Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

Implementation of 32-Bit Interlock Collapsing Alu
Multipliers in VLSI using VHDL

Pratibha Pandey
M. Tech Student
Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur
C.G,, India

Abstract - An important area in computer architecture is parallel
processing. Machines employing parallel processing are called
parallel machines. A parallel machine executes multiple instructions
in one cycle. However, parallel machines have a limitation, they
cannot execute interlocked instructions. They are executed in
seriallike any serial machine. It takes more than one cycle to
execute multiple instructions causing performance degradation. In
addition there is hardware underutilization as a result of serial
execution in parallel machine.

The solution requires a special kind of device called
“Interlock collapsing ALU”. The Interlock Collapsing ALU, unlike
conventional 2-1 ALU’s is a 3-1 ALU. The proposed device executes
the interlocked instructions in a single instruction cycle, unlike
other parallel machines, resulting in high performance. The
resulting implementation demonstrates that the proposed 3-1
Interlock Collapsing ALU can be designed to outperform existing
schemes for ICALU, by a factor of at least two. The ICALU is
implemented in VHL. Its functionality is verified through2.
simulation.

Keywords: ALU, Interlock collapsing, ICALU, parallel processing,
computer, architecture, parallel machines.

1. INTRODUCTION:BACKGROUND:

Parallel machines cannot execute interlocked instruction
concurrently.Interlocked instructions or instruction with
dependencies cannot be executed concurrently in a parallel
machine, thus degrading the performance of the machine. The
thesis investigates a solution, called, “interlock collapsing”, to exec
ute these interlocks concurrently. The solution requires a special
kind of a device called the Interlock collapsing ALU. The Interlock
collapsing ALU, unlike conventional 2-1 ALU’s, is a 3-1 ALU.

Akanksha Awasthi
Assistant Professor
Department of Electronics & Communication Engineering
Dr. C.V. Raman University Kota, Bilaspur
C.G,, India

The proposed ALU, in addition to collapsing these
interlocks also should be implemented in identical stages as
the conventional ALU’s. A functional model of the ICALU is
assumed initially. The functional model is optimized by
optimizing the model’s individual blocks. The design and
optimization of each block is discussed in separate chapters.

Finally, two parallel machines with and without the
ICALU are compared with regard to their execution times.
The effect of variation of percentage interlocks in a given
code on the execution times and the percentage speed ratio of
the parallel machines is studied.

The ICALU is implemented
functionality is verified through simulation.

in VHDL. Its

ICALU DATAFW MODELLO
e THE INTERLOCK COLLAPSING ALU UNIT:

In this chapter all the designed components are put
together to implement the ICALU. Also, ALU1 is created
using the designed components. Finally, the Interlock
collapsing ALU unit is implemented which consists of both
ALU1 and ICALU. The chapter also estimates the relative
delay.

2.1 Reduced Icalu Model :

Resulting from the design of the various stages in
the preceding chapters a reduced ICALU is obtained. The
result was the elimination of the multiplexers M2 and M3 and
also better implementations of the Pre and Post-CLA Logic
Blocks. The block diagram is shown in Fig 4.1. The program
for ICALU is in the Appendix A.2.

IJERTV 71 S050035

www.ijert.org

70

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

2.2 Alul Model :

= | Logic Block

-]

E
= s
-
[T % Pre CLA
Logic Block
= L
.
Wil A
F
IMF1 IMF2
CLA
R
b
Fost- LA

Fig. 2. 1 : Reduced Dataflow Model of Icalu

l

¥

Pre-CLA
CLA Logic Block

Jlim

a

Fig 2.2 (Dataflow Model of ALUL)

The control signals for multiplexer are K12 and Ky and are set as follows :

1) CATEGORY 1 (ARITHMETIC):
Kiz =1 and, Kiz3 = 0;

Outputof ALUL = O = A +B.

1) CATEGORY 2 (LOGICAL) :
K12 =0 and, K13 = 1;

Output of ALU1 = O = A LOP B.

The values of control signals are summarized in Table 4.1 :

CATEGORY K12 K13 o
1 0 A £B
0 1 A LOP B

Table 2.3 : Output table for ALUL

IJERTV 71 S050035

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

71

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

2.2.2 Implementation :

The ALU1 is implemented using the block diagram
above. The components CLA and PREBLK are the adder
and the logic block respectively, for ALUL. The program for
entity ALUL is shown in A.3.

