
  

 

Implementation of a  Composite Hybrid 

LMS/RLS  Adaptive Deconvolution System for 

Seismic Oil Prospecting (With MATLAB) 

 
 

                  Mbang, U. B
1

 

1.
 

Federal  Inland Revenue Service (FIRS)
 

Government Business Tax Office (GBTO)
 

Plot 7, IBB Way, Calabar
 

Cross River State
 

Nigeria.
 

Falaki, S. O
2

 
, Alese, B. K

2 

 
2.

 
Department  of Computer Science,

 Federal University of Technology,x
 Akure, Ondo State,

 Nigeria.
 

Enikanselu, P. A
3

 3.
 

Department of Geophysics,
 Federal University of Technology,

 Akure, Ondo State,
 Nigeria.

 

 

 
 Abstract— A composite adaptive deconvolution system that 

integrates a proposed hybrid Least Mean Square(LMS) and 

Recursive Least Squares (RLS) adaptive filtering algorithm with 

existing LMS, RLS, Normalised LMS,etc., algorithms for 

deconvolution of seismic sequences is proposed. The composite 

model accepts input as reflections detected from an oil well. The 

system then removes echoes and reverberations using system’s 

identification principles before subjecting the emergent sequence 

(primary and secondary reflections) to adaptive deconvolution 

using a choice algorithm among multiple algorithms stacked for 

that purpose. The output sequence (the estimated primary 

reflections), the error sequence as well as the filter coefficient 

numbers/values are then graphically displayed for visual 

appraisal. The proposed system is implemented with MATLAB 

and it has a graphical user interface that shifts the choice of the 

algorithm for deconvolution to the user. Convergence is tested by 

comparing the output of each adaptive deconvolution algorithm 

with the standardized Albert Wiener’s signal deconvolution 

output. Results obtained by testing the system with data sourced 

from The Mathworks Inc. shows that the hybrid LMS/RLS 

algorithm converges faster to the Wiener’s coefficients at lower 

offset and higher iteration values compared to the other 

algorithms. 
 

Keywords— seismic, reflection, deconvolution, algorithm, 

exploration, prospecting, least-squares, adaptive, 

filtering 

  

1.  INTRODUCTION  

Oil prospecting or exploration can be achieved by various 

methods ranging from the pre-historic use of hunches or 

heuristics (rule of thumb) to the conventional use of core 

samples (coring), the magnetometer (Magnetic Method), the 

gravimeter (Gravity Method), soil chemical analysis 

(Chemical Method), natural and induced electrical currents 

(Electrical Method), Radioactivity (Radioactive Method), 

Well Logging, use of Seismographs or seismometers (Seismic 

Method), etc. Of all these oil exploration methods, the seismic 

method which uses seismographs, geophones (for onshore 

exploration) and Hydrophones (for offshore exploration) is the 

method often used for exploration in most developed and 

developing countries[2][5]. 

Oil prospecting, both in onshore and offshore 

environments comprises of very complex processes some of 

which involve heavy instrumentation, microscopic and visible 

organic and inorganic matter evaluation, sound/shock wave 

generation and detection of reflected signals, etc. To a 

geologist, geophysicist, or seismologist, the sound made by a 

particular substratum (an area under survey for oil deposits) is 

directly or indirectly related to the properties of that 

substratum, viz. the chemical composition of the underlying 

rocks, the geophysical processes that characterize the area in 

terms of denudation, rock formation, weathering, 

solidification, volcanicity, etc [15]. 

It is therefore of common practice to try and study the 

kind of sound or vibration that the layers of the earth will give 

when an acoustic signal generator is used to generate a wave 

that propagates down the layers of the earth crust. Hence 

dynamites or other modern signal generators are used to 

generate a train of pulses into the earth or water and 

geophones (seismic wave detectors) or other signal detectors 

are planted on some remote places on the same plane to detect 

the kind of vibration, reverberation, travel speed, soil 

properties, etc. that emerges from the excitation sequence. 

In this research, we formulate statistical procedures for 

modeling the response of the earth crust to an excitation 

sequence (signal) both on the bare ground or marshy 

fields/shallow waters (Onshore) and in the sea or deep water 

(Offshore). The modeled procedures are then implemented in 

Matlab for seismic sequence enhancement by least squares 

Error (LSE), least mean square (LMS), and hybrid LSE/LMS 

methodologies. 
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2.0  ENVIRONMENTAL GEOLOGY OF AN OIL FIELD 

(ONSHORE/OFFSHORE) 

2.1 A Schematic of an Oil Field 

An open field or ground which has little or no surface 

water is said to be an onshore environment [10]. Such an 

environment can be geographically stratified into different 

layers as shown in “fig.2.1,” below. 

 

 
 

Fig. 2.1 A cross section of the earth surface showing the layers of the earth 

and an oil reservoir in an onshore scenario (Adapted from [11]). 

 

In order to collect seismic data, shock waves are sent into 

the ground and signal detecting devices are used to measure 

how long it takes for the subsurface rocks to reflect these 

waves back to the surface [11]. The shock waves used today 

are generated by pounding the earth surface with giant vibrator 

trucks (see “fig 3.2”). This is preferred to the erstwhile use of 

explosives and dynamites which may cause other 

environmental hazards. When these shock waves travel into 

the earth, boundaries between the rocks reflect part of these 

waves back while some percentage of the wave energy goes 

downward. The reflected waves and their arrival times are 

then detected and recorded by listening devices known as 

geophones.  

