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ABSTRACT      

 
Impact force analysis of a valve-train clearance 

mechanism is done using finite element technique. The 

physical system which is selected for the analysis is a 

cam-driven-valve train mechanism with valve seat, 

available with present day automobiles with variety of 

components made of different materials. This method is 

sufficiently general to permit applications to other 

machine elements, such as gears, bearings etc or a 

combination thereof. Use of the method involved 

establishing an elastic model, specifying clearances, 

calculating overall stiffness matrix, overall mass matrix, 

overall damping matrices and determine the form of the 

equation of motion for each configuration for different 

clearances of the valve train mechanism and calculated 

the impact force between pushrod and rocker arm. A 

computer program is developed to solve the various 

equations of overall stiffness matrix, overall mass 

matrix, overall damping matrices and few results, such 

as Impact forces and stresses which acting on the 

machine components for different speeds. Also this 

quantifies the maximum safe running speeds of 

mechanisms for different configurations depending 

upon the selection of materials and their mechanical 

properties.  

 

Keywords: Impact force, Joint clearance, safe running 

speed, valve seat, finite element technique

 

 

INTRODUCTION 

 

     The finite element techniques for structural 

analysis have been applied to the prediction of 

the elastic behavior of a rotating mechanism 

while it is being acted upon by its own inertial 

forces as well as arbitrary external forces[1]. 

In order to analyze a mechanism rather than a 

structure, it is necessary to consider two 

additional problems a mechanism will undergo 

rigid body motion, and it will usually 

experience large changes in geometry. The 

changes in geometry is handled easily with a 

relative algorithm, however accounting for the 

rigid body motion requires some skill, because 

the stiffness matrix for the mechanism is 

singular and the flexibility matrix, therefore, 

does not exist. One major assumption, which 

is usually applied to both mechanisms and 

structures, is that they are linear system and 

hence, are subject to methods of superposition. 

Even the large changes in geometry found in 

the mechanism are handled linearly in a 

piecewise fashion. Because all machinery is 

non-linear to some degree and it must contain 

clearances if it is to move, consider the 

classical approach to the design of a cam-

driven mechanism is to treat the mechanism as 

a system of rigid bodies[2]. Earlier analysis of 

cams briefly considered the problem of 

elasticity, but they dealt more with trying to 

optimize different cam profiles for minimum 

acceleration and jerk[3,4]. One early and 

notable contribution was that of  Barken[5], 

who considered the valve train as an elastic 

system. However, he took the valve train and 

model it as a system of lumped masses and 

springs and then reduced it to an equivalent 

single degree of freedom spring-mass system, 

before solving the equation of motion. Johnson 

[6,7]  analyzed the motion of cam mechanisms 

with one and two degrees of freedom and then 

with n-degrees of freedom. He used lumped 

masses and springs for his models, but 

discussed the desirability of using distributed 

parameters for the valve train model. 

      The problem of impact is discussed by 

Barkan[8] for a single degree of freedom cam 
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and follower system. However, he considers 

impact due to initial clearance only, that is, 

once the follower contacts the cam, it never 

leaves it. He also uses a coefficient of 

restitution, which is adequate for his system, 

because he is only interested in what happens 

after impact. As will be shown, this coefficient 

is of questionable value for the analysis of 

high speed, continuously operating machinery. 

Impact forces are also discussed by Johnson 

[9]. 

      Dubowsky and Freudenstein[10,11] treated 

the problem of clearances in mechanisms, but 

their concern is primarily with the 

development of model of a joint rather than the 

treatment of an entire system. Briefly study of 

the literature shows the need for the analysis of 

machinery components particularly with 

clearances, hence, the present investigation is 

carried out on the impact force analysis of 

valve-train  clearance mechanism using finite 

element technique. In the present analysis 

components of valve train mechanism are 

considered as bar and beam elements. 

-  

Figure 1 Cam-driven valve train mechanism 

with harmonic cam 

 

 
 

Figure 2 System coordinates 

 
Figure 3 Elements 

 

 

 ANALYSIS OF VALVE TRAIN 

MECHANISM  

           Analysis of valve train mechanism with 

harmonic cam as shown in fig.1. The system 

was modeled as collection of prismatic bar and 

beam elements as shown in fig.2 and fig.3.  

The mass and stiffness properties can be 

derived for each of the elements as shown in 

fig.3. In this analysis the standard properties 

from automobile valve train system are taken. 

Those properties are listed in table 1.