2.3 Interlock Collapsing Alu Unit :

The Interlock collapsing ALU unit consists of
ALU1 and the ICALU operating in parallel. The block
diagram of the Interlock collapsing unit was shown in
Chapter 1, Fig 1.7. The program for entity ICUNIT is shown
in A.2.

2.4 Estimation Of Relative Delay Between Alul And Icalu :
In this section the relative delay between the ALU1
in Fig 4.2 and the ICALU in Fig 4.1 is estimated. The
relative delay is the difference between the delay of ALU1
and the ICALU. The delay is required to find out the
instruction cycle length. The delay of a device can be
estimated by taking a logic gate count from the input to the
output. Only the delay between both ALU’s considered
because all other stages in their respective paths are
identical, hence they also have identical delays.
Now, compare Fig 4.1 (ICALU) and Fig 4.2 (ALUL).

By elimination, it is deduced that the ICALU has two
additional stages when compared to the ALU1 which are :
i) The CSA and,

i) The Post-CLA Logic Block.
The procedure is :

1) The CLA and multiplexers are common to both the
ALU’s. Hence they can be eliminated.

2) The extra stages in the ICALU path are the CSA
and the Post-CLA Logic Stage.

3) The Pre-CLA Logic stages are not considered
because in case of ALUL it is parallel with the
CLA stage and has lesser stages than the same.

Where as, in case of the ICALU it is in parallel and
has the same delay as the CSA.

The logic delay of both stages are :
1) CSA:

To estimate this consider (3.13a) and (3.14) which
represent the input-output transformations of the CSA sum
and carry respectively. Both are in parallel.

SUM=S=A VB;VC;
Aiv1 = K2 Ai Bi + K1 Bi Ci + K1 Ai Cj + K3 Ci.

(3.13a) and (3.14) can each be implemented in one gate
delay using custom-built CMOS libraries. A £ 3 X 4 AO
gate can serve this purpose (‘+’ represents AND-OR and ‘-
represents AND-OR-INVERT). The delay of this gate is
assumed to be 1 gate stage as that of any other gate in the
assumed libraries.

I1) LOGIC DELAY OF POST-CLA LOGIC BLOCK :

Similarly, (3.9) (shown below) can be implemented in one gate
delay by the AO gate.

Li = LIi KPRE1 + Lri KPRE1 + LliLri KPRE2 + LliLri
KPRES3 (3.9)Thus

total relative gate delay of the ICALU over the ALUL =

Logic delay due to CSA stage + Logic delay due to Post-CLA
Logic Stage =1+1 = 2.

2.5 Determination of Instruction Cycle Lengths of a
Machine With And Without Icalu :

The average instruction length is calculated to find out
the speed of the machine. The instruction cycle length varies for
each instruction. Hence an average instruction length has to be
calculated. It is sufficient to take the average of only frequently
executed instructions. The following discussion shows how the
instruction lengths can be calculated for a given instruction. But
first, Fig 2.4 is redrawn again.

Tnetruetion
Fetch

Instruction
Decode

Instruetion
Execute

Oparand
Write

Io

Fig2.4.5 (Phases of Instruction execution process)

Fig 4.3 represents the instruction path of serial machine.
instructions given as lo, or the basic instruction cycle time.

been discussed in Chapter 1.

The time to execute an The individual stage have

2.4.1 Without ICALU :
For a parallel machine there are two such paths in
parallel. Fig 4.4 shows instruction execution (considering

non-interlocked case) in a parallel machine with respect to
time.

Fig 4.4 shows the instruction cycle of a parallel machine for
a two-operand instruction pair shown below. The upper
cycle in the figure represents execution of instruction 1. The
instruction time is the same as the basic instruction cycle
time, lo. Execution of Instruction 2 is shown in the lower
half. It starts a memory write cycle after the first instruction,
because memory cannot be accessed simultaneously. It

IJERTV 71 S050035

www.ijert.org

72

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

shifts to the right by IMW. The x’s in figure represents an
idle cycle.

ADD R1,R2 / Executed by ALU1/

ADD R3, R4 / Executed by ALU2 /

The ID2 is smaller than ID1 by one memory access
because we already have R2, fetched by Instruction 1. This
compensates for the delay in start of execution of Instruction
2 and thus the execution cycles of both the instructions start
at the same time. After the EX cycle is complete, Instruction
2 has to wait for IMW for Instruction 1 to complete its
memory access.