 

 
 

Fig.2.2: shock waves propagation in an onshore environment 

The geophysicist or geologist then collects the data in the 

geophone for computer processing. The computer uses the 

inbuilt digital filters to process the geophone‟s raw data and 

converts it to seismic lines [11]. 

 

3.0 MODELS/ALGORITHM FORMULATION 

Simple mathematical modeling reveals that “y(n),” the 

received signal, can be   modeled in terms of  “s(n),” the 

excitation signal, and the boundary delays “di” as  

 

                                                                                             (3.1) 

  

Where {ai} are the coefficients of reflection at the interfaces 

between the various layers of the earth and {di} denotes the 

corresponding set of propagation delays. Moreover, N is a 

finite integer and refers to the total number of coefficients 

counting from 1. i.e. n=1,2,3,…, N [2][3].  

 

It must be noted that the propagation delay is a function of 

the time t taken for the excitation wave s(n) to travel to the 

reflector, get reflected and then be received at the geophone as 

y(n). This time is modeled as   

                                       t = 2D/v                                        (3.2) 

Where D is the depth of the medium (distance from top to the 

reflector) and v is the signal velocity in the rocks. 

Hence “di”, defined as 

                                       di = τ – t                                        (3.3) 

are the propagation delays, τ is the actual time taken for a 

signal to travel from the source to the reflector and then back 

to the geophone and t is the ideal time that a signal with wave 

velocity υ is supposed to travel to and fro the depth in the 

absence of propagation delays between rock boundaries. 

Moreover, the delay is used to estimate the reflectivity of 

water coefficients and these reflectivity coefficients are of 

great importance in the deconvolution of the received signal 

[7].  

In practice, the number „N‟ of reflection coefficients is 

usually large hence the quality and wave content of y(n) 

depends largely on the properties of the layers of the rocks that 

reflect s(n). Moreover, seismic analysis and evaluation over 

time reveals that y(n) is a convolution (a complex mixture) of 

the excitation signal s(n) and the sequence u(n) which 

characterizes the medium or layers of the earth[2][3][4]. 
 

This u(n) is modeled as 

  

                                                                                             (3.4) 

where {ai} and {di} are as defined above, but the delayed 

transient “” is the main factor that the geophysicist is out to 

analyze, while i=1, 2, …, L, for any finite integer L.  

 

To achieve this, we try to isolate the component u(n) from 

the received signal y(n) by means of deconvolution (the 

inverse operation that separates convolved signals) of the 

convolved sequence(s) below: 

                                                                                             (3.5) 

 

 While in the offshore scenario, a third sequence „r(n)‟  is 

convolved with u(n) such that  

                                                                                             (3.6) 
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Hence the basic onshore model for least squares error 

treatment is “(3.5),” or  

                                                                                

                                                                                             (3.7) 

 

Note: ALG shall be used as an acronym for „Algorithm‟ in the 

formulations below. 

 

  

3.1 Algorithm Formulation for Model   Optimization 

 

ALG.1: Onshore Model Optimization Procedure by   

Conventional Least Squares 

 

Given the model in “(3.5)” or “(3.7)” above, we will adopt 

the least squares optimization criterion in designing a least 

squares error inverse filter for deconvolving s(n) from u(n) so 

that u(n) can be studied in isolation. To do this, the following 

statistical assumptions are invaluable [3][4][5]. 

 

3.1.1 Assumptions 

 We assume that the sequence u(n) that characterizes the 

medium is made up of a collection of uncorrelated 

reflections. Hence u(n), just like white noise will have 

an autocorrelation sequence given by      

                                                                                             (3.8)                                   

     Where Cu is an arbitrary constant equal to the 

expectation, “Eu” of u. 

 Assume also that the sequence s(n), the input train of 

pulses, is made up of highly correlated impulses 

(waveforms) such that successive samples of s(n) do 

not vary much from one another. This means that s(n)  

can be estimated from past samples of s(n), viz. s(n-1), 

s(n-2), s(n-3), … , . Hence we can comfortably form a 

weighted linear combination of the past L sample of 

s(n), a process called linear prediction.  

 

 However,  since geophysical evidence over time proves 

that the excitation sequence s(n) (which is unmeasured 

a priori) is the domineering component of the 

convolution in  “3.5,” [4][13][8] then it becomes very 

reasonable to also predict s(n) based on past samples of 

y(n) (which were actually received at the geophone), 

viz. y(n-1), y(n-2), y(n-3), … , y(n-L). i.e. 

                                                                                             (3.9) 

 

The error due to the estimation of s(n) with ŝ(n) is denoted 

by e(n) and is given by  

                              e(n)=s(n)–ŝ(n)                                     (3.10) 

which we seek to minimize by least square means. This 

procedure is captured in the block diagram of “fig.3.3,” below 

where y(n) is as defined in “3.5” above.  

 

 

 
Fig. 3.3: Finite Impulse Response (FIR) inverse filter model for   

isolation of the unwanted component )(ˆ ns  from u(n). 

Where H(z) is the ideal impulse response of the desired filter 

and Ĥ (z) is the estimated impulse response of the designed  

digital filter 

To continue the minimization process, let  

 

                                                                                           (3.11) 

denote the sum of squared errors. Then    

 

                                                                                           (3.12) 

 

, Where the substitution in “3.6” was used and   αi  are filter 

coefficients. 

