
Implementation of Chinese Remainder Theorem

and Radix 8 Booth Algorithm to Perform

Multiplication for Residual Number System using

Verilog HDL

Phalguna P S1 Keith Raymond Fernandes2

Department of E & C Engineering Department of E & C Engineering

St Joseph Engineering College, St Joseph Engineering College,

Mangaluru, D.K,India Mangaluru, D.K,India

Abstract— Residual Number System (RNS) represents a

larger integer using a set of smaller integer for a set of

selected moduli. The computation part of the RNS has an

integer part multiplied with the selected modulo and a

residual part. The selected moduli are absolute values, which

are relatively prime [1]. In RNS multiplication process the

residues of the multiplier and multiplicand are obtained for

special set of moduli and multiplied respectively to get the

residues of final product. The conversion of RNS to Decimal

Number System is done by Chinese Remainder Theorem

(CRT).

 In RNS multiplication process, multiplication of

large numbers can be done at the same speed as on short

numbers. The speed is determined by the largest modulo

position. The computation complexity is decreased by

representing the larger number as set of smaller numbers.

 In this paper, a multiplier is implemented using

CRT and Radix 8 Booth algorithm for RNS.This multiplier is

checked for Power and Efficiency.

Index Terms— RNS (Residual Number System), CRT

(Chinese Remainder Theorem)

I. INTRODUCTION

A multiplier is one of the key hardware blocks in

most digital signal processing (DSP) systems,

communication systems, error control coding,

cryptography etc.

Booth multiplication is a technique introduced by

Andrew D. Booth in the year 1950. It allows smaller, faster

multiplication by encoding the numbers that are multiplied.

It is the standard technique used in chip design and

provides significant improvement over the long

multiplication technique.

The advantage of this method is the halving of the

number of partial products. This is important in circuit

design as it relates to the propagation delay in the running

of the circuit, and the complexity and power consumption

of its implementation. It is possible to reduce the number of

partial products to half by using the technique of radix 4

Booth recoding and further it can be reduced by using the

technique of radix 8 booth encoding.

 The Radix 8 Booth multiplier is the advanced

version of the normal Booth multiplier. This modified

Booth multiplier gives the multiplied output using less

number of partial products compared to the normal Booth

multipliers.

 RNS relies on the Chinese remainder

theorem of modular arithmetic for its operation, a

mathematical idea from Sun Tsu Suan-Ching in the 4th

century AD. RNS represents a larger integer using a set of

smaller integer for a set of selected moduli [2]. By

considering a smaller equivalent integer in place of a larger

integer will perform an efficient way of calculation. This

will lead to a huge conservation of the bits which makes a

fair impact on the arithmetic operations. Hence the

efficiency of the operation increases by lowering the power

consumption for the multiplier.

II. DESIGN APPROACH

This section focus on the design approach for

Radix-8 Booth multipliers by considering the necessary

specifications for develop the relevant source code in

Verilog HDL using Finite State Machine.

The solutions of realizing high speed multipliers

are to reduce the Partial products by factor of one third of

the Booth multiplier method [4].

Since the numbers of partial products are less, the

radix 8 Booth multiplier performs efficiently when

compared to the normal Booth multipliers. The figure 1

shows the block diagram of the 9 bit Radix 8 Booth

multiplier.

Figure1: Block diagram of Radix 8 Booth multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

The table 1 shows the algorithm for Radix 8

Booth multiplier.

Table 1: Radix-8 Booth Encoding Table

BLOCK PARTIAL PRODUCT

0000 Arithmetic Shift Right (3 bit)

0001 1*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0010 1*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0011 2*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0100 2*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0101 3*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0110 3*Multiplicand and perform Arithmetic

Shift Right (3 bit)

0111 4*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1000 -4*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1001 -3*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1010 -3*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1011 -2*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1100 -2*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1101 -1*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1110 -1*Multiplicand and perform Arithmetic

Shift Right (3 bit)

1111 Arithmetic Shift Right (3 bit)

 This algorithm scans strings of four bits as

follows:

1) Extend the sign bit 1 position if necessary to ensure that

n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial

Product will be 0, +y, -y, +2y,-2y, +3y, -3y, +4y or -4y [4].