Instruction 2 takes a further LMW to complete its
cycle. Thus from the figure it can clearly be seen that the
instruction time of a parallel machine is lengthened by
1IMW.

2.4.1 With ICALU :
The instruction cycle in figure is for the pair given below :

The operation is almost similar to that of an
ordinary parallel machine except that there is no memory
access for ALUL. Hence the memory access starts once the
ICALU completes it’s execution which is two additional
logic or gate delays more than the 2-1

ALU. Hence its instruction cycle time increases to lo + 2 D
(D — Unit gate delay or the delay of one gate).

MW can be treated as three gate delays for CMOS
memories. Substituting this value average instruction length
can be calculated.

3. PERFORMANCE ANALYSIS
PERFORMANCE ANLAYSIS

In this chapter the performance of a Non-ICALU
and that of a parallel machine with the ICALU is compared.
Table 5.1 shows the average instruction lengths of a
machine with ICALU and a Non-ICALU parallel machine
for the interlocked and Non-interlocked categories. The
average instruction lengths were calculated by taking the
average of instructions lengths obtained for all possible
interlocked and non-interlocked pairs (See Appendix B).

ADD R1, R2 The average instruction length is the time taken to execute
n instruction pair, that is two con ive instructions.
ADD RL R3 an instruction pair, that is two consecutive instructions
AVERAGE INSTRUCTION AVERAGE INSTRUCTION
CATEGORY LENGTH LENGTH
(NON — ICALU) (WITH ICALU)
IICAVEL
Non-interlocked lbaver = lo + 3.5 =
lo+4.17
IICAVE2
Interlocked IPAVEL = 210 =
lo +2.63

Table 5.1 : Average Instruction Lengths for machines with and without ICALU

Using the values in the table, the total execution time for each
machine can be calculated, for a given number of instructions.

1) COMPARISON OF TOTAL EXECUTION TIME :
The total execution time of a parallel machine is given as :
TNINNI + TI NI

Where,

Twni = Time taken to execute a Non-Interlocked pair.

Nni = Number of Non-Interlocked pairs.

T = Time taken to execute an Interlocked pair.

Ni = Number of Interlocked pairs.

Further,

N =2 (Nni+Np)
Nni=((100-X)/100)N/2, and
N, =(X/100)N/2.
Where,

N = Total number of instructions to be executed.

X = Percentage of interlocked pairs.

Now, (5.1) can be rewritten as :

T [((100-X)/100)N/2] + T [(X/100)N/2]

Now, consider the following for a program :
a) N =100,

b) X=50%

c) lo=25 Logic Delays, typically

The execution times for the

machines are :

1) NON-ICALU MACHINE :

From Table 5.1 :

Tni = lpaver = lo + 3.5.
(5.1)
(5.1a)

T, = lpavez = 2lo.

Substituting in (5.1a), we get,
Ti=(lo+35)25 + (2lp) 25

= 1962.5 Logic Delays.

I1) MACHINE WITH ICALU :
Again from Table 5.1 :

IJERTV 71 S050035

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

73

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

Tni = licaver = lo+4.17.
T, = licavez = lo+ 2.63.

Substituting in (5.1a), we get,

Total execution time for 50 pairs of instructions,
To=(lo+4.17)25 + (lp+2.63)25

= 1419.78 Logic Delays.

The machine with ICALU takes fewer logic delays than the Non-
ICALU machine.

Chart 5.1 is a plot of (5.1a) with N constant (100) and
varying X between 0 and 100 percent. It can be seen that the
performance of the Non-ICALU machine degrades, where
as the performance of the machine with ICALU is almost
constant as X increases. This is because the Non-ICALU has
to execute more and more instructions in serial. In the next
section Percentage Speed Ratio is calculated.

Without ICALT

1500,

Hrmom3%

With ICALU

100m

Total Execution Time

=

T
4 &0 & 100 120

Percentage Interlocks

Fig 5.1 Percentage Interlocks Vs Total Execution Time

2) PERCENTAGE SPEED RATIO :

Percentage Speed Ratio of Machine 2 over Machine 1 is
defined as :

[(T1-T2)/T1]x100 (5.2)

Percentage Speed Ratio reflects the time saved by one
machine over the other.