 

Now, differentiating           partially with respect to each of 

the filter coefficients  αi  and equating the result to zero (for 

orthorgonality),  
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     Where  )(myy  is the autocorrelation of the sequence y(n) 

defined as:            

                   





0
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n
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and )(mrsy  is the cross correlation between the desired 

output sequence s(n) and the input sequence y(n), defined as   

                  





0

)()()(
n

sy mnynsmr            (3.16) 

The convolution sum “3.14” is the set of  Yule Walker 

equations, also called normal equations, [2] which have been 

solved some decades ago [8][5] with varying degrees of 

complexity. 

Expressing the set “3.14” in matrix form, we have 
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        (3.17) 

 

Or in vector form as: 

                              syyy r                                 (3.18)     

Notice that the formulation “3.18” is still the same as         

“3.14,” the familiar Yule Walker or normal equations whose 

solution yields the least squares optimized filter coefficients

 i .   

 

Moreover, if the optimized least squares filter  zĤ  with 

impulse response )(ˆ ns  is to be the approximate inverse filter 

needed, then the desired response must be  

                                  s(n)  =  )(ˆ ns                                    (3.19) 

Hence the cross correlation between s(n) and y(n) reduces to  
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           (3.21)   

     

Or the in vector form as  

                             Cyy                                       (3.22) 

Where  is the vector of filter coefficients and C = {y(0), 0, 

… ,0}'. 

 

Notice that yy is sill Toepliz as it is both symmetric and 

has equal elements along both diagonals, making it readily 

invertible.  Moreover, the vector product “3.22” is a Toepliz 

combination of the Toepliz matrix yy and the column vector 

α. Since all Toepliz matrices are invertible, “3.21” can readily 

be solved by Gaussian Elimination, Levinson and Durbin 

Algorithms as well as by computer programming means. 

 
In the Gaussian method, our target is to invert the matrix 

yy such that  

 

                              γyy
−1. γyy .α = γyy

−1. C                            (3.23) 

i.e.                        cI yy
1.                                (3.24) 

or                           cyy
1                                   (3.25) 

where I is the identity matrix. 

 

3.1.2 Computational complexity 

The use of Gaussian elimination to solve a system of 

L equations for L unknowns requires L(L+1) / 2 

divisions, (2L
3
 + 3L

2
 − 5L)/6 multiplications, and (2L

3
 + 

3L
2
 − 5L)/6 subtractions, for a total of approximately 

2L
3
 / 3 operations. This means that it has a complexity of 

order L
3  

or  O(L
3
).[9] 

This algorithm can be used on a computer for 

systems with thousands of equations and unknowns. 

However, the cost becomes prohibitive for systems with 

millions of equations. These large systems are generally 

solved using iterative methods. Specific methods exist 

for systems whose coefficients follow a regular pattern 

[16]. Both the Levinson and Durbin Algorithms exploit 

recursion and iteration to solve the Yule-walker‟s equation 

with the key advantage that the computational complexity is 

reduced to order L² [9].  

In this research, however, our objective is to achieve 

a further reduction in computational complexity, 

irrespective of the size of L, by using computer 

programming logic (Matlab) to write a program that   

 Hides the computational complexity occasioned 

by the numerous equations encountered in this 

model development or at least reduce the order 

further; 
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 Attempt to capture the entire offshore and onshore 

modeling processes in software for petroleum 

exploration. 

 ALG. 2: THE PROPOSED ADAPTIVE LEAST SQUARES 

RECURSIVE FILTER (ALSRDF) 

 

In order to effectively handle the problem of estimating the 

least squares coefficients as in “3.14” and “3.18,” the 

following algorithm is formulated. 

 

Generally, the least squares solution gave rise to a 

formulation of the form [8]: 

                                                                                      (3.27) 

This research seeks for ways to reduce the computation time 

by exploiting recursion as follows: 

 

Consider the input sequence s(n), the desired sequence 

u(n) and the coefficients of the digital filter for update α (n) 

configured into an adaptive filter as  

u(n), s(n), α (n) = [α0 (n), α1 (n), …, αL-1 (n)] , where L= filter 

length. The estimate of the desired signal can be modeled as 

the output of the filter as: 

                                û(n) = α
T
 (n) s(n)                           (3.28) 

Where û(n) is an estimate of the desired signal u(n) (the signal 

that characterizes the earth content ).     See “fig 3.4,” below 

for a typical transversal filter flow diagram. 

 

Fig.3.4: Configuration of a RLS Adaptive filter 

 

Where û (n) is an estimate of the desired signal u(n). 

  

But the filter error is given by  

               e(n)=u(n) - û (n)=u(n) - α
T
(n) s(n)               (3.29) 

Minimization of the mean squared error means taking 

expectation of the squared errors. That is, 

             E(e
2
(n)) =    E{[u(n)- α

T
(n) s(n)] 

2
 } 

                                                                                                                                                                    

 

                                                                                   (3.30) 

 

But we prefer the minimization of least squares error, which 

means 

  

                                                                                           (3.31) 

 

 

 

                                                                                                                                                                                                                                                                                                        

Recall that  

                                                                                     (3.32) 

 

Where Ruu is the autocorrelation matrix of the output signal 

and rus is the cross correlation between u(n) and s(n)[1]. 

