
Implementation of Adaptive FIR Filter with Area

Optimization Based on DA and OBC

B. Doss

Department Of ECE,JNTUA CEA

 Anantapur, India

K. Soundararajan
Department of ECE, KITES Engg,

College

Hyderabad, India

Y. Narasimha Murthy
Reader, SSBN Degree & PG

College

Anantapur, India

Abstract— In this paper an efficient pipelined architecture of

an adaptive FIR filter based on distributed arithmetic (DA) is

discussed. On comparing with existing DA based adaptive filter

implementations the proposed architecture has achieved “low-

complexity”. For achieving this advantage Offset Binary Coding

(OBC) has been used in this filter design. By doing so, the

number of LUTs used has been decreased from 16 to 8. In

addition to this, DA-based inner product computations have

been done by using conditional signed carry-save accumulation

instead of traditional adder based shift accumulation. Unlike

existing DA-based designs the proposed design involves the same

number of multiplexers but a smaller LUT and nearly half of

the number of adders.

Keywords— Adaptive FIR filter, Distributed Arithmetic, carry-

save accumulation, Adaptive LMS algorithm, offset Binary

Coding.

I. INTRODUCTION

Now-a-days in numerous DSP applications adaptive filters
are the most important and useful blocks. Because of its
simplicity and satisfactory convergence performance, the
tapped-delay line finite impulse response (FIR) is the most
popularly used adaptive filter. The weight updating in this
filter follows Widrow-Hoff least mean square (LMS)
algorithm [1]. A long critical path on the forward path of FIR
filter design will be resulted in the direct form realization. It is
because of the computation of an inner product to obtain a
filter output. So it is the case while dealing with input signals
of high sampling rate, the reduction in the critical path of the
structure is necessary.

In the current scenario some distributed arithmetic
techniques such as multiplier less algorithms [2] have gained
much popularity. This structure has more advantages such as
high throughput and because of its regularity it is cost-
effective and area efficient. Allred et al [3] proposed
hardware-efficient DA-based design which uses two different
lookup tables (LUTs) for updating weight and filter
coefficients. Sang Yoon Park and Pramod Kumar proposed an
architecture [4] for implementing adaptive FIR filters. But the
architecture is complex for higher order filters.

So in this brief, low-complex architecture is proposed for
implementing adaptive FIR filter. Such a simpler design is
possible with the help of “Offset Binary Coding”. Offset
binary coding is a digital coding scheme. It is also known as
“excess-k”. In this coding scheme minimum negative value is
represented by all zeros and the maximum positive value is
represented by all-ones. This coding scheme has no standards,

but the offset K=2^ (n-1) is most often used for an n-bit binary
word. Here the “zero” value is represented by all zeros except
the most significant bit, which is similar to two‟s complement
notation except the most significant bit is inverted.

Offset binary coding finds more applications in Digital
Signal Processing (DSP) [5]. The basic units of DSP chips are
analog to digital (A/D) and digital to analog (D/A) converters.
These are unipolar so cannot process bipolar signals. For that
biasing the analog signals with a DC offset is needed. The
result is in offset binary format. Offset binary format cannot
be handled directly by most of the standard computer CPU
chips. They typically require some data conversion techniques
to process offset binary. But without requiring any data
conversion DSP chips can handle offset binary. Just by
inverting the most significant bit offset binary can be
converted into two‟s complement form.

II. CONCEPT OF ADAPTIVE LMS ALGORITHM

The LMS algorithm computes both the filter output and an
error value during each cycle. Usually the difference between
current filter output and desired responses is termed as error
value. Then the filter coefficients are updated with an
estimated error value in every training cycle. The filter
coefficients are updated during the nth iteration according to
the following equations:

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇 ∗ 𝑒 𝑛 ∗ 𝑥(𝑛) (1)

Error signal is given as

 𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛) (2)

Output signal of the adaptive filter is

 𝑦 𝑛 = 𝑤𝑞𝑇 𝑛 ∗ 𝑥(𝑛) (3)

Where 𝑤 𝑛 is the filter coefficients vector, and 𝑥(𝑛) is
the filter input vector, d(n) is the desired response, 𝜇 is
convergence factor. The feedback error 𝑒 𝑛 will be available
This is called “adaptation delay”. So the delayed error is used
for updating the current weight in pipelined structures instead
of the most recent error, the parameter „m‟ is the adaptation
delay. The equation that governs such weight update in
adaptive filter using LMS algorithm is given by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

696

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇 ∗ 𝑒 𝑛 − 𝑚 ∗ 𝑥(𝑛 − 𝑚) (4)

 Here x(n) is filter input vector and w(n) is weight vector.

