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Abstract: This paper is a survey paper based on the topic of image
fusion using deep learning. The paper talks about the traditional
image fusion and image decomposition methods along with deep
learning methods for image decomposition. Image fusion aims at
obtaining fused image keeping the advantage of source images.
Traditional image decomposition includes methods such as multi-
scale decomposition, two scale decomposition etc. Traditional
image fusion techniques include DWT, DCT, Top Hat etc.
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I. INTRODUCTION

Image fusion is an important task in image processing. It aims
to extract important features from images of multi-modal
sources and reconstruct the fused image using the
complementary information conveyed by the multiple pictures
by means of a fusion strategy. Image fusion has numerous
applications such as autonomous driving, medical imaging,
defogging, security surveillance etc.

At present there are two types of image decomposition
available which are traditional methods and the deep learning
methods. Few of the traditional methods are multiscale
decomposition, two scale decomposition etc. In this paper
multiscale and two scale decomposition is explained briefly and
in the later part Deep learning technique is explained.

A. Multi-Scale Decomposition

During the image fusion process, an image is typically
decomposed into its detail and background layers using a
technique called multi-scale decomposition. This involves
applying a series of low-pass and high-pass filters to the image
at different scales, which separates the low-frequency
background information from the high-frequency detail
information. The filtered images are then recombined to form
the fused image, which preserves both the background and
detail information from the original image. The specific
method for image decomposition can vary depending on the
application and desired outcome.

B. Two-Scale Decomposition

Two-scale decomposition is a method used to decompose an
image into two layers: a coarse approximation of the image and
a detail layer that contains the high-frequency information.
The decomposition is done in two scales, hence the name two-
scale decomposition.
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The decomposition process typically begins by applying a low-
pass filter to the image, which is used to create the coarse
approximation layer. This layer contains the low-frequency
information and serves as a rough representation of the image.
Next, the difference between the original image and the coarse
approximation layer is computed, which results in the detail
layer. This layer contains the high-frequency information and
represents the fine details of the image.

The two-scale decomposition can be done using various
techniques, such as wavelet transform, curvelet transform and
contourlet transform.

Two-scale decomposition is useful in image processing and
computer vision applications, such as image compression,
enhancement, and fusion. The two-scale decomposition can be
used as a preprocessing step for image fusion, where a fused
image can be created by combining the coarse approximation
and detail layers from multiple images.

Il. LITERATURE SURVEY
One mathematical equation often used in multi-scale
decomposition is the wavelet transform. The wavelet
transform decomposes a signal into different frequency
components, represented by a set of coefficients. The general
equation for the discrete wavelet transforms (DWT) of a signal
x(n) is as follows:
x(n) = Th(k)y(n-k) + Yg(k)w(n-k)
where h(k) and g(k) are the wavelet and scaling functions
respectively, y(n) and w(n) are the approximation and detail
coefficients at different levels of decomposition.
Another common equation used in multi-scale decomposition
is the Laplacian Pyramid, which is a technique that recursively
applies a low-pass filter to an image and then subtracts the
filtered image from the original image to obtain a set of detail
images at different scales. The general equation for the
Laplacian Pyramid is:
L(i.j) = G(i,j) - Expand[G(ij)]
where G(i,j) is the filtered image at a certain scale, L(i,j) is the
Laplacian pyramid at that scale and Expand is the operation of
upsampling and applying a low pass filter to an image. Both
DWT and Laplacian pyramid are widely used in image
processing for multi-scale decomposition.
One popular approach for image decomposition using deep
learning is using Variational Autoencoders (VAEs). VAEs
consist of an encoder network that maps the input image to a
low-dimensional latent space, and a decoder network that
maps the latent space back to the original image space. The
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encoder and decoder networks are trained jointly to reconstruct
the input image. By considering the lowest level of the encoder
as a bottleneck, the VAE can force the encoder to learn the
most salient features of the image, which can be used for image
decomposition.