 

Also, u (n) = [u (n), u (n-1), …, αL-1 (n-L)]
T
 . Hence, the vector 

product of “3.32” can be expressed in recursive form as  

                          Ruu(n) = Ruu(n-1) + y(n)y
T
(n)                (3.33) 

 

Using an exponentially decaying process, we have  

                                                                                      (3.34) 

 

Hence the recursive realization of the time-update formulae is 

given in inverse matrix form as 

           R
-1

uu(n) =Ψ R
-1

uu (n-1) + update (n)                        (3.35) 

 

ALG.3:   The Proposed Hybrid LSE/LMS Algorithm 

 
Step 1:  Least Squares Problem formulation 

 

Consider a finite set of observations {s(n)} and {u(n)}, 

where {u(n)} is the set of all past samples from  n = 0 to now. 

We define three deterministic cost functions as: 

 

                                                                                     (3.36) 

 

 , where            e(k) = s(k)-u(k)                                         (3.37) 

 

                                                                                           (3.38) 

                                                                                                                       

And in terms of weighted least squares error (WLSE) as:  

                                                                                                                                                                 

                                                                                     (3.39) 

 

The problems 1, 2 and 3 can essentially be given the following 

optimal solutions as modeled in 4, 5 and 6 below, respectively. 

                                                                                              

                                                                                      (3.40) 

Which essentially means: find those filter coefficients that 

minimize the cost function in problem 1. 

                                                                                       (3.41) 

 

Which similarly means: find those filter coefficients that 

minimize the cost function in problem 2, and  

 

                                                                                         

 

 

 

                                                            

is such that Ø is the forgetting factor and                       . 

 

 

  Step 2:  Hybrid Model Formulation 

 

 We now formulate a hybrid optimum solution  

                                                                                      

                                                                                    (3.42) 
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such that “3.42” combines the Least Mean Square and 

Weighted Least Squares optimization advantages, where the 

cost function associated with “3.42” is formulated as  

                                                                                      

 

 

                                                                                      (3.43) 

 

Notice that the LMS strategy takes expectation of │e(k)│
2
 

ordinarily, while the WLSE takes the sum of the expression 

│e(k)│
2
, weighted by an exponential weighting factor                             

.  

 

 

Now, since s(n) and u(n) are assumed jointly stationery and  

stochastic zero mean processes, [6] we specify  

 

    i.    the autocorrelation function    

                       rss(k)=E[s(n)s(n-k)]                        (3.44) 

ii. the autocorrelation matrix  

                      Rss = E{s[n]s
T
[n]}                         (3.45) 

 

And the corresponding cross correlation matrix as 

 

iii.                        ρsu =E{u(n)s(n)}                                 (3.46)  

  

Assume that u[n] is the output of a linear FIR filter to the input 

s[n]. Then  

                                       u[n]=h
T
s[n]                            (3.47)  

 

             and                    dim(h)=dim(c)                            (3.48) 

 

Note: Reference [6] gives more details from a similar process.  

 

The desired signal u(n) can be modeled using  Systems 

Identification principles [6] as  

              u[n] = h
H
 s[n]+v[n]                                              (3.49) 

 

Where “fig. 3.5,”  below, shows v[n] as noise superimposed 

on the input signal and „h‟ is the impulse response of the 

system to be identified and v(n) is additive noise.  

 
    Fig.3.5: Systems Identification problem in a noisy  

environment       



Then from “3.43”, the hybrid cost function  

                                                                                 

 

 

can be manipulated such that  

                                                                                                                                                                 

                                                                                                                                

 

                                                                                   

                                                                                       (3.50) 

 

Where the forgetting factor is set to the default, Ø =1. 

Moreover, the gradient of the cost function with respect to the 

coefficient vector „c‟, according to [6], is given as  

 

                                                                                 (3.51) 

 

Notice that instead of inverting the autocorrelation matrix 

Ruu as we did before, the Gradient Search Method avoids the 

computational complexity associated with matrix inversion by 

use of iteration to update the coefficient vector [c(n)]. This 

results in the coefficient update rule, 

 

                                                                                   (3.52)                                                                                                                                                

Where μ is a step size parameter [6] and the negative gradient 

is the term 

                                                                                   (3.53) 

 

 

 

3.2 PERFORMANCE COMPARISON BY SIMULATION 

 

The following algorithm is used to compare the 

performance of these algorithms: 

 

3.2.1 Algorithm for Comparison of Adaptive Filtering 

Algorithmic performances 

Step 1: Create the Signals for Adaptation; 

Step 2: Generate a noisy signal; 

Step 3:  Corrupt the Desired Signal by adding the Noisy 

Signal; 

Step 4:  Create a reference signal that is highly correlated with 

the signal in step 2 above [14]. 

Step 5:  Construct adaptive filters based on proposed 

algorithms, viz: 

 

i. Adaptive Least Mean Square (ALMS) and Normalized 

Adaptive Least Mean Square (NALMS); 

ii. Conventional Recursive Least squares (CRLS) 

and Adaptive Recursive Least Squares (ARLS); 

iii. Improved ARLS; 

iv. Hybrid LMS/RLS. 

 
Step 6: Graphically display their output sinusoids for 

comparison and performance evaluation with       

respect to the ideal ALBERT WIENER‟S 

STANDARDIZED OUTPUT. 

Step 7:  Investigate convergence using algorithmic learning 

curves.  
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 Step 8:  End.

  
 3.3

 

PROPOSED DECONVOLUTION SYSTEM‟S ARCHITECTURE

 

 The following block diagram gives a schematic for 

deconvolving seismic sequences.

