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Abstract— In this paper an efficient pipelined architecture of 

an adaptive FIR filter based on distributed arithmetic (DA) is 

discussed. On comparing with existing DA based adaptive filter 

implementations the proposed architecture has achieved “low-

complexity”. For achieving this advantage Offset Binary Coding 

(OBC) has been used in this filter design. By doing so, the 

number of LUTs used has been decreased from 16 to 8. In 

addition to this, DA-based inner product computations have 

been done by using conditional signed carry-save accumulation 

instead of traditional adder based shift accumulation. Unlike 

existing DA-based designs the proposed design involves the same 

number of multiplexers but a smaller LUT and nearly half of 

the number of adders.  

Keywords— Adaptive FIR filter, Distributed Arithmetic, carry-

save accumulation, Adaptive LMS algorithm, offset Binary 

Coding. 

I.  INTRODUCTION  

Now-a-days in numerous DSP applications adaptive filters 
are the most important and useful blocks. Because of its 
simplicity and satisfactory convergence performance, the 
tapped-delay line finite impulse response (FIR) is the most 
popularly used adaptive filter. The weight updating in this 
filter follows Widrow-Hoff least mean square (LMS) 
algorithm [1]. A long critical path on the forward path of FIR 
filter design will be resulted in the direct form realization. It is 
because of the computation of an inner product to obtain a 
filter output. So it is the case while dealing with input signals 
of high sampling rate, the reduction in the critical path of the 
structure is necessary. 

In the current scenario some distributed arithmetic 
techniques such as multiplier less algorithms [2] have gained 
much popularity. This structure has more advantages such as 
high throughput and because of its regularity it is cost-
effective and area efficient. Allred et al [3] proposed 
hardware-efficient DA-based design which uses two different 
lookup tables (LUTs) for updating weight and filter 
coefficients. Sang Yoon Park and Pramod Kumar proposed an 
architecture [4] for implementing adaptive FIR filters. But the 
architecture is complex for higher order filters. 

So in this brief, low-complex architecture is proposed for 
implementing adaptive FIR filter. Such a simpler design is 
possible with the help of “Offset Binary Coding”. Offset 
binary coding is a digital coding scheme. It is also known as 
“excess-k”. In this coding scheme minimum negative value is 
represented by all zeros and the maximum positive value is 
represented by all-ones. This coding scheme has no standards, 

but the offset K=2^ (n-1) is most often used for an n-bit binary 
word. Here the “zero” value is represented by all zeros except 
the most significant bit, which is similar to two‟s complement 
notation except the most significant bit is inverted. 

Offset binary coding finds more applications in Digital 
Signal Processing (DSP) [5]. The basic units of DSP chips are 
analog to digital (A/D) and digital to analog (D/A) converters. 
These are unipolar so cannot process bipolar signals. For that 
biasing the analog signals with a DC offset is needed. The 
result is in offset binary format.  Offset binary format cannot 
be handled directly by most of the standard computer CPU 
chips. They typically require some data conversion techniques 
to process offset binary. But without requiring any data 
conversion DSP chips can handle offset binary. Just by 
inverting the most significant bit offset binary can be 
converted into two‟s complement form. 

II. CONCEPT OF ADAPTIVE LMS ALGORITHM  

 

The LMS algorithm computes both the filter output and an 
error value during each cycle. Usually the difference between 
current filter output and desired responses is termed as error 
value. Then the filter coefficients are updated with an 
estimated error value in every training cycle. The filter 
coefficients are updated during the nth iteration according to 
the following equations: 

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇 ∗ 𝑒 𝑛 ∗ 𝑥(𝑛)             (1) 

Error signal is given as 

 
                     𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛)                      (2) 

Output signal of the adaptive filter is 
 

                       𝑦 𝑛 = 𝑤𝑞𝑇 𝑛 ∗ 𝑥(𝑛)                       (3) 

 

Where 𝑤 𝑛  is the filter coefficients vector, and  𝑥(𝑛) is 
the filter input vector, d(n) is the desired response, 𝜇 is 
convergence factor. The feedback error 𝑒 𝑛  will be available 
This is called “adaptation delay”. So the delayed error   is used 
for updating the current weight in pipelined structures instead 
of the most recent error, the parameter „m‟ is the adaptation 
delay. The equation that governs such weight update in 
adaptive filter using LMS algorithm is given by 
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𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇 ∗ 𝑒 𝑛 − 𝑚 ∗ 𝑥(𝑛 − 𝑚)             (4) 

 

      Here x(n) is filter input vector and w(n) is weight vector. 