Using (5.1a) in (5.2), we get,

[(Tair=Ta2) (100-X)+(Tiu—-Tw)X]/ [Tu(
100-X)+ T X]

(5.2a)

Hence,

Percentage Speed Ratio of machine with ICALU over

the Non-ICALU machine for the previous case (that is
X=50%)~28
Similarly, for (say) X =75% :

Percentage Speed Ratio = 37.
Thus the Percentage Speed Ratio increases as X increases.

Chart 5.2 shows variation of Percentage Speed Ratio with
interlock percentage

(X). It can be seen clearly how Percentage Speed Ratio
increases as interlock percentage

(X) increases.

From chart we can see that at X = 3%, the
gain of the machine with ICALU is zero. Below this
point the gain is negative, that is the machine with
ICALU is slower than the machine Non-ICALU
machine. This point can also be obtained by setting
Percentage Speed Ratio to zero in (10.2a).

Pl

Percentage Speed Ratio

Porcentage Trverlocks

Fig : 5.2 (Percentage Interlock Vs. Percentage Speed Ratio.)

IJERTV 71 S050035

www.ijert.org 74

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

4 TESTING PROCEDURES TESTING

The ICUNIT has two outputs, result of ALU1 and that of i) Arithmetic followed by Logical XOR.
ALU2.The testing of the ICUNIT was done by categories. iv) Arithmetic followed by Logical NAND.
They are as follows :

V) Arithmetic followed by Logical NOR.
1) CATEGORY 1 (ARITHMETIC FOLLOWED BY vi) Arithmetic followed by Logical XNOR.

ARITHMETIC) :
Since there are three operands, the four sub
categories are :

4) Category 4 (Logical followed by Logical) :

Category 2 and 3 cover all possible categories here. Hence only

i) All positive numbers. one subcategory is considered (say) :
..i.i) Two pos_it_ive numbers. Logical AND followed by Logical AND.
iii) One positive number.
iv) _None positive. 5. SIMULATION RESULTS

2) CATEGORY 2 (LOGICAL FOLLOWED BY
ARITHMETIC) :
The sub categories are :

The simulation is conducted by assigning values to
the variables in the design entities. The simulation is done
through Modelsim XE |Il/starter 5.6e-Custom Xilinx

!? Log!cal AND followed by Arlthm_etlc. Version. In Active-HDL a test run (simulation cycle) lasts
ii) Logical OR followed by Arithmetic. . : .

. . . for 100ns. The waveforms (resulting from the simulation)
iii) Logical XOR followed by Arithmetic. : : : -

. . . . are displayed in waveform editor. The following pages show
v) Logical NAND followed by Arithmetic. the simulation cycle as displayed by waveform editor

V) Logical NOR followed by Arithmetic. Y played by '

Vi) Logical XNOR followed by Arithmetic.

3) CATEGORY 3 (ARITHMETIC FOLLOWED BY
LOGICAL):

The sub categories are :

The figures shown in the following pages depict
the results of various categories of interlocked instructions
explained in Chapter 6. A, B and C represents the three
inputs to the ICUNIT. K1, K2, K3,..., K14 represents the di
fferent control signals. The figures show consecutive
simulation cycles. Their values are shown in hexadecimal in

i) Arithmetic followed by Logical AND. each cycle.
i) Arithmetic followed by Logical OR.
ARITHMETIC FOLLOWED BY ARITHMETIC OPERATIONS
C B e m e]
pe
KE
KT
KB
[
Kid
K11
K12
K13
A 'Do00000: (FFFEFFEG) ooomoe \E
B mooooos (FRFFREFD foomones] ,@
c 00000001 JFEFFEFEF
CICALU {pooocoos fooc Y(oomocoopacomos¥nooanonn @
1 2 3 4 5 [
Fig 7.1
1.A+B+C
22A-B+C
3.-A+B+C
4, A+B-C
5. A-B-C
6.-A+B-C

IJERTV 71 S050035

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

75

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

ARITHMETIC FOLLOWED BY LOGICAL OPERATIONS

R R |
K1
K2
K3
K4
KS
KE
KT
KE
=]
KiD 4‘
K11 I
K1z
Ki3
K14
A y ooomas
D0DO0DO =
c yacooooo1
oALLM 00000007
OICALL noooont (FFEFRRFE mmoas WFEFRRFRS JDo00000s (FRERRER
1 2 3 4 5 6
Fig7.2
1.A+BandC
2.A+Bnand C
3.A+BorC
4. A+BnorC
5,A+BxorC
6. A+ B xnorC