 
 

 
 In effect, the proposed system accepts input as reflected 

sequences due to an explosion from an oil well, compares it 

with a pilot sequence and processes both sequences with a 

down-sample factor  „k = 32‟ leaving the choice of 

algorithm(from at least 5 different algorithms) and adaptation 

step size selection to the user. 

 

 

 

 4.0 SYSTEM‟S IMPLEMENTATION/SIMULATION WITH 

MATLAB

 In this section, the implementation of An Adaptive Least 

Squares Digital Filter model for Oil Processing both in 

Offshore and Onshore environments is considered. This 

system‟s realization strategy is summarized below:

 

 4.1

 

WHY MATLAB FOR IMPLEMENTATION

  The programming Language employed for the 

implementation of the system is Matlab 7.9. The reasons that 

informed the use of Matlab in the implementation of Adaptive 

Least Square Digital Filters include the ease for functions and 

data plotting, an inherent numerical computing environment, 

easy database design, manipulations and query processing, 

inbuilt Graphical User Interface(GUI), synergy with C, C++, 

JAVA, FORTRAN, SIMULINK, etc. 

 

 

4.1.1

 

Graphical User Interface (GUI) 

 

This serves as a link between the intended users and the 

intricacies of the software and hardware components of the 

system. The GUI hides from the end users the complex 

communication between the designed/implemented system‟s 

software and the computer's hardware making it possible for 

an end user who is grossly uninformed on the workings of the 

machine hardware to place a query in plain language and get 

an instant or near instant feedback.

 

 

4.1.2

 

System Requirements:

  

1.  The software used is MATLAB
(R)

 

–

 

The language of 

technical computing, version               7.9.0.529 (R2009b) 32 –

 

bit (win 32), August 12, 2009, License number: 161051

 

2.

 

Windows operating system (preferably windows 

2000 and latter variants).

 

3.

 

Platform and system‟s requirements:

 

 

Windows 32 bit, Windows 64-bit, Mac OSA 64 bit and Linux 

64-bit are supported. 

 

 

4.2 IMPLEMENTATION OF THE PROPOSED  

COMPOSITE MODEL (IN MATLAB)

 

4.2.1 DATABASE FOR THE PROPOSED SIMULATION

 

The modeled algorithms in section 3 are meant to be 

implemented with Matlab R2009b with the aim of assisting in

 

the deconvolution of highly convolved seismic traces or 

sequences. Most of the areas in the Northern Nigeria like the 

Kukawa Axis of the Borno Basins, the Chad basin, and the 

Bida Basins do not have available exploration data for open 

source use. Hence equivalent terrains were sort after using 

Google earth and other prospecting tools. In this respect, 

therefore, the data for this simulation is sourced from the 

Mathworks Inc., USA. They are tabulated in table 4.1 and 

4.2(see appendices)

 

and are repeatedly referred to during the 

coding process. 

 

 

Data set.1:

 

Table 4.1: 

 

Parametric datasets for simulating adaptive 

filtering algorithms

 

D
ata reco

rd
s

 

N
o
. o

f 

Iteratio
n
s(L

)
 

F
ilter o

rd
er

 

 
(L

)
 

S
tep

 size (m
u

)
 

B
lo

ck
 len

g
th

   (n
)

 

In
p
u

t to
 ad

ap
tiv

e filter 
 

(x
)

 

 

 

1

 

 

100

 

 

2

 

 

0.001

 

 

1

 

 

Randn(1,100)

 

2

 

200

 

4

 

0.002

 

2

 

Randn(1,200)

 

3

 

300

 

6

 

0.003

 

3

 

Randn(1,300)

 

4

 

400

 

8

 

0.004

 

4

 

Randn(1,400)

 

5

 

500

 

10

 

0.005

 

5

 

Randn(1,500)
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4.2.2 Algorithmic Simulation by Matlab R2009b 

This study proposed a hybrid LMS/RLS Adaptive filtering 

algorithm, an Adaptive RLSE algorithm and an improved LSE 

algorithm. However, owing to the desire to model a composite 

deconvolution system for onshore and offshore seismic 

sequence deconvolution, other extant algorithms like the 

Conventional Least Mean Square(CLMS), Normalized LMS, 

etc will all be put together by matlab coding.  
 

4.2.3. Graphical user Interface: 

           The user interface of the implemented seismic oil 

exploration system is presented below 
 

 
 

Fig. 4.1: Graphical User Interface for the proposed composite seismic  

deconvolution system. 
 

 
 

Fig. 4.2: Log on screen/user authentication interface.  

 

 

Fig.4.3: Interactive Algorithm selection screen.  

 
 

D
ata reco

rd
s 

N
o

. o
f Iteratio

n
s(L

) 

F
ilter o

rd
er 

 (L
) 

S
tep

 size (m
u

) 

B
lo

ck
 len

g
th

   (n
) 

In
p
u

t to
 ad

ap
tiv

e filter  

(x
) 

 

6 600 13 0.006 6 Randn(1,600) 

7 700 14 0.007 7 Randn(1,700) 

8 800 16 0.008 8 Randn(1,800) 

9 900 18 0.009 9 Randn(1,900) 

10 1000 20 0.010 10 Randn(1,1000) 

11 1100 22 0.011 11 Randn(1,1100) 

12 1200 24 0.012 12 Randn(1,1200) 

13 1300 26 0.013 13 Randn(1,1300) 

14 1400 28 0.014 14 Randn(1,1400) 

15 1500 30 0.015 15 Randn(1,1500) 

16 1600 32 0.016 16 Randn(1,1600) 

17 1700 34 0.017 17 Randn(1,1700) 

18 1800 36 0.018 18 Randn(1,1800) 

19 1900 38 0.019 19 Randn(1,1900) 

20 2000 40 0.020 20 Randn(1,2000) 

21 2200 42 0.040 21 Randn(1,2200) 

22 2400 44 0.080 22 Randn(1,2400) 

23 2600 46 0.120 23 Randn(1,2600) 

24 2800 48 0.160 24 Randn(1,2800) 

25 3000 50 0.200 25 Randn(1,3000) 
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Fig. 4.4: Desktop Display screen 

 

 
Fig. 4.5: Logon screen after choice algorithm has been selected. 