 

Table 1: Standard dimensions 

 

Element Material 

Modulus of 

Elasticity 

(E) N/mm2 

Density 

kg/m3 

Dimensions 

Length 

(mm) 

Diameter 

(mm) 

Push rod Mild steel 202086 7720 228.6 7.62 

Left portion of the rocker arm Cast Iron 89369 7250 25.4 15.24 

Right portion of the rocker arm Cast Iron 89369 7250 38.1 15.24 

Valve Hard Chromium 199143 7530 76.2 7.62 
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For valve spring, the values for mass and 

stiffness are 0.06 kg and 42.9 N/mm 

respectively. 

 

 Calculation of overall stiffness matrix  

The overall stiffness matrix obtained by 

transferring stiffness matrices of all the 

elements from their local coordinate system to 

reference coordinate system and superposing 

all stiffness matrices. The overall stiffness 

properties for the valve train system can be 

written as  

      [T] T ][ ii
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 Where i[T]  = coordinate transformation 

matrix
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Calculation of Overall Mass Matrix 

Mass properties for the valve train system can be written as   

 

     [T] T ][ ii
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Calculation of overall Damping Matrix 
      

        To accomplish this damping for the system, 

a viscous damping ratio[ξj ] for each of the 

seven elastic mode shapes of the system, was 

selected. These mode shapes are calculated as 

to take the value of natural coordinate is unity 

at node 1, and zero at the other node. The 

system damping matrix[C] was then 

computed. Knowing matrices [m] and [k], the 

eigen values[Ø], representing  the elastic mode 

shapes of the system are computed from 

generalized Jacobi method, defining a set of 

orthogonal coordinates{η} as 

 

      { q }=[ Ø ]{ η } 

 

 Diagonal stiffness and mass matrices are 

computed as 

 

    [ K ] = [ Ø ]
T
 [ k ] [Ø] 

                                                                      
                                                                                                                    

         [ M ] = [ Ø ]
T
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  Orthogonal damping matrix is , 
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 Then, Damping Matrix [ C ] = ( [ Ø ]
T
 )

-1
 [ D ] 

[ Ø ]
-1

                          

However, in practice, the inverse of the model 

matrix is a large computational effort. Instead, 

taking advantage of orthogonally properties of 

the mode shapes, one can deduce the following 

expression for the system damping matrix, 

namely, 
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 It is now assumed that ξj = 0.05 for the 

fundamental, or lowest, frequency mode shape 

and ξj = 0.01 for all the higher frequency mode 

shapes. This lowest frequency mode shape is 

less than the next higher frequency by a factor 

of about thirty and as might be expected, it 

closely resembled the rigid body motion of the 

valve train as the valve spring was submerge 
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softest spring in the system. 

When the valve train mechanism has clearance 

in between pushrod and Rocker- arm, then 

overall stiffness matrix is
 
 

][k  

 

    1

1
A 

1

L

E

   1

1
A 

1

L

E

         0                0                     0                 0              0           0 

    1

1
A 

1

L

E

   1

1
A 

1

L

E

      0                0                     0                 0             0            0 

       0          0        2

22
4E

L

I

            0                     0            2

22
2E

L

I

         0      2
2

22
6E

L

I

 

 

        0          0            0      s
k

L

AE

L

I


4

43
3
3

32
12E

 2
3

32
-6E

L

I

       2
3

32
-6E

L

I

     4

4
A 

3

L

E

       0                                                          

        0          0            0           2
3

32
-6E

L

I

           3

32
4E

L

I

       
3

32
2E

L

I

          0             0                  

        0          0        
2

22
2E

L

I

       2
3

32
-6E

L

I

             
3

32
2E

L

I

    3

32
4E

2

22
4E

L

I

L

I
        0        2

2
22

6E

L

I

          

        0          0             0           4

4
A 

3

L

E

                0              0            4

4
A 

3

L

E

       0  

        0          0          2
2

22
6E

L

I

         0                     0          2
2

22
6E

L

I

          0       2
3

22
12E

L

I

 

     
 

 

When the valve train mechanism has clearance 

in between pushrod and Rocker- arm, then 

overall mass matrix is

 
[m] =  
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Calculation of Impact force between 

pushrod and Rocker-arm 

The system will have only two clearances i.e 

the clearance at cam and valve seat, clearance 

between pushrod and rocker arm, the velocity 

of both the pushrod and rocker arm will have 

the same, but unknown, velocity at the point of 

impact. This problem can be solved by using 

the principle of conservation of momentum 

just before and just after impact. 

 The equation relating the momentum at t=tn 

just before impact to the momentum at t=tn+1, 

just after impact can be written in the matrix 

form as shown. 