Radix-8 booth encoder performs the process of

encoding the multiplicand based on multiplier bits. It will

compare 4 bits at a time with overlapping technique.

Grouping starts from the LSB, and the first block only uses

three bits of the multiplier and assumes a zero for the third

bit. The functional operation of Radix-8 booth encoder is

shown in the Table 1.

The Radix 8 Booth multiplier can be designed by

using the Finite State Machine Technique. In this technique

four states are considered for the design of the Radix 8

Booth Multiplier. They are wait for Go state, initial state,

Add shift state, done state.

Wait for Go state: This state checks for the availability of

the inputs for Radix 8 Booth multiplier. If the inputs are

ready, the next state i.e. initial sate is activated and if the

inputs are not ready then this state will be continued until

the inputs are given by the user.

Figure 2: FSM design for Radix 8 Booth multiplier

Initial state: This state will mainly concentrate on the

several issues such as addition of the booth bit (a zero bit)

to the LSB of the first Partial Product, padding of the

sufficient bits to the MSB of the first Partial Product,

number of passes that has to be performed in the radix 8

Booth multiplication and the sign bit extension concepts.

The Radix 8 Booth multiplication process requires ‘n/3’

passes for a n bit input.

 If all the issues are satisfied the next state i.e. Add Shift

state is activated or else it will remain in the same state.

Add Shift state: This state acts according to the Radix 8

Booth algorithm. In this state the last four bits of the partial

product is considered and the particular addition operation

is performed according to the algorithm followed by

shifting the partial product to the right (i.e. Arithmetic Shift

Right) by three bit. This state execute until the number of

passes are satisfied (i.e. n/3 passes). If the numbers of

passes are less than n/3, then same state will be executed

until it is satisfied.

Done state: This is the final state of the Finite State

Machine. Here LSB of the last partial product is discarded

and the values are get stored the product register.

The radix 8 booth multiplier provides more efficiency

compared to Radix 2 and Radix 4 Booth multipliers. Hence

radix 8 Booth multiplier is chosen. Table 2 shows the

various parameters obtained for different Booth multipliers.

Table 2: Design summary of Booth multipliers

Parameter Radix

2

Radix 4 Radix 8

Time delay 80 ns 40 ns 30ns

Number of LUTs 56 69 109

Number of I/Os 36 36 42

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

III. RNS MULTIPLIER

This section focus on the design of RNS

multiplier. This multiplier consists of three blocks namely

Forward converter block, Multiplier Block and Reverse

converter block.

A. Forward converter

The conversion of decimal number to residual

number is done using Forward converter. One of the most

important considerations when designing RNS Systems is

the choice of the moduli set. The choice of moduli affects

the complexity of forward and reverse converters as well as

RNS arithmetic circuits [5].

 The moduli set (m1,m2……mi) should be chosen

such that the moduli mi s satisfy the following criteria:

1. They should be pair wise prime. That is, gcd(mk,mj) = 1

for all mk ≠ mj.
2. Each moduli mi should be as small as possible so that

operations modulo mi require minimum computational

time.

3. The moduli mis should imply simple binary to RNS and

RNS to binary conversions as well as simple RNS

arithmetic.

4. The moduli product should be large enough to

implement the desired dynamic range.

5. The moduli should provide a well balanced

decomposition of the dynamic range. This means that the

difference in word length between the moduli should be as

small as possible [6].

Sets with all elements being of the forms (2n + 1,

2n , 2n – 1, 22n + 1) for n=2,3 which satisfy the requirement

of simple conversions and efficient modulo arithmetic is

considered for the design of Forward converter. By

considering n=2, a moduli set (3, 4, 5, 17) is selected for

the design of RNS multiplier. Hence the dynamic range of

the RNS multiplier is 1020. Figure 3 shows the block

diagram of 16 bit forward converter.

Figure 3: block diagram of Forward converter

B. Multiplier

 The residual output of the Forward converter

which is having less number of bits is fed to the Radix 8

Booth multiplier as discussed in section II which produces

the product in the form of residual number. Since inputs to

the multiplier are very small, the multiplier performs

efficiently.