 
 

4.3 Algorithmic Outputs 

1. Application of the Hybrid LMS/LSE algorithm on 

data records. 

 

 
 

Fig. 4.6: Matlab plot of record 10 from Data set 1 

 
Fig. 4.7: Application of the Hybrid LMS/LSE algorithm to record 10 of Data 

Set 1 (for 8000 iterations). 

 

 

Fig. 4.8: plot of the LSE resulting from the operation on record 10 of Data  

               set 1 using the hybrid for an explosive number of iterations (10,000). 

 

 
 

                     Fig.4.9a: Frequency spectrum of enhanced signal                             
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Fig. 4.9b: Time spectrum of hybrid enhanced signal 

 

Fig.4.10: Offshore Deconvolution of record 28 of Data set 2 

                       (i.e. depths are >200m above sea level) using the  hybrid. 

 

1. Application of the Conventional LMS algorithm 

on data records. 

 

Fig. 4.11a: Deconvolution of record 10 of data set 2 

 

         Fig.4.11b: Deconvolution of record 19 of data set 1 in a simulated          

onshore environment (i.e on land or marshy fields/shallow 
waters).  

             

2. Application of the Improved (Adaptive) 

Recursive Least Squares Algorithm to seismic 

data records: 

 

Fig. 4.12: Onshore deconvolution of record no.18 of data set 2. 

 

4. Application of Predictive Deconvolution 

techniques on data records 

 
            

Fig. 4.13: Predictive deconvolution of  record 18 of data set 2. 
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5. Graphical Comparison of Algorithmic Outputs 

 

 

Fig. 4.14: Use of record 10 of data set 1 for algorithmic comparison 

 

 

Fig. 4.15: Comparison of the ALMS, Adaptive Hybrid LMS/RLS and the    

ARLS algorithmic outputs with the standard Wiener filter output 

(based on effects on the sinusoid of record 18 of data set 2).  

 

Fig. 4.16:  Comparison of the ARLS, the Adaptive Hybrid LMS/RLS and the 

standard Wiener Deconvolution filter‟s output (based on effects on 

the sinusoid of record 18 of data set 2).  

 

Fig.4.17: Comparison of the Conventional RLS algorithm, the Adaptive  

Hybrid LMS/RLS and the standard Wiener Deconvolution filter‟s 

output ( based on effects on the sinusoid of record 18 of data set 2).  
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6. GRAPHICAL INVESTIGATION OF 

ALGORITHMIC CONVERGENCE USING LEARNING 

CURVES WITH RESPECT TO THE MSE OF EACH 

ALGORITHM 

 

Fig. 4.18:   Comparison between the LMS‟s and the Hybrid LMS/RLS 
Algorithmic learning curves based on record no.40 of data set 2, 

adapted to double the maximum sample number. 

 

 

Fig. 4.19:   Comparison of the RLSE and the conventional LSE algorithmic 
outputs using their mean square errors and learning curves for 

record 40 of data set 2.. 

 
 

 

4.4 Deductions: 

 Algorithmic outputs based on “data set 1” in chapter 4 and 

“data set 2,” in the appendices were presented graphically in 

terms of learning curves and wavelets. This choice was 

informed by the very fact that the tabulation of each point on 

all those graph plots will definitely consume more space and 

be cumbersome to understand by a layman.  
 

5.0 CONCLUSION/RECOMMENDATIONS 

5.1 CONCLUSION 

The Least squares criterion and its application to the 

modeling of least squares digital filters is most unique and 

offers several performance prospects. This research evolved a 

hybrid adaptive least squares error (LSE) / Least Mean Square 

Error Model and its‟ accompanying algorithm for handling 

signal deconvolution in both offshore and onshore exploration 

terrains. The research also developed a composite model 

composed of the combination of all the algorithms proposed 

with some extant algorithms. The model makes for ease in the 

deconvolution of seismic traces by choice algorithms taking 

advantage of the easy-to-use graphical user interface designed 

with Matlab for the composite seismic sequence 

deconvolution system proposed. This system equally makes 

for the comparison of algorithmic efficiencies by the plotting 

of their learning curves and tests for convergence with respect 

to the standardized Albert Werner‟s filter coefficients. 

The designed and implemented composite seismic data 

deconvolution system was simulated by the help of data sets 

obtained from The Mathworks Inc., USA and Marine 

Geosciences Data Systems(MGDS), Canada. Results are 

displayed graphically for a visual impact. 