[m]{
.

q }
n
 + [F] {t} = [m] {

.

q }
n+1

 

In fig.3 assume that q2 defines the motion of 

upper end of the pushrod, and that a new 

coordinate q8 defines the linear motion of the 

rocker arm formerly defined by q2 as shown in 

fig 4. When there is contact, q8 does not exist. 

Now assume that the pushrod and rocker arm 

are about to impact. 
.

q 2 and 
.

q 8 will have 

different values just before impact, but will be 

identical just after the impact. 

 
Fig..4 Elements 
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Let {G}
n
 = [m]{

.

q }
n

 

 

System momentum just before impact is  
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Since F2 = -F8  
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and, since dq2/dt = dq8/dt. The system momentum just after impact is  
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Here      dq4/dt        and F2 are unknown quantities 
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{G}
n
 = [A] {S}

n+1 

 

Where {G}
n
 = System momentum just before 

impact.(is a known quantity) 

 

 {S}
n+1

 = [A]
-1

 {G}
n 

 

thus impact force F(2) between pushrod and 

rocker arm can be determined. 

 

 DISCUSSION OF EXPERIMENTAL 

RESULTS. 

The system considered in the present 

investigation is first shown with contact 

occurring only at the cam. The valve seat has 

been moved up so that the valve can’t come in 

contact with it. Fig 5 shown the pushrod 

motion superimposed with respect to cam 

rotation. As indicated fig 5, the pushrod leaves 

the cam at about 243
0
 and impacts at about 

342
0
. Fig.6 shows that F(1), the force on the 

pushrod, has become zero, and hence 

separation has occurred. As it is expected,  the 

impact creates vibrations in the valve train, but 

these are damped out in about one-half cycle, 

has a result the impact is very mild. It is 

known that the yield stress of mild steel is 

225.6 N/mm
2
 and it is considered that the 

factor of safety for this material is three. So, 

working stress of mild steel is 75.2 N/mm
2
. 

The maximum stress on pushrod, when cam is 

run at 10192 rpm, is 75.06 N/mm
2
. So, for the 

valve train mechanism without valve seat, the 

maximum possible running speed of cam must 

be equal to or less than 10192 rpm, otherwise 

the pushrod may behave inelasticity or it may 

fail. Consider valve train mechanism with 

valve seat, the valve seat was moved into 

position so that the valve would impact it. 

Fig.7 shows that the valve seat snatches the 

pushrod from the cam when the valve impacts 

the seat. The forces on the valve and pushrod 

are shown in fig.8 and fig. 9. It is known that 

the yield stress of hard chromium is 637.6 

N/mm
2
 and it is considered that the factor of 

safety for this material is 15, So working stress 

of hard chromium is 42.5 N/mm
2
. The 

maximum stress on pushrod, as well as on 

valve, when  cam is running at 1224 rpm is 

63.4 N/mm
2
 and 41.1 N/mm

2
, respectively. It 

is known that the ultimate stress of cast iron is 

99.55 N/mm
2
 and it is considered that the 

factor of safety for this material is 20. So, 

working stress of cast iron becomes 5 N/mm
2
. 

If a clearance is allowed to occur at a point 

with in the valve train, such as between the 

pushrod and rocker arm, then the maximum 

stress which act on the rocker arm is 1.25 

N/mm
2
. So, for the valve train mechanism, 

with valve seat the maximum possible running 

speed is limited to 1224 rpm so as to avoid 

plastic behaviour or failure of the pushrod, the 

rocker arm or the valve. 

 
Figure 5 

 

 
 

Figure 6 
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Figure 8 

 

 
Figure 9 

 

CONCLUSIONS 

 

Impact force and Impact Stress analysis of 

valve-train clearance mechanism is done using 

finite element technique. This analysis is 

carried out on a cam-driven-valve train 

mechanism with valve seat, available with 

present day automobiles with variety of 

components made of different materials. This 

method is sufficiently general to permit 

application on other machine elements, such as 

gears, bearings etc., or a combination thereof. 

Use of this method is involved, establishing an 

elastic model, specifying the clearances and 

determining the form of equations of motion 

for each configuration. Also this quantifies the 

maximum safe running speeds of mechanisms 

for different configurations depending upon 

the materials used. For the present cam driven 

valve train mechanism with valve seat, the 

maximum allowable speed is found to be 1224 

rpm. A computer program is written 

exclusively for this purpose to solve various 

equations of the valve-train mechanism, for 

different configurations. However, further 

work is required to obtain more precise model, 

so as to increase the precision, the two 

dimensional or three dimensional elements 

may be used for the finite element modeling 

and also the effect of buckling and the effect of 

temperatures may be included. 
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