Image Retrieval Using Histogram Based Contents of an Image
Arun JB, Reshu Choudhary
Teacher’s Training Center, Electronics and Communication Engineering
Govt. Polytechnic Collage, M.B.M. Engineering Collage, J.N.V.U.
Jodhpur, India

Abstract
The advances in data storage and image acquisition techniques have enabled the creation of huge image databases. Retrieving desired images from such large and varied collection is a challenging problem, to solve this problem, text-based and content-based are the two techniques adopted for search and retrieval in an image database. The Content-based image retrieval system has been an active research area due to its effectiveness. The system applies image contents of an image correspond to objects. This paper presents a novel image feature representation method, namely histogram based technique, for image retrieval to enhance indexing and retrieval performance. The color histogram for an image is constructed by counting the number of pixels of each color. For computation of histogram we have to count number of pixels that correspond to a specific color in quantized color space RGB. Finally, we get efficient images matching to our query image using histogram comparison technique. In order to compare histograms of two images, we first need to generate specific codes for all histogram bins. In this technique database images are in any position, either flipped (horizontal/vertical) or rotated to any angle can be successfully retrieved with high precision and recall rates. This system has also a function to measure retrieval effectiveness is precision vs. recall graph for an image regarding histogram-based retrieval method.

1. Introduction
An image retrieval system is a computer system for browsing, searching and retrieving images from a large database of digital images. Most traditional and common method of image retrieval is to adding metadata such as captioning, keywords. Manual image annotation is time-consuming, laborious and expensive; to address this using a Content Based Image Retrieval (CBIR), images can be analyzed and indexed automatically which depends on their objective visual content. This paper presents a histogram based technique for image retrieval. A color histogram is a representation of the distribution of colors in an image. The color histogram can be built for any kind of color space, although the term is more often used for three dimensional spaces like RGB or HSV [1], [2]. The histogram provides a compact summarization of the distribution of data in an image [3-6]. For digital images, a color histogram represents the number of pixels that have colors in each of a fixed list of color ranges; that span the image’s color space, the set of all possible colors. The color histogram of an image is relatively invariant with translation and rotation about the viewing axis, and varies only slowly with the angle of view. By comparing histograms of two images and matching the color content of one image with the other, the color histogram is particularly well suited for the problem of recognizing an object of unknown position and rotation within a scene.

Another approach to representative color image content is two-dimensional color histogram [7-10]. A two-dimensional color histogram considers the relation between the pixel pair colors (not only the lighting component). A two-dimensional color histogram is a two-dimensional array. The size of each dimension is the number of colors that were used in the phase of color quantization. These arrays are treated as matrices, each element of which stores a normalized count of pixel pairs, with each color corresponding to the index of an element in each pixel neighborhood. While creating a set of final images, the comparison of two-dimensional color histograms should be arranged. In this technique, a histogram is computed from all of the pixels in the image, and the peaks and valleys in the histogram are used to locate the clusters in the image. Color or intensity can be used as the measure.

2. Literature Review
An image retrieval system is a computer system for browsing, searching and retrieving images from a large database of images. The first microcomputer-based image database retrieval system was developed at MIT, in the 1990’s, by Banreddy Prasaad, Amar Gupta, Hoo-min Toong, and Stuart Madnick.

Some software are presented to store and retrieve primitive data and as well as complex data like images. The image type, size, color and texture characteristics are extracted from the images and
stored into the database [11-15]. This type of software has its own content based Retrieval module that allows users to build content based visual queries to the image level. All these are done by some background programming of the system. The image features are extracted from the original image and stored as metadata. And for the query image the same features are extracted from the image and compared with each other.

Many approaches are available based on histogram extraction technique, [16], [17] but the color coherence vector approach gave a new blow to previous histogram based approaches. This color coherence vector extracts not only the color distribution of pixels in images like color histogram, but also extracts the spatial information of pixels in the images. It gives us a more sophisticated approach towards histogram refinement. Use of multiple color coherence vectors gives much better efficiency than single one though it has higher computational complexity [4]. Some efficient work on histogram is done to detect image copy also. In this scheme multi resolution histogram is used. It is almost same like the plain color histogram method. But it adds some extra feature like Encoding of spatial information directly.

In image enhancement, the image is to form better suited for analysis by a human or machine processes consist of a collection of techniques that seek to improve the visual appearance of an image or to convert the image to a form better suited for analysis by a human or machine.