 

5.2 CONTRIBUTIONS OF THE RESEARCH TO 

KNOWLEDGE 
The research has been able to  

(a)   study the existing Least Mean Squares (LMS) and     

Recursive Least Squares adaptive filtering models and 

develop a hybrid LMS / RLS model; and 

 

(b)   provide a hybrid LMS and RLS Adaptive filtering 

algorithm and thus pioneer  the concatenation of these 

two digital filter coefficients‟ adaptation techniques 

thereby combining their respective advantages for 

improved signal analysis for oil prospecting.  

 

(c)  develop a composite block model that combines the 

proposed hybrid LMS/RLS algorithm with existing 

adaptive filtering algorithms to make for a multi-

algorithm based software for seismic deconvolution in 

both offshore and onshore scenarios.  

 

5.3 Recommendations/Future Research 

Further research on the design and implementation of 

adaptive filters should be sponsored to ensure that most tools 

like fuzzy logic, genetic programming, etc are incorporated for 

better results while putting to use state of the art seismic tools 

and equipment in a standardized computer laboratory. 
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Data set 2:  

Table: 4.2: Data for System‟s Simulation. 

SIGNAL PROCESSING DATA PARAMETERS 

R
eco

rd
s 

N
o
 o

f sam
p
les 

D
esired

 

sin
u
so

id
(w

av
efo

rm
) 

F
ilter L

en
g
th

 

S
tep

 size 

A
u
to

reg
ressiv

e 

co
eff. 

M
o
v
in

g
 av

erag
e

 

S
am

p
le realizatio

n
s 

D
ecim

atio
n
 facto

r 

R
eflectiv

ity
 

seq
u
en

ce 

     n    S(n) L µ ar ma nr M v 

1 (1:10

) 

sin(0.0

1*pi*n

) 

1 0.00

1 

[1,1/

2] 

[1,-

0.8,0.4

,-0.2] 

1 5 0.8*randn(10,

1) 

2 (1:20

) 

sin(0.0

5*pi*n

) 

4 0.00

2 

[1,1/

4] 

[1,-

0.6,0.2

,-0.4] 

1 5 0.6*randn(20,

1) 

3 (1:30

) 

sin(0.1

0*pi*n

) 

7 0.00

3 

[1,1/

8] 

[0.25,-

0.25,0.

25,-

0.25] 

3 5 0.25*randn(3

0,1) 

4 (1:40

) 

sin(0.1

5*pi*n

) 

10 

0.00

4 

[2,1/

2] 

[0.2,-

0.4,0.4

,-0.2] 

6 5 0.4*randn(40,

1) 

5 (1:50

) 

sin(0.2

0*pi*n

) 

13 

0.00

5 

[2,1/

4] 

[1,-

0.125,

0.125,

-1] 

10 5 0.125*randn(

50,1) 

6 (1:60

) 

sin(0.2

5*pi*n

) 

16 

0.00

6 

[2,1/

8] 

[1,-

0.8,0.4

,-0.2] 

15 10 0.8*randn(60,

1) 

7 (1:70

) 

sin(0.3

0*pi*n

) 

19 

0.00

7 

[1,1/

2] 

[1,-

0.6,0.2

,-0.4] 

21 10 0.6*randn(70,

1) 

8 (1:80

) 

sin(0.3

5*pi*n

) 

22 

0.00

8 

[1,1/

4] 

[1,-

0.8,0.4

,-0.2] 

28 10 0.25*randn(8

0,1) 

9 (1:90

) 

sin(0.4

0*pi*n

) 

25 

0.00

9 

[1,1/

8] 

[1,-

0.6,0.2

,-0.4] 

36 10 0.4*randn(90,

1) 

1

0 

(1:10

0) 

sin(0.4

5*pi*n

) 

28 

0.01 

[2,1/

2] 

[0.25,-

0.25,0.

25,-

0.25] 

45 10 0.125*randn(

100,1) 

1

1 

(1:15

0) 

sin(0.5

0*pi*n

) 

31 

0.01

1 

[2,1/

4] 

[0.2,-

0.4,0.4

,-0.2] 

75 15 0.8*randn(15

0,1) 

1

2 

(1:20

0) 

sin(0.5

5*pi*n

) 

34 

0.01

2 

[2,1/

8] 

[1,-

0.125,

0.125,

-1] 

11

0 

15 0.6*randn(20

0,1) 

1

3 

(1:25

0) 

sin(0.6

0*pi*n

) 

37 

0.01

3 

[1,1/

2] 

[1,-

0.8,0.4

,-0.2] 

15

0 

15 0.25*randn(2

50,1) 

1

4 

(1:30

0) 

sin(0.6

5*pi*n

) 

40 

0.01

4 

[1,1/

4] 

[1,-

0.6,0.2

,-0.4] 

19

5 

15 0.4*randn(30

0,1) 

1

5 

(1:35

0) 

sin(0.7

0*pi*n

) 

43 

0.01

5 

[1,1/

8] 

[1,-

0.8,0.4

,-0.2] 

24

5 

15 0.125*randn(

350,1) 

1

6 

(1:40

0) 

sin(0.7

5*pi*n

) 

46 

0.01

6 

[2,1/

2] 

[1,-

0.6,0.2

,-0.4] 

30

0 

20 0.8*randn(40

0,1) 

1

7 

(1:45

0) 

sin(0.8

0*pi*n

) 

49 

0.01

7 

[2,1/

4] 

[0.25,-

0.25,0.