III. DA-BASED APPROACH FOR INNER-PRODUCT

COMPUTATON

In the LMS adaptive filter, inner-product computations of
the critical path in each cycle are performed by using the
following expression.

𝑦 = 𝜔𝑘 ∗ 𝑥𝑘

𝑁−1

𝑘=0

 (5)

Where 𝜔𝑘 and 𝑥𝑘 form the N-point vectors corresponding
to the current weights and the most recent N-1 input values
respectively for 0 ≤ k ≤ N-1. Let L be the bit width of the
weight and each component of the weight vector in its 2‟s
complement representation is expressed as:

𝜔𝑘 = −𝜔𝑘0 + 𝜔𝑘𝑙 ∗ 2−𝑙 (6)

𝐿−1

𝑙=1

Where ωkl denotes the l
th

 bit of 𝜔𝑘 .Equation (5) can be written as

𝑦 = − 𝑥𝑘

𝑁−1

𝑘=0

∗ 𝜔𝑘0 + 𝑥𝑘 ∗ 𝜔𝑘𝑙 ∗ 2−𝑙

𝐿−1

𝑙=1

𝑁−1

𝑘=0

(7)

 In the above equation by altering the summations order

of k and l indices it can be converted to sum-of-products form.

𝑦 = − 𝑥𝑘 ∗ 𝜔𝑘0 + 2−𝑙 ∗ 𝑥𝑘 ∗ 𝜔𝑘𝑙

𝐿−1

𝑙=1

𝑁−1

𝑙=1

𝑁−1

𝑘=0

 (8)

From the above equation the inner-product can be calculated

as

𝑦 = 2−𝑙 ∗ 𝑦𝑙

𝐿−1

𝑙=1

 − 𝑦0, 𝑤ℎ𝑒𝑟𝑒 𝑦𝑙 = 𝑥𝑘 ∗ 𝜔𝑘𝑙 9

𝑁−1

𝑘=0

The partial sum 𝑦𝑙 for l = 0,1,….,L-1 will have 2

N
 possible

values. The inner-product of above equation will be calculated
for L cycles of shift accumulation; thereafter for L number of
bit slices where 0 ≤ l ≤ L-1 corresponding LUT-read
operations will be performed as shown in fig.1. And the shift
accumulation is performed using carry-save accumulator as it
involves significant critical path.

In carry-save accumulation the weight vector ω bit slices
are given one after the next in the order LSB to MSB. In the
case of MSB slices the accumulation of output in its 2‟s
complement form is needed. Therefore, all the bits of LUT
output are passed through the XOR gates with a sign-control

input as the result is represented in two‟s complement format.
The output will be set to one if the appeared address is MSB
slice.

Fig. 1. 4-point inner product computation in Conventional DA-based

implementation

Thus the XOR gates produce the LUT output of MSB slice
in one‟s complement form without affecting the output of
other bit slices. At last both the outputs of XOR gate (i.e. sum
and carry words) resulted after L number of clock cycles have
been added by the final adder. And the input carry to the final
adder is set to one to account for performing 2‟s complement
operation of the LUT output of the MSB slice.

The equation that gives data in kth LUT location is as
follows

𝐶𝑘 = 𝑥𝑗 ∗ 𝑘𝑗 (10)

𝑁−1

𝑗=0

In the above expression 𝑘𝑗 is the (j+1)th bit of N-bit

binary representation of integer k for 0 ≤ k ≤ 2
N
-1. Here

Ckfor 0 ≤ k ≤ 2
N
-1 can be recomputed and stored in RAM-

based LUT of 2
N
 words. However, only (2

N
-1) registers are

stored in LUT instead of storing 2
N
 words.

IV. EXISTING DA-BASED ADAPTIVE FILTER

STRUCTURE

For our convenience we can decompose the computations
of the large ordered adaptive filters into small adaptive
filtering block. This makes the job of computing inner product
which is the most important task in DA-based implementation
of adaptive filters easier as the inner product computation of
long vectors requires a very large LUT [3].

