
Implementation of 32-Bit Interlock Collapsing Alu

Multipliers in VLSI using VHDL

Pratibha Pandey
M. Tech Student

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur

C.G., India

Akanksha Awasthi
Assistant Professor

Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur

C.G., India

Abstract - An important area in computer architecture is parallel

processing. Machines employing parallel processing are called

parallel machines. A parallel machine executes multiple instructions

in one cycle. However, parallel machines have a limitation, they

cannot execute interlocked instructions. They are executed in

seriallike any serial machine. It takes more than one cycle to

execute multiple instructions causing performance degradation. In

addition there is hardware underutilization as a result of serial

execution in parallel machine.

The solution requires a special kind of device called

“Interlock collapsing ALU”. The Interlock Collapsing ALU, unlike

conventional 2-1 ALU’s is a 3-1 ALU. The proposed device executes

the interlocked instructions in a single instruction cycle, unlike

other parallel machines, resulting in high performance. The

resulting implementation demonstrates that the proposed 3-1

Interlock Collapsing ALU can be designed to outperform existing

schemes for ICALU, by a factor of at least two. The ICALU is

implemented in VHL. Its functionality is verified through

simulation.

Keywords: ALU, Interlock collapsing, ICALU, parallel processing,

computer, architecture, parallel machines.

1. INTRODUCTION:BACKGROUND:
Parallel machines cannot execute interlocked instruction

concurrently.Interlocked instructions or instruction with

dependencies cannot be executed concurrently in a parallel

machine, thus degrading the performance of the machine. The

thesis investigates a solution, called, “interlock collapsing”, to exec

ute these interlocks concurrently. The solution requires a special

kind of a device called the Interlock collapsing ALU. The Interlock

collapsing ALU, unlike conventional 2-1 ALU’s, is a 3-1 ALU.

The proposed ALU, in addition to collapsing these

interlocks also should be implemented in identical stages as

the conventional ALU’s. A functional model of the ICALU is

assumed initially. The functional model is optimized by

optimizing the model’s individual blocks. The design and

optimization of each block is discussed in separate chapters.

Finally, two parallel machines with and without the

ICALU are compared with regard to their execution times.

The effect of variation of percentage interlocks in a given

code on the execution times and the percentage speed ratio of

the parallel machines is studied.

The ICALU is implemented in VHDL. Its

functionality is verified through simulation.

2. ICALU DATAFW MODELLO

• THE INTERLOCK COLLAPSING ALU UNIT:

In this chapter all the designed components are put

together to implement the ICALU. Also, ALU1 is created

using the designed components. Finally, the Interlock

collapsing ALU unit is implemented which consists of both

ALU1 and ICALU. The chapter also estimates the relative

delay.

2.1 Reduced Icalu Model :

Resulting from the design of the various stages in

the preceding chapters a reduced ICALU is obtained. The

result was the elimination of the multiplexers M2 and M3 and

also better implementations of the Pre and Post-CLA Logic

Blocks. The block diagram is shown in Fig 4.1. The program

for ICALU is in the Appendix A.2.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

70

Fig. 2. 1 : Reduced Dataflow Model of Icalu

2.2 Alu1 Model :

Fig 2.2 (Dataflow Model of ALU1)

The control signals for multiplexer are K12 and K13 and are set as follows :

I) CATEGORY 1 (ARITHMETIC) :

K12 = 1 and, K13 = 0 ;

Output of ALU1 = O = A ± B.

II) CATEGORY 2 (LOGICAL) :

K12 = 0 and, K13 = 1 ;

Output of ALU1 = O = A LOP B.

The values of control signals are summarized in Table 4.1 :

CATEGORY K12 K13 O

1 1 0 A ± B

2 0 1 A LOP B

Table 2.3 : Output table for ALU1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

71

2.2.2 Implementation :

The ALU1 is implemented using the block diagram

above. The components CLA and PREBLK are the adder

and the logic block respectively, for ALU1. The program for

entity ALU1 is shown in A.3.

2.3 Interlock Collapsing Alu Unit :

The Interlock collapsing ALU unit consists of

ALU1 and the ICALU operating in parallel. The block

diagram of the Interlock collapsing unit was shown in

Chapter 1, Fig 1.7. The program for entity ICUNIT is shown

in A.2.

2.4 Estimation Of Relative Delay Between Alu1 And Icalu :

In this section the relative delay between the ALU1

in Fig 4.2 and the ICALU in Fig 4.1 is estimated. The

relative delay is the difference between the delay of ALU1

and the ICALU. The delay is required to find out the

instruction cycle length. The delay of a device can be

estimated by taking a logic gate count from the input to the

output. Only the delay between both ALU’s considered

because all other stages in their respective paths are

identical, hence they also have identical delays.

Now, compare Fig 4.1 (ICALU) and Fig 4.2 (ALU1).