 

III. DA-BASED APPROACH FOR INNER-PRODUCT 

COMPUTATON  

In the LMS adaptive filter, inner-product computations of 
the critical path in each cycle are performed by using the 
following expression. 

 

𝑦 =  𝜔𝑘 ∗ 𝑥𝑘

𝑁−1

𝑘=0

                                                                   (5) 

 

Where  𝜔𝑘  and  𝑥𝑘  form the N-point vectors corresponding 
to the current weights and the most recent   N-1 input values 
respectively for 0 ≤ k ≤ N-1. Let L be the bit width of the 
weight and each component of the weight vector in its 2‟s 
complement representation is expressed as: 

𝜔𝑘 = −𝜔𝑘0 +  𝜔𝑘𝑙 ∗ 2−𝑙                                                (6)

𝐿−1

𝑙=1

 

 

Where ωkl denotes the l
th

 bit of 𝜔𝑘 .Equation (5) can be written as  

 

𝑦 = −  𝑥𝑘

𝑁−1

𝑘=0

∗ 𝜔𝑘0 +  𝑥𝑘 ∗   𝜔𝑘𝑙 ∗ 2−𝑙

𝐿−1

𝑙=1

             

𝑁−1

𝑘=0

(7) 

 

 
   In the above equation by altering the summations order 

of k and l indices it can be converted to sum-of-products form. 

  

𝑦 = −  𝑥𝑘 ∗ 𝜔𝑘0 +  2−𝑙 ∗   𝑥𝑘 ∗ 𝜔𝑘𝑙

𝐿−1

𝑙=1

 

𝑁−1

𝑙=1

𝑁−1

𝑘=0

              (8) 

 

From the above equation the inner-product can be calculated 

as 

 

𝑦 =   2−𝑙 ∗ 𝑦𝑙

𝐿−1

𝑙=1

 − 𝑦0, 𝑤ℎ𝑒𝑟𝑒 𝑦𝑙 =  𝑥𝑘 ∗ 𝜔𝑘𝑙            9 

𝑁−1

𝑘=0

 

 
The partial sum 𝑦𝑙  for l = 0,1,….,L-1 will have 2

N
 possible 

values. The inner-product of above equation will be calculated 
for L cycles of shift accumulation; thereafter for L number of 
bit slices where 0 ≤ l ≤ L-1 corresponding LUT-read 
operations will be performed as shown in fig.1. And the shift 
accumulation is performed using carry-save accumulator as it 
involves significant critical path.  

In carry-save accumulation the weight vector ω bit slices 
are given one after the next in the order LSB to MSB. In the 
case of MSB slices the accumulation of output in its 2‟s 
complement form is needed. Therefore, all the bits of LUT 
output are passed through the XOR gates with a sign-control 

input as the result is represented in two‟s complement format. 
The output will be set to one if the appeared address is MSB 
slice. 

 

Fig. 1. 4-point inner product computation in Conventional DA-based 

implementation 

 

Thus the XOR gates produce the LUT output of MSB slice 
in one‟s complement form without affecting the output of 
other bit slices. At last both the outputs of XOR gate (i.e. sum 
and carry words) resulted after L number of clock cycles have 
been added by the final adder. And the input carry to the final 
adder is set to one to account for performing 2‟s complement 
operation of the LUT output of the MSB slice. 