25,-

0.25] 

36

0 

20 0.6*randn(45

0,1) 

1

8 

(1:50

0) 

sin(0.8

5*pi*n

) 

52 

0.01

8 

[2,1/

8] 

[0.2,-

0.4,0.4

,-0.2] 

42

5 

20 0.25*randn(5

00,1) 

1

9 

(1:55

0) 

sin(0.9

0*pi*n

) 

55 

0.01

9 

[1,1/

2] 

[1,-

0.125,

0.125,

-1] 

49

5 

20 0.4*randn(55

0,1) 

2

0 

(1:60

0) 

sin(0.9

5*pi*n

) 

58 

0.02 

[1,1/

2] 

[1,-

0.8,0.4

,-0.2] 

57

0 

20 0.125*randn(

600,1) 

2

1 

(1:60

0) 

sin(1.0

*pi*n) 

61 

0.02

1 

[1,1/

4] 

[1,-

0.6,0.2

,-0.4] 

65

0 

20 0.8*randn(65

0,1) 

2

2 

(1:60

0) 

sin(0.0

1*pi*n

) 

64 

0.02

2 

[1,1/

8] 

[1,-

0.8,0.4

,-0.2] 

7 5 0.6*randn(70

0,1) 

2

3 

(1:60

0) 

sin(0.0

05*pi*

n) 

67 

0.02

3 

[2,1/

2] 

[1,-

0.6,0.2

,-0.4] 

4 5 0.25*randn(7

50,1) 

2463

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS040942

International Journal of Engineering Research & Technology (IJERT)



  

 

 
 

 

Acknowledgement: 

The lead author, Mbang, U. B wishes to acknowledge the 

moral support given by his lovely wife, Mrs. Kebe Uba 

Bassey, his mother, Madam Christiana Bassey and his 3 kids: 

Master Goodsuccess U. B. Yessababu, Master Evergreen U. 

B. Yessababu and Miss Fruitful-vine U. B. Yessababu. May 

the almighty God bless them all, amen. 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                SIGNAL PROCESSING DATA PARAMETERS                                                                            

R
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R
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 seq

u
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     n              s L µ ar ma nr M v 

24 (1:600) sin(0.010*pi*n) 70 

0.024 

[2,1/4] [0.25,-

0.25,0.25,-

0.25] 

8 5 0.4*randn(800,1) 

25 (1:600) sin(0.015*pi*n) 73 

0.025 

[2,1/8] [0.2,-0.4,0.4,-

0.2] 

13 5 0.125*randn(850,1) 

26 (1:600) sin(0.020*pi*n) 76 

0.026 

[1,1/2] [1,-

0.125,0.125,-

1] 

18 5 0.8*randn(900,1) 

27 (1:600) sin(0.025*pi*n) 79 

0.027 

[1,1/4] [1,-0.8,0.4,-

0.2] 

24 10 0.6*randn(950,1) 

28 (1:600) sin(0.030*pi*n) 82 

0.028 

[1,1/8] [1,-0.6,0.2,-

0.4] 

30 10 0.25*randn(1000,1) 

29 (1:600) sin(0.035*pi*n) 85 

0.029 

[2,1/2] [1,-0.8,0.4,-

0.2] 

39 10 0.4*randn(1100,1) 

30 (1:600) sin(0.040*pi*n) 88 

0.03 

[2,1/4] [1,-0.6,0.2,-

0.4] 

48 10 0.125*randn(1200,1) 

31 (1:600) sin(0.045*pi*n) 91 

0.031 

[2,1/8] [0.25,-

0.25,0.25,-

0.25] 

59 10 0.8*randn(1300,1) 

32 (1:600) sin(0.050*pi*n) 94 

0.032 

[1,1/2] [0.2,-0.4,0.4,-

0.2] 

70 15 0.6*randn(1400,1) 

33 (1:600) sin(0.055*pi*n) 97 

0.033 

[1,1/4] [1,-

0.125,0.125,-

1] 

83 15 0.25*randn(1500,1) 

34 (1:600) sin(0.060*pi*n) 100 

0.034 

[1,1/8] [1,-0.8,0.4,-

0.2] 

96 15 0.4*randn(1600,1) 

35 (1:600) sin(0.065*pi*n) 103 

0.035 

[2,1/2] [1,-0.6,0.2,-

0.4] 

111 15 0.125*randn(1700,1) 

36 (1:600) sin(0.070*pi*n) 106 

0.036 

[2,1/4] [1,-0.8,0.4,-

0.2] 

126 15 0.8*randn(1800,1) 

37 (1:600) sin(0.075*pi*n) 109 0 [2,1/8] [1,-0.6,0.2,-

0.4] 

143 20 0.6*randn(1900,1) 

38 (1:600) sin(0.080*pi*n) 112 0 [1,1/2] [0.25,-

0.25,0.25,-

0.25] 

160 20 0.25*randn(2000,1) 

39 (1:600) sin(0.085*pi*n) 115 0 [1,1/2] [0.2,-0.4,0.4,-

0.2] 

192 20 0.4*randn(2250,1) 

40 (1:600) sin(0.090*pi*n) 118 0 [1,1/4] [1,-

0.125,0.125,-

1] 

225 20 0.125*randn(2500,1) 

41 (1:600) sin(0.095*pi*n) 121 0 [1,1/8] [1,-0.8,0.4,-

0.2] 

261 20 0.8*randn(2750,1) 

42 (1:600) sin(0.100*pi*n) 124 0 [2,1/2] [1,-0.6,0.2,-

0.4] 

300 5 0.6*randn(3000,1) 
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