By elimination, it is deduced that the ICALU has two

additional stages when compared to the ALU1 which are :
i) The CSA and,

ii) The Post-CLA Logic Block.

The procedure is :

1) The CLA and multiplexers are common to both the

ALU’s. Hence they can be eliminated.

2) The extra stages in the ICALU path are the CSA

and the Post-CLA Logic Stage.

3) The Pre-CLA Logic stages are not considered

because in case of ALU1 it is parallel with the

CLA stage and has lesser stages than the same.

Where as, in case of the ICALU it is in parallel and

has the same delay as the CSA.

The logic delay of both stages are :
I) CSA :

To estimate this consider (3.13a) and (3.14) which

represent the input-output transformations of the CSA sum

and carry respectively. Both are in parallel.

SUM = Si = Ai V Bi V Ci,

λi+1 = K2 Ai Bi + K1 Bi Ci + K1 Ai Ci + K3 Ci+1.

(3.13a) and (3.14) can each be implemented in one gate

delay using custom-built CMOS libraries. A ± 3 X 4 AO

gate can serve this purpose (‘+’ represents AND-OR and ‘-‘

represents AND-OR-INVERT). The delay of this gate is

assumed to be 1 gate stage as that of any other gate in the

assumed libraries.

II) LOGIC DELAY OF POST-CLA LOGIC BLOCK :

Similarly, (3.9) (shown below) can be implemented in one gate

delay by the AO gate.

__ __

Li = Lli KPRE1 + Lri KPRE1 + Lli Lri KPRE2 + Lli Lri

KPRE3 (3.9)Thus the

total relative gate delay of the ICALU over the ALU1 =

Logic delay due to CSA stage + Logic delay due to Post-CLA

Logic Stage =1+1 = 2.

2.5 Determination of Instruction Cycle Lengths of a

Machine With And Without Icalu :
The average instruction length is calculated to find out

the speed of the machine. The instruction cycle length varies for

each instruction. Hence an average instruction length has to be

calculated. It is sufficient to take the average of only frequently

executed instructions. The following discussion shows how the

instruction lengths can be calculated for a given instruction. But

first, Fig 2.4 is redrawn again.

Fig2.4.5 (Phases of Instruction execution process)

Fig 4.3 represents the instruction path of serial machine.

instructions given as I0, or the basic instruction cycle time.

been discussed in Chapter 1.

The time to execute an The individual stage have

2.4.1 Without ICALU :
For a parallel machine there are two such paths in

parallel. Fig 4.4 shows instruction execution (considering

non-interlocked case) in a parallel machine with respect to

time.

Fig 4.4 shows the instruction cycle of a parallel machine for

a two-operand instruction pair shown below. The upper

cycle in the figure represents execution of instruction 1. The

instruction time is the same as the basic instruction cycle

time, I0. Execution of Instruction 2 is shown in the lower

half. It starts a memory write cycle after the first instruction,

because memory cannot be accessed simultaneously. It

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

72

shifts to the right by 1MW. The x’s in figure represents an

idle cycle.

ADD R1, R2 / Executed by ALU1 /

ADD R3, R4 / Executed by ALU2 /

The ID2 is smaller than ID1 by one memory access

because we already have R2, fetched by Instruction 1. This

compensates for the delay in start of execution of Instruction

2 and thus the execution cycles of both the instructions start

at the same time. After the EX cycle is complete, Instruction

2 has to wait for 1MW for Instruction 1 to complete its

memory access.

Instruction 2 takes a further 1MW to complete its

cycle. Thus from the figure it can clearly be seen that the

instruction time of a parallel machine is lengthened by

1MW.

2.4.1 With ICALU :

The instruction cycle in figure is for the pair given below :

ADD R1, R2

ADD R1, R3

The operation is almost similar to that of an

ordinary parallel machine except that there is no memory

access for ALU1. Hence the memory access starts once the

ICALU completes it’s execution which is two additional

logic or gate delays more than the 2-1

ALU. Hence its instruction cycle time increases to I0 + 2 D

(D – Unit gate delay or the delay of one gate).
MW can be treated as three gate delays for CMOS

memories. Substituting this value average instruction length

can be calculated.

3. PERFORMANCE ANALYSIS

PERFORMANCE ANLAYSIS

In this chapter the performance of a Non-ICALU

and that of a parallel machine with the ICALU is compared.

Table 5.1 shows the average instruction lengths of a

machine with ICALU and a Non-ICALU parallel machine

for the interlocked and Non-interlocked categories. The

average instruction lengths were calculated by taking the

average of instructions lengths obtained for all possible

interlocked and non-interlocked pairs (See Appendix B).

The average instruction length is the time taken to execute

an instruction pair, that is two consecutive instructions.