The equation that gives data in kth LUT location is as 
follows 

 

𝐶𝑘 =  𝑥𝑗 ∗ 𝑘𝑗                                                      (10)

𝑁−1

𝑗=0

 

 

In the above expression 𝑘𝑗  is the (j+1)th bit of N-bit 

binary representation of integer k for 0 ≤ k ≤ 2
N
-1.  Here 

Ckfor 0 ≤ k ≤ 2
N
-1 can be recomputed and stored in RAM-

based LUT of  2
N
 words. However, only (2

N
-1) registers are 

stored in LUT instead of storing  2
N
 words. 

 

IV. EXISTING DA-BASED ADAPTIVE FILTER 

STRUCTURE  

For our convenience we can decompose the computations 
of the large ordered adaptive filters into small adaptive 
filtering block. This makes the job of computing inner product 
which is the most important task in DA-based implementation 
of adaptive filters easier as the inner product computation of 
long vectors requires a very large LUT [3]. 
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The existing DA-based LMS adaptive filter design 
requires 16 delay element DA-table structure. The 4

th
 order 

adaptive filter (N=4) implementation involves a four-point 
inner product block, weight increment block and the circuit 
for generating error ‘e’, and a control word generator that 
generates the control word ‘t’ for the barrel shifters as shown 
in fig 2. 

But the same structure can be implemented with the help 
of 8-delay elements. Since with the help of basic elements 
x(n), x(n-1), x(n-2), x(n-3) the remaining structure can be 
implemented. It can be achieved with the help of Offset 
Binary Coding (OBC). 

 

Fig. 2. Structure of DA-based LMS adaptive filter of filter length N=4 
 

V. PROPOSED OFFSET BINARY CODING BASED 

ADAPTIVE FILTER DESSIGN   

In the proposed approach, for the implementation of DA-
based adaptive filter, we make use of the DA-table structure 
that makes use of the 8 delay elements. Hence by using the 
proposed structure, we can reduce the original DA-table 
structure by two times, which increases the area efficiency of 
the design twice. The proposed structure for the DA-table 
which makes use of eight delay elements is shown in the 
figure. 3. 

The proposed structure for 4
th

 order adaptive filter (N=4) is 
shown in the fig 2. Generally, it consists of a four-point inner 
product block, a weight increment block and the circuit for 
generating error ‘e’, and a control word generator that 
generates the control word ‘t’ for the barrel shifters. 

 

 

 

 

 

 

 

The four point inner product block which was shown in 
fig. 5 , consists of a DA-table which has an array of 15 
registers. It is capable of storing the partial inner products ‘y’, 
for 0 < l ≤ 15 and a 16:1 multiplexer is used to select one of 
those registers at any particular instant. Weights A= {w₃, w₂, 
w₁ ,w₀} for 0 ≤ l ≤ L-1 are fed to the multiplexer as control 
bits in the LSB-MSB order. The output of the MUX is then 
fed to the carry-save accumulation block. After L clock 
cycles, the carry-save accumulation block accumulates all the 
partial inner products and generates a sum word and a carry 
word of size L+2 bit length each.

 

Fig. 3. Proposed structure of DA table with 8 delay elements 

 

The sum word is shifted right by one position right and 
added to the carry to generate the filter output y(n-1)  which is 
then subtracted from the desired signal d(n) to obtain the error 
e(n). After that the sign-magnitude separator is used to 
separate the sign bit and magnitude bits from the obtained 
error. 

 

Fig.4. Logic used for the generation of control word t for the barrel shifter for 

         L=8 
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Fig. 5. Structure of four point inner product block 

 

The magnitude bits are used by the control word generator 
to generate the control word „t‟ for the barrel shifter. The logic 
used for the generation of control word „t‟ for barrel shifter is 
shown in the figure 4. 

The convergence factor „µ‟ is taken as 1/N. Generally, we 
can take µ as 2

-i
/N, where „i‟ is a small integer. The weight 

increment unit for N=4 consist of four barrel shifters and four 
adder/subtractor cells. The structure of weight increment cell 
is shown in figure 6. 

 

Fig. 6. Structure of weight increment block for N=4 

 

 

 

 

 

In general Barrel Shifter is the most helpful unit in Digital 
Signal Processing blocks. Mostly it is used in multiplication 
and division operations. It performs multiplication just by 
right shifting the data in registers by required number of times. 
That means to multiply the data by 2 times, the data is shifted 
right by one position. Similarly division can be performed by 
left shifting the data as per requirement. Thus the barrel shifter 
reduces the complexity of operations there by area 
optimization has been achieved too. 