2.1 Histogram Equalization
This method usually increases the global contrast of many images, especially when the usable data of the image is represented by close contrast values. Through this adjustment, the intensities can be better distributed on the histogram. This allows for areas of lower local contrast to gain a higher contrast. Histogram equalization accomplishes this by effectively spreading out the most frequent intensity values [18].

Histogram equalization automatically determines a transformation function seeking to produce an output image with a uniform histogram.

2.2 Geometric Histogram
Geometric histogram generalized the color spatial distribution by computing the color histogram with specific geometric relationship between pixels of each color histogram bucket. The concept is a unification of some existing techniques such as color density maps, color correlogram and color tuples. A color density map is a set of pixels with the same color that considered as a geometric subset of the 2-D plane. The centroid and the radius of the subset are calculated and the number of pixels in each of the regions is computed to form a vector called the density map of color. The map is arranged of all colors into a matrix by making the density vector of each color as a row [20], [22]. On the other hand, color correlogram [1] is a vector of three indices. Geometric histogram is almost the same with region based algorithm.

3. Proposed Method
This proposed methodology involves study of image histogram. An image is a function of two variables. It is simply represented by a 2D matrix after the digitization is done. If a pixel in that image is black then the pixel value is assigned to ‘0’ and in case of a white pixel the pixel value is assigned to ‘255’. For other pixels some other values in between 255 and zero is assigned. Color histogram of an image is a type of bar graph and these acts as a graphical representation of the tonal distribution in a digital image. The number of pixels is plotted for each tonal value. An image viewer can understand the entire tonal distribution of an image by looking at the histogram bar graph. Proposed algorithm is as follows:
3.1. Experimental Results

<table>
<thead>
<tr>
<th>Query image</th>
<th>Database images</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.jpg</td>
<td>2.jpg</td>
</tr>
<tr>
<td>3.jpg</td>
<td>4.jpg</td>
</tr>
<tr>
<td>5.jpg</td>
<td>6.jpg</td>
</tr>
<tr>
<td>7.jpg</td>
<td>8.jpg</td>
</tr>
<tr>
<td>9.jpg</td>
<td>10.jpg</td>
</tr>
<tr>
<td>11.jpg</td>
<td>12.jpg</td>
</tr>
</tbody>
</table>

Fig.1 Sample of Image Database

The results of the above algorithm are shown in table 1. The parameter 1, parameter 2 and parameter 3 are the histogram, centers and maximum value respectively. The histogram data are not processed for any treatment. These three parameters are evaluated over selected database images. We use 158 images from our database out of them 151 images are not matched and 7 images are matched to our query image.

Images in a database are in any position can retrieved. Take an example of eagle image as query image. Images are present vertically/horizontal flipped and rotated in 90º, 180º and 270º in database. These all images are retrieved with 100% accuracy rate for query image.

3.2 Performance Evaluation

The performance of retrieval of the system can be measured in terms of its recall and precision. Recall measures the ability of the system to retrieve all the models that are relevant, while precision measures the ability of the system to retrieve only the models that are relevant. It has been reported that the histogram gives the best performance through recall and precision value [21],[22]. They are defined as:

Recall = \frac{TP}{TP + FN}

Precision = \frac{TP}{TP + FP}

Where TP is the number of true positives, FP is the number of false positives, and FN is the number of false negatives.
Precision = \frac{\text{Number of relevant images retrieved}}{\text{Total number of images retrieved}}

Recall = \frac{\text{Number of relevant images retrieved}}{\text{Total number of relevant images}}

<table>
<thead>
<tr>
<th>TABLE I. PRECISION AND RECALL VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter 1</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.833</td>
</tr>
<tr>
<td>0.625</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.31</td>
</tr>
<tr>
<td>0.269</td>
</tr>
<tr>
<td>0.23</td>
</tr>
</tbody>
</table>

The precision and recall graphs are shown in Fig. 3, 4 and 5 for parameter 1, 2 and 3 respectively.

4. Conclusion
An approach to image retrieval is proposed but it has endless scope to work with. Endless discussion can be done with it. By different approaches it has been seen that the result and retrieval ratio depends upon the image class, for some images it gives good retrieval ratio while poor for some other ones. In this paper, we presented a novel approach for image retrieval by histogram technique without applying any processing techniques. The experimental result shows that the proposed method outperforms the other retrieval methods in terms of Average Precision. We can say that for our implemented system, the image classes used by us give very good image retrieval accuracy. Our system performance is quite reasonable as per the accuracy graph shown above. This approach concentrates only on retrieving of image files. There are scopes for future that the values of thresholds can be set according to the type of image to be retrieval.

5. References