CATEGORY
AVERAGE INSTRUCTION

LENGTH

(NON – ICALU)

AVERAGE INSTRUCTION
LENGTH

(WITH ICALU)

Non–interlocked IPAVE1 = I0 + 3.5
IICAVE1

=

I0 + 4.17

Interlocked IPAVE1 = 2I0
IICAVE2

=

I0 + 2.63

Table 5.1 : Average Instruction Lengths for machines with and without ICALU

Using the values in the table, the total execution time for each

machine can be calculated, for a given number of instructions.

1) COMPARISON OF TOTAL EXECUTION TIME :

The total execution time of a parallel machine is given as :
TNI NNI + TI NI

Where,

TNI = Time taken to execute a Non-Interlocked pair.

NNI = Number of Non-Interlocked pairs.

TI = Time taken to execute an Interlocked pair.

NI = Number of Interlocked pairs.

Further,
N = 2 (NNI + NI)
NNI = ((100 – X) / 100) N / 2, and
NI = (X / 100) N / 2.

Where,

N = Total number of instructions to be executed.

X = Percentage of interlocked pairs.

Now, (5.1) can be rewritten as :

TNI [((100 – X) / 100) N / 2] + T I [(X / 100) N / 2]

Now, consider the following for a program :

a) N = 100,

b) X = 50 %

c) I0 = 25 Logic Delays, typically

The execution times for the

machines are :

I) NON-ICALU MACHINE :

From Table 5.1 :

TNI = IPAVE1 = I0 + 3.5.

(5.1)

(5.1a)

TI = IPAVE2 = 2I0.

Substituting in (5.1a), we get,

T1 = (I0 + 3.5) 25 + (2I0) 25

= 1962.5 Logic Delays.

II) MACHINE WITH ICALU :

Again from Table 5.1 :

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

73

TNI = IICAVE1 = I0 + 4.17.
TI = IICAVE2 = I0 + 2.63.

Substituting in (5.1a), we get,

Total execution time for 50 pairs of instructions,
T2 = (I0 + 4.17) 25 + (I0 + 2.63) 25

= 1419.78 Logic Delays.

The machine with ICALU takes fewer logic delays than the Non-

ICALU machine.

Chart 5.1 is a plot of (5.1a) with N constant (100) and

varying X between 0 and 100 percent. It can be seen that the

performance of the Non-ICALU machine degrades, where

as the performance of the machine with ICALU is almost

constant as X increases. This is because the Non-ICALU has

to execute more and more instructions in serial. In the next

section Percentage Speed Ratio is calculated.

Fig 5.1 Percentage Interlocks Vs Total Execution Time

2) PERCENTAGE SPEED RATIO :
Percentage Speed Ratio of Machine 2 over Machine 1 is
defined as :
[(T1 - T2) / T1] x 100 (5.2)

Percentage Speed Ratio reflects the time saved by one
machine over the other.

Using (5.1a) in (5.2), we get,

[(TNI1 – T NI2) (100 – X) + (T I1 – T I2) X] / [TNI1 (

100 – X) + T I1 X]

(5.2a)

Hence,
Percentage Speed Ratio of machine with ICALU over

the Non-ICALU machine for the previous case (that is

X = 50%) ≈ 28

Similarly, for (say) X = 75% :

Percentage Speed Ratio ≈ 37.

Thus the Percentage Speed Ratio increases as X increases.

Chart 5.2 shows variation of Percentage Speed Ratio with

interlock percentage

(X). It can be seen clearly how Percentage Speed Ratio

increases as interlock percentage

(X) increases.

From chart we can see that at X ≈ 3%, the

gain of the machine with ICALU is zero. Below this

point the gain is negative, that is the machine with

ICALU is slower than the machine Non-ICALU

machine. This point can also be obtained by setting

Percentage Speed Ratio to zero in (10.2a).

Fig : 5.2 (Percentage Interlock Vs. Percentage Speed Ratio.)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

74

4 TESTING PROCEDURES TESTING

The ICUNIT has two outputs, result of ALU1 and that of

ALU2.The testing of the ICUNIT was done by categories.

They are as follows :

1) CATEGORY 1 (ARITHMETIC FOLLOWED BY

ARITHMETIC) :

Since there are three operands, the four sub

categories are :

i) All positive numbers.

ii) Two positive numbers.

iii) One positive number.

iv) None positive.

2) CATEGORY 2 (LOGICAL FOLLOWED BY

ARITHMETIC) :

The sub categories are :

i) Logical AND followed by Arithmetic.

ii) Logical OR followed by Arithmetic.

iii) Logical XOR followed by Arithmetic.

iv) Logical NAND followed by Arithmetic.

v) Logical NOR followed by Arithmetic.

vi) Logical XNOR followed by Arithmetic.