 0

 X0

X3+x0

X3+x1+x0

x3+x2

X3+x2+x0

X3+x2+x1

X3+x2+x1+x0

X2+x1+x0

X3+x1

X2+x1

 X2

 X1

X1+x0

x2+x0 w1l

w2l

W0l

+/-

 D

 y

 >>1

Sign control

Shift accumulator

/
L+2

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

697

The existing DA-based LMS adaptive filter design
requires 16 delay element DA-table structure. The 4

th
 order

adaptive filter (N=4) implementation involves a four-point
inner product block, weight increment block and the circuit
for generating error ‘e’, and a control word generator that
generates the control word ‘t’ for the barrel shifters as shown
in fig 2.

But the same structure can be implemented with the help
of 8-delay elements. Since with the help of basic elements
x(n), x(n-1), x(n-2), x(n-3) the remaining structure can be
implemented. It can be achieved with the help of Offset
Binary Coding (OBC).

Fig. 2. Structure of DA-based LMS adaptive filter of filter length N=4

V. PROPOSED OFFSET BINARY CODING BASED

ADAPTIVE FILTER DESSIGN

In the proposed approach, for the implementation of DA-
based adaptive filter, we make use of the DA-table structure
that makes use of the 8 delay elements. Hence by using the
proposed structure, we can reduce the original DA-table
structure by two times, which increases the area efficiency of
the design twice. The proposed structure for the DA-table
which makes use of eight delay elements is shown in the
figure. 3.

The proposed structure for 4
th

 order adaptive filter (N=4) is
shown in the fig 2. Generally, it consists of a four-point inner
product block, a weight increment block and the circuit for
generating error ‘e’, and a control word generator that
generates the control word ‘t’ for the barrel shifters.

The four point inner product block which was shown in
fig. 5 , consists of a DA-table which has an array of 15
registers. It is capable of storing the partial inner products ‘y’,
for 0 < l ≤ 15 and a 16:1 multiplexer is used to select one of
those registers at any particular instant. Weights A= {w₃, w₂,
w₁ ,w₀} for 0 ≤ l ≤ L-1 are fed to the multiplexer as control
bits in the LSB-MSB order. The output of the MUX is then
fed to the carry-save accumulation block. After L clock
cycles, the carry-save accumulation block accumulates all the
partial inner products and generates a sum word and a carry
word of size L+2 bit length each.

Fig. 3. Proposed structure of DA table with 8 delay elements

The sum word is shifted right by one position right and
added to the carry to generate the filter output y(n-1) which is
then subtracted from the desired signal d(n) to obtain the error
e(n). After that the sign-magnitude separator is used to
separate the sign bit and magnitude bits from the obtained
error.

Fig.4. Logic used for the generation of control word t for the barrel shifter for

 L=8

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

698

Fig. 5. Structure of four point inner product block

The magnitude bits are used by the control word generator
to generate the control word „t‟ for the barrel shifter. The logic
used for the generation of control word „t‟ for barrel shifter is
shown in the figure 4.

The convergence factor „µ‟ is taken as 1/N. Generally, we
can take µ as 2

-i
/N, where „i‟ is a small integer. The weight

increment unit for N=4 consist of four barrel shifters and four
adder/subtractor cells. The structure of weight increment cell
is shown in figure 6.

Fig. 6. Structure of weight increment block for N=4

In general Barrel Shifter is the most helpful unit in Digital
Signal Processing blocks. Mostly it is used in multiplication
and division operations. It performs multiplication just by
right shifting the data in registers by required number of times.
That means to multiply the data by 2 times, the data is shifted
right by one position. Similarly division can be performed by
left shifting the data as per requirement. Thus the barrel shifter
reduces the complexity of operations there by area
optimization has been achieved too.

Here the barrel shifter shifts the input values 𝒙𝒌, where
k=0,1,….N-1 by defined number of locations. Barrel shifter
yields the number of increments to be added or subtracted
from the present weights. The sign bit from the sign-
magnitude separator is used as the control for adder/subtractor
cells such that depending on the value of the sign bit whether
it is zero or one, the barrel shifter output is respectively added
or subtracted from the content of the weight corresponding
current value in register.

Thus the fourth order filter implementation is done
successfully with 8-DA table structure. It reduces the
complexity as the basic terms like x(n), x(n-1), x(n-2), x(n-3)
are more enough to generate all the other terms. So higher
order filters can also be easily implemented in hardware as
this design achieves low-complexity.