LOGICAL FOLLOWED BY ARITHMETIC OPERATIONS

—
K2
K3
K1 I I [|
KS | |] I—
KB | | |
KT
KB
K9
K10
K
K1z
K13
K14
RTTTTT e) R
{Frreerrc Yooomom | s
c {oooomot
OALLM {oocomno Y oooooar YFreFrerr JFrerrree
HCALY iﬂmm] ermm l;l‘_III:I]lII:I: |'H--|-|-|--s
Fig 7.3
1.AandB+C
2.AorB+C
3.AxorB+C
4, Anand B+ C
5.AnorB+C
6. AxnorB+C
I JERTV71S050035 www.ijert.org 76

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 7 Issue 05, May-2018

LOGICAL FOLLOWED BY LOGICAL OPERATIONS

= am, g =, , m,

K1
K2
]
i | | | |
[—] 1 r__
ko [| |
L)
KB
D ———
K10
K1
K12
K13
K14
A {Pacom: YFrerrere Yoooooms
B {=FFFEFFC | DO0DIOD Yre=rr=rc
c {oocomat
A {macomen Y nacoooa)\FFFFFEFF NFFFFFFFE
E]G-“I_E' ---------- ,;ﬁ" ,W‘I’W
1 2 3 4 bl i3
Fig 7.4
1.AandBand C
2.AorBandC
3.AxorBandC
4.AnandBand C
5.AnorBandC
6. Axnor B and C
CONCLUSION
The objective of the thesis, execution of interlocked
instructions in one instruction cycle. This was achieved by - REF_E_RENCF_
ICALU successfully designed and implemented using [J- Phillips, S. Vassiliadis, ~"High-Performance 3-1

Interlock Collapsing ALU's," IEEE Transactions on
Computers, vol. 43, no. 3, pp. 257-268, Mar., 1994
[2] D. W. Ruck, S. K. Rogers, M. Kabrinsky, M. E. Oxley,
and B. W. Sutter, "The multilayer perceptron as an
approximation to a Bayes optimal discriminant
function,”IEEE Trans. Neural Networks, vol. 1, no. 4, pp.
296-298, Dec. 1990.
S. Vassiliadis, J. Phillips, and B. Blaner, "Interlock
collapsing ALU's,"IEEE Trans. Comput., vol. 42, no. 7,
pp. 825-839, July 1992.
[4] H. Ling, "High speed binary adder,"IBM J. Res. Develop.,

VHDL. Its functionality was verified through simulation.

The ICALU can be implemented in just 2 logic
delays more than that of a conventional 2-1 ALU. The
performance of an ordinary (Non-ICALU) parallel machine
and the machine with the ICALU incorporated in it, was
compared. [3]

The following is concluded from the performance analysis :

The Percentage Speed Ratio of the machine with the

vol. 25, no. 3, pp. 156-166, May 1981.

. 5 M. J. Flynn and S. Waser,Introduction to Arithmetic for
ICALU over th.e Non_ICAL.U machme c_iepends only on - Digital)éystems Designers. CBS College Publishing,
the amount of interlocked instructions in the code and 1982, pp. 215-222.
not on the total number of instructions. [6] R. M. Keller, “Lookahead Processors,” Computing
The Percentage Speed Ratio increases as the number of Surveys,Vol. 7, No. 4, pp. 514-537, December 1973.
interlocked instructions increase. This is due to the [7] R. M. Tomasulo, "An efficient algorithm for exploiting
degradation in performance of Non-ICALU machines. multiple arithmetic units," <i>IBM J. Res. Develop.</i>,
Assuming an average of (50-75)% interlocks in a given pp. 25-33, Jan. 1967.
code, the Percentage Speed Ratio obtained is between [8] R D Acosta, J Kjelstrup , H C Torng, An instruction
(23-37)%, which implies that the ICALU, when issuing approz_ich to enhancing performance in multiple
incorporated in a parallel machine saves up to a third of functinal unit processors, IEEE Transactions on
the total execution time of the Non-ICALU machine Computers, v.35 1.9, p.815-828, Sept. 1986

) [9] JAIN R.P . Digital Electronics , Printice hall
[10] The Low Carb VHDL Tutorial ,Bryan Mealy 2004

IJERTV 71 S050035

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

77