3) CATEGORY 3 (ARITHMETIC FOLLOWED BY

LOGICAL) :

The sub categories are :
i) Arithmetic followed by Logical AND.

ii) Arithmetic followed by Logical OR.

iii) Arithmetic followed by Logical XOR.

iv) Arithmetic followed by Logical NAND.

v) Arithmetic followed by Logical NOR.

vi) Arithmetic followed by Logical XNOR.

4) Category 4 (Logical followed by Logical) :

Category 2 and 3 cover all possible categories here. Hence only

one subcategory is considered (say) :

Logical AND followed by Logical AND.

5. SIMULATION RESULTS

The simulation is conducted by assigning values to

the variables in the design entities. The simulation is done

through Modelsim XE II/starter 5.6e-Custom Xilinx

Version. In Active-HDL a test run (simulation cycle) lasts

for 100ns. The waveforms (resulting from the simulation)

are displayed in waveform editor. The following pages show

the simulation cycle as displayed by waveform editor.

The figures shown in the following pages depict

the results of various categories of interlocked instructions

explained in Chapter 6. A, B and C represents the three

inputs to the ICUNIT. K1, K2, K3,…, K14 represents the di

fferent control signals. The figures show consecutive

simulation cycles. Their values are shown in hexadecimal in

each cycle.

ARITHMETIC FOLLOWED BY ARITHMETIC OPERATIONS

Fig 7.1

1. A + B + C

2. A – B + C

3. –A + B + C

4. A + B – C

5. A – B – C

6. – A + B – C

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

75

ARITHMETIC FOLLOWED BY LOGICAL OPERATIONS

Fig 7.2

1. A + B and C

2. A + B nand C

3. A + B or C
4. A + B nor C

5. A + B xor C

6. A + B xnor C

LOGICAL FOLLOWED BY ARITHMETIC OPERATIONS

Fig 7.3

1. A and B + C

2. A or B + C

3. A xor B + C

4. A nand B + C

5. A nor B + C

6. A xnor B + C

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

76

LOGICAL FOLLOWED BY LOGICAL OPERATIONS

Fig 7.4

1. A and B and C

2. A or B and C

3. A xor B and C

4. A nand B and C

5. A nor B and C

6. A xnor B and C

CONCLUSION

The objective of the thesis, execution of interlocked

instructions in one instruction cycle. This was achieved by

ICALU successfully designed and implemented using

VHDL. Its functionality was verified through simulation.

The ICALU can be implemented in just 2 logic

delays more than that of a conventional 2-1 ALU. The

performance of an ordinary (Non-ICALU) parallel machine

and the machine with the ICALU incorporated in it, was

compared.

The following is concluded from the performance analysis :

· The Percentage Speed Ratio of the machine with the

ICALU over the Non-ICALU machine depends only on

the amount of interlocked instructions in the code and

not on the total number of instructions.

· The Percentage Speed Ratio increases as the number of

interlocked instructions increase. This is due to the

degradation in performance of Non-ICALU machines.

· Assuming an average of (50-75)% interlocks in a given

code, the Percentage Speed Ratio obtained is between

(23-37)%, which implies that the ICALU, when

incorporated in a parallel machine saves up to a third of

the total execution time of the Non-ICALU machine.

REFERENCE
[1] J. Phillips, S. Vassiliadis, "High-Performance 3-1

Interlock Collapsing ALU's," IEEE Transactions on

Computers, vol. 43, no. 3, pp. 257-268, Mar., 1994

[2] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley,

and B. W. Sutter, "The multilayer perceptron as an

approximation to a Bayes optimal discriminant

function,"IEEE Trans. Neural Networks, vol. 1, no. 4, pp.

296-298, Dec. 1990.

[3] S. Vassiliadis, J. Phillips, and B. Blaner, "Interlock

collapsing ALU's,"IEEE Trans. Comput., vol. 42, no. 7,

pp. 825-839, July 1992.

[4] H. Ling, "High speed binary adder,"IBM J. Res. Develop.,

vol. 25, no. 3, pp. 156-166, May 1981.

[5] M. J. Flynn and S. Waser,Introduction to Arithmetic for

Digital Systems Designers. CBS College Publishing,

1982, pp. 215-222.

[6] R. M. Keller, “Lookahead Processors,” Computing

Surveys,Vol. 7, No. 4, pp. 514-537, December 1973.

[7] R. M. Tomasulo, "An efficient algorithm for exploiting

multiple arithmetic units," <i>IBM J. Res. Develop.</i>,

pp. 25-33, Jan. 1967.

[8] R D Acosta , J Kjelstrup , H C Torng, An instruction

issuing approach to enhancing performance in multiple

functinal unit processors, IEEE Transactions on

Computers, v.35 n.9, p.815-828, Sept. 1986

[9] JAIN R.P . Digital Electronics , Printice hall

[10] The Low Carb VHDL Tutorial ,Bryan Mealy 2004

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV7IS050035
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 7 Issue 05, May-2018

77