C. Reverse converter

This converts the residual number into decimal

number. The product generated by the multiplier is

considered. This product is again converted back to the

decimal number by applying CRT. The equation for CRT is

given as,

 MrTAX i

N

i

ii mod
1






(1)
 Where, ‘A’ is the result of M/mi, ‘T’ is the
multiplicative inverse, ‘r’ is the residual number and ‘M’
represents the dynamic range of the selected set of prime
moduli (3,4,5,17) i.e. 1020.

 The multiplicative inverse term ‘T’ should be
selected in such a way that congruence should be 1. The
block diagram of reverse converter is as shown in Figure 4,
where r, s, t represents the residual numbers which are the
product of radix 8 Booth multipliers.

Figure 4: block diagram of Reverse converter

 IV. PROPOSED ARCHITECTURE

Figure 5: Architecture for RNS multiplier

 The RNS multiplier consists of forward converter,
radix 8 Booth multiplier and a reverse converter. The
inputs are given in decimal numbers which gets converted
into residual number by the forward converter and fed into
the multiplier. The product is obtained in the form of
residue number which again converted back to the decimal
number by applying CRT to get the final product.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

V. RESULTS

This section focuses on the results obtained for

various blocks of the RNS multiplier. Figure 6 represents

the forward converter in which the modulo 3 is applied for

the decimal number 10 resulting in a residual number 1.

Figure 6: Output waveform for Forward converter

 Figure 7 shows the result obtained for Radix 8
Booth multiplier where 12 and 2 are the inputs given
resulting 24 as the product.

 Figure 7: Output waveform for Radix 8 Booth multiplier

 Figure 8 shows the result obtained for reverse
converter where the input is the residual number (0,3,6) for
moduli set (3,5,7) resulting in a decimal value 153.

Figure 8: Output waveform for Reverse converter

V. CONCLUSION

This project discuss about the implementation of

efficient algorithm for Booth multiplier which are used in

the design of FIR filters. Here the brief description about

Radix 8 Booth multiplier is explained.

It is observed that the partial products obtained by

the multiplication process of two signed or unsigned

numbers are reduced for the Radix 8 Booth multiplier.

Hence the efficiency of the multiplier will be increased.

Here the efficiency of Modified Booth Multiplier

will be more than the normal Booth multiplier, where as

the Radix 8 Booth multiplier will give more efficiency

compared to Booth multiplier and Modified Booth

multiplier because of the reduction of partial products.

The use of RNS multiplier will cause huge

reduction in the number of bits used for the multiplication

process and hence increasing the efficiency.

As the future work, power consumption of this

RNS multiplier is estimated with various other multipliers.

REFERENCE

[1] R. Muralidharan and C. H. Chang, “Radix-8 Booth encoded (2n-1)

modulo multipliers with adaptive delay for high dynamic range
Residue Number System”, IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 58, no. 5, pp. 982–993, May 2011.

[2] K. Bhaskara Rao, B.Chinna Rao, “Radix-8 Booth Encoded Modulo
(2n-1) Multipliers with Parallel Prefix Adder For High Dynamic

Range RNS”, IJERD, Volume 5,Issue 1 ,2012.

[3] A. D. Booth, “A signed binary multiplication technique”, Quarterly J.
Mechan. Appl. Math., vol. IV, part 2, 1951.

[4] Neredimelli VVP Hide, Dr. I. Shanthi Prabha, “Design of Modulo 2n-1

Based on Radix -8 Algorithm for RNS and MAC applications”,
IJRCCT, ISSN-2278-5841, Issue 3,Aug-2012.

[5] Andreas Persson, Lars Bengtsson, “Forward and Reverse Converters

and Moduli Set Selection in Signed-Digit Residue Number Systems”
8 March 2007 / Revised: 21 May 2008 / Accepted: 12 June 2008 ©

2008 Springer Science + Business Media, LLC. Manufactured in

The United States.
[6] Abdallah, M., & Skavantzos, “ A systematic approach for selecting

practical moduli sets for residue number systems”. In Proceedings of

the 27th IEEE southeastern symposium on system theory (pp. 445–
449) (March).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