A. Higher Order Filter Implementation

The structure of higher order filter of size N=16 is shown
in figure 7. The design involves four sets of inner product
blocks and weight increment blocks. All the blocks are
connected in a proper manner in order to give a desired result.

The four 4-point inner product blocks and weight
increment blocks all together is known as 16-bit data
computing block as this sub block computes 16-bit sum and
carry words. These are used in further computations. As in the
case of fourth order filter implementation, here also the L+2
bit sums and carry are produced by the four inner product
blocks. And these will be added by using two binary adder
trees. The output of four 4-point inner-product blocks i.e. sum
words are added with four carry-in bits. Since the carry words
are of double the weight compared to the sum words, two
carry-in bits are set as input carry at the first level binary adder
tree of carry words, which is equivalent to inclusion of four
carry-in bits to the sum words. Sign magnitude separator is
used to separate sign bits and magnitude bits from the
calculated error as in the case of smaller order filter designs.
Outputs of sign-magnitude separator and control word
generator are fed commonly to all the weight increment
blocks. The logic used for control word generator is also same
as that of previous logic. Further, the filtering process is same
as that of the 4

th
 order adaptive FIR filter except that the

process is performed on 16-bit data instead of 4-bit data.

Similarly, the structure can be extended to 32-bit filter
implementation. For that purpose two 16-bit data computing
blocks which are mentioned earlier have been used. The
structure of 32-bit filter is shown in the fig.8. Just by
performing the binary addition of 16-bit sum and carry of the
two 16-bit data computing blocks, the filter of length N=32
can be realized. The connections between the blocks must be
given properly for achieving better results.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

699

Fig.7. Structure of DA-based LMS adaptive filter of length N=16 and P=4

Fig. 8. Structure of DA-based LMS adaptive filter of length N=32 and P=4

d(n)

SUM CARRY

16-BIT DATA

COMPUTING BLOCK

SUM CARRY

16-BIT DATA

COMPUTING BLOCK

SIGN-MAG

SEPARATO

R

CONTROL

WORD

GENERATOR

GGENERAT

OR

D >>1 >>4

D

To weight increment block

x(n+1)
sign mag

𝜇𝑒 (𝑛 − 2)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

700

VI. SYNTHESIS RESULTS

TABLE I. SYNTHESIS REPORT

Design

Filter

Length, N

No. of

slices

No. of slice

flip-flops

No. of 4-i/p

LUTs

 Availability 4656 9312 9312

Existing

Design with
an LUT

using 16-

delay
elements

4 252 271 469

8 406 464 733

16 838 912 1509

32 1287 1376 2313

Proposed
Design

with an LUT

using
8-delay

elements

4 267 204 494

8 437 330 783

16 901 644 1609

32 1382 974 2463

In this section we have implemented the proposed

design with VHDL and synthesized our design using Xilinx
ISE 13.2. The results obtained are tabulated above. From
the above results it is clearly noticed that the hardware
complexities are reduced significantly.

VII. CONCLUSION

Low-complexity design implementations have greater
importance in efficient hardware implementations. In this
brief an architecture for the implementation of adaptive FIR
filters is proposed. This design achieved low-complexity
compared to existing DA-based implementations.

REFERENCES

[1] S. Haykin and B. Widrow, Least-Mean-Square Adaptive Filters.

Hoboken, NJ, USA: Wiley, 2003.

[2] S. A. White, “Applications of the distributed arithmetic to digital
signal processing: A tutorial review,” IEEE ASSP Mag., vol. 6, no.
3, pp. 4–19, Jul. 1989.

[3] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,
“LMS adaptive filters using distributed arithmetic for high
throughput,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no.
7, pp. 1327–1337, Jul. 2005.

[4] Sang Yoon Park and Promod Kumar Meher, “Low- power, High-
Throughput, and Low-area Adaptive FIR Filter Based on Distributed
Arithmetic,” IEEE Trans. On Circuits and Systems-II, Express
Briefs, Vol.60, no.6, pp.346-350, June 2013.R. Nicole, “Title of
paper with only first word capitalized,” J. Name Stand. Abbrev., in
press.

[5] W. Huang and D.V. Anderson, “Modified Sliding-Block Distributed
Arithmetic with Offset Binary Coding for Adaptive Filters,” Journal
of Signal Processing Systems, April 13, 2010.M. Young, The
Technical Writer‟s Handbook. Mill Valley, CA: University Science,
1989.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

701