Here the barrel shifter shifts the input values 𝒙𝒌, where 
k=0,1,….N-1 by defined number of locations. Barrel shifter 
yields the number of increments to be added or subtracted 
from the present weights. The sign bit from the sign-
magnitude separator is used as the control for adder/subtractor 
cells such that depending on the value of the sign bit whether 
it is zero or one, the barrel shifter output is respectively added 
or subtracted from the content of the weight corresponding 
current value in register. 

Thus the fourth order filter implementation is done 
successfully with 8-DA table structure. It reduces the 
complexity as the basic terms like x(n), x(n-1), x(n-2), x(n-3) 
are more enough to generate all the other terms. So higher 
order filters can also be easily implemented in hardware as 
this design achieves low-complexity. 

 

A. Higher Order Filter Implementation  

The structure of higher order filter of size N=16 is shown 
in figure 7. The design involves four sets of inner product 
blocks and weight increment blocks. All the blocks are 
connected in a proper manner in order to give a desired result. 

The four 4-point inner product blocks and weight 
increment blocks all together is known as 16-bit data 
computing block as this sub block computes 16-bit sum and 
carry words. These are used in further computations. As in the 
case of fourth order filter implementation, here also the L+2 
bit sums and carry are produced by the four inner product 
blocks. And these will be added by using two binary adder 
trees. The output of four 4-point inner-product blocks i.e. sum 
words are added with four carry-in bits. Since the carry words 
are of double the weight compared to the sum words, two 
carry-in bits are set as input carry at the first level binary adder 
tree of carry words, which is equivalent to inclusion of four 
carry-in bits to the sum words. Sign magnitude separator is 
used to separate sign bits and magnitude bits from the 
calculated error as in the case of smaller order filter designs. 
Outputs of sign-magnitude separator and control word 
generator are fed commonly to all the weight increment 
blocks. The logic used for control word generator is also same 
as that of previous logic. Further, the filtering process is same 
as that of the 4

th
 order adaptive FIR filter except that the 

process is performed on 16-bit data instead of 4-bit data. 

Similarly, the structure can be extended to 32-bit filter 
implementation. For that purpose two 16-bit data computing 
blocks which are mentioned earlier have been used. The 
structure of 32-bit filter is shown in the fig.8. Just by 
performing the binary addition of 16-bit sum and carry of the 
two 16-bit data computing blocks, the filter of length N=32 
can be realized. The connections between the blocks must be 
given properly for achieving better results.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS010763

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 01,January-2015

699



 
Fig.7. Structure of DA-based LMS adaptive filter of length N=16 and P=4 

 

 
Fig. 8. Structure of DA-based LMS adaptive filter of length N=32 and P=4 
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VI. SYNTHESIS RESULTS  

TABLE I.  SYNTHESIS REPORT 

Design 

Filter 

Length, N 

 

No. of 

slices 

 

No. of slice 

flip-flops 

No. of 4-i/p 

LUTs 

 Availability 4656 9312 9312 

 
 

Existing 

Design with  
an LUT 

using 16-

delay 
elements 

 

4 252 271 469 

8 406 464 733 

16 838 912 1509 

32 1287 1376 2313 

 

 

Proposed 
Design       

with an LUT 

using 
8-delay 

elements 

4 267 204 494 

8 437 330 783 

16 901 644 1609 

32 1382 974 2463 

 
In this section we have implemented the proposed 

design with VHDL and synthesized our design using Xilinx 
ISE 13.2. The results obtained are tabulated above. From 
the above results it is clearly noticed that the hardware 
complexities are reduced significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. CONCLUSION 

Low-complexity design implementations have greater 
importance in efficient hardware implementations. In this 
brief an architecture for the implementation of adaptive FIR 
filters is proposed. This design achieved low-complexity 
compared to existing DA-based implementations. 
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