfer is dominant in radial 

direction compared to that of heat transfer in the 

direction of injection which is very less and hence 

neglected. This provides us with an advantage of 

considering heat conduction in radial direction alone. 

To begin with derivation let us consider a differential 

runner volume element with heat transfer taking place 

in r-direction alone. Since the runner geometry is best 

explained by cylindrical co-ordinate system, the same 

is taken to derive heat conduction equation. 

Lemma 

 “Rate of volumetric thermal energy absorbed 

across thermoplastic melt core and conduit interface 

wall is proportional to difference between net rate of 

heat conducted radially across runner conduit cross-

section and rate of internal energy change throughout 

an injection cycle” 

Proof 

The rate of volumetric heat absorbed across 

thermoplastic melt core and conduit wall interface is 

given by 

 vhq rdr  (43)

  
Let the rate of heat conducted into differential runner 

element in r-direction  

r

T
Q k r

r

 
  

     
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Let the rate of heat conducted away from differential 

runner element in r-direction  

r

r dr r

Q
Q Q dr

r


 
  

   

Thus net rate of heat conducted into differential runner 

element in r-direction  

   r r dr

1 T
Q Q kr rdr

r r r


  
   

  
 (44) 

The rate of internal energy change of thermoplastic 

melt is given by 

 v

T
C rdr

t

 
  

 
  (45)

  

Hence from equations (43), (44) and (45) we have 

     vh v

1 T T
q rdr kr rdr C rdr

r r r t

     
    

     


 

Neglecting the volume terms and expanding the above 

terms, the equation becomes 
2

vh v2

T k T T
q k C

r r tr

   
   

   
  (46) 

The above equation represents the melt state change 

during a particular injection moulding cycle through 

the runner conduit.

 

3. Equation of State (Tait Equation) 
 Thermoplastic melt specific volume streaming 

through runner conduit at any instant is represented as a 

function of its pressure P (t) and temperature T (t). This 

equation is popularly known as Tait equation [12].   

   
 

 0 t

P
T,P T 1 Cln 1 T,P

B T

  
      

   

    (47)

 

Where C=0.0894 is a universal constant.  

 0 T  is given by,

       m m

0 1 2 5 trans,T b b T b ,   if  T > T    (48)

 
Where, subscripts (m) represent molten state of the 

polymer.  

B (T) is given by 

       m m

3 4 5 transB T b exp b T b ,   if  T > T   
 

 (49)

 
For thermoplastic melt streaming through runner 

conduit under general injection moulding processing 

conditions, 

 t T,P 0  (50) 

Where,
transT  is the glass transition temperature which is 

almost a linear function of pressure [13].

 
trans 5 6T b b P   (51)

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion  

 The authors have earlier proposed spatiotemporal 

conservation principle to design runner system for a 

plastic injection mould [14]. Accordingly governing 

equations for thermoplastic melt inside runner conduit 

throughout an injection moulding cycle has been 

obtained after implementing conservation principles. 

Further set of equations tabled above are then used to 

derive a computational model to design the ideal runner 

conduit size for feeding thermoplastic melt relative to 

specific combination of injection moulding machine 

available, characteristics of thermoplastic material 

chosen and desired features of component being 

moulded. 
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