Another approach is using Generative Adversarial Networks
(GANS) which consist of two networks, a generator network
and a discriminator network. The generator network generates
new images from a random noise, while the discriminator
network is trained to differentiate between real and generated
images. By training the generator network to generate images
similar to the input image, the generator can learn to
decompose the input image into its constituent parts, such as
texture, shape, and color. In summary, deep learning-based

feature space back to the original image space. The encoder
and decoder are trained together to reconstruct the input image
as accurately as possible.

During the training process, the autoencoder is presented with
a set of images and it tries to learn a mapping between the input
image and its corresponding output image. The output image
is obtained by passing the input image through the encoder and
then through the decoder. The autoencoder learns to minimize
the difference between the input image and the output image,
and this forces the encoder to learn the most salient features of
the image that are necessary for reconstruction. After training,
the encoder can be used to decompose an input image into its
constituent parts or features by passing it through the encoder
and getting the feature space. The feature space can be
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image decomposition methods use neural networks to
decompose an image into its constituent parts or features, this
can be done using various architectures such as autoencoders
or generative models like VAEs and GANSs.

This paper proposes a novel auto-encoder (AE) based fusion
network. The core idea is that the encoder decomposes an
image into background and detail feature maps with low- and
high-frequency information, respectively, and that the decoder
re-covers the original image. To this end, the loss function
makes the background/detail feature maps of source images
similar/dissimilar. In the test phase, background and detail
feature maps are respectively merged via a fusion module, and
the fused image is recovered by the decoder.

Image decomposition using autoencoders and neural networks
involves training a neural network, called an autoencoder, to
decompose an input image into its constituent parts or features.
The autoencoder is trained to reconstruct the input image from
its decomposed parts, and during the training process, it learns
to extract the important features of the image that are necessary
for reconstruction. The architecture of an autoencoder
typically consists of an encoder and a decoder. The encoder is
a neural network that maps the input image to a lower-
dimensional feature space, called the bottleneck or latent
space. The decoder is another neural network that maps the

visualized as a set of feature maps, each representing a
different aspect of the image, such as texture, shape, and color.
These feature maps can be further used for various image
processing tasks, such as image classification, segmentation,
and generation. In summary, autoencoders are neural networks
trained to reconstruct an input image, as a result of this process,
the encoder learns to extract the most salient features of the
image, which can be used for image decomposition.
The mathematical formula involved in image decomposition
using autoencoders is based on the principles of neural
networks and optimization. The goal of an autoencoder is to
learn a mapping between the input image and its corresponding
output image, while also learning a compressed representation
of the image in the bottleneck or latent space.
The basic formula for an autoencoder can be written as:

x' = f(W_enc * f(W_dec * 2))
Where x is the input image, X' is the output image, z is the
bottleneck or latent space, W_enc and W_dec are the weights
of the encoder and decoder networks respectively, and f( ) is
the activation function.
The autoencoder is trained to minimize the difference between
the input image and the output image, which is often measured
using a loss function such as mean squared error (MSE) or
binary cross-entropy (BCE). The loss function is used to
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evaluate the quality of the reconstruction and to guide the
optimization process.

The optimization process is often done using an optimization
algorithm such as stochastic gradient descent (SGD) or Adam,
which updates the weights of the network to minimize the loss
function.

In summary, the mathematical formula involved in image
decomposition using autoencoders is based on the principles
of neural networks and optimization, where the goal is to learn
a mapping between the input image and its corresponding
output image while also learning a compressed representation
of the image in the bottleneck or latent space. The optimization
process is done by minimizing the difference between the input
and output images using a loss function and an optimization
algorithm.

Loss Function

In the training phase, we aim to obtain an encoder that
performs two-scale decomposition on the source images, and
at the same time, acquire a decoder that can fuse the images
and preserve the information of source images well.

Image decomposition.

Background feature maps are used to extract the common
features of source images, while detail feature maps are used
to capture the distinct characteristics from infrared and visible
images. Therefore, we should make the gap of background
feature maps small. In contrast, the gap of detail feature maps
should be great. To this end, the loss function of image
decomposition is defined as follow,

L= (I1Bv - Bil) - cr® (I1Dv - Dil})

where BV, DV are the background and detail feature maps of
the visible image V, and BI, DI are those of the infrared image
I. @ () is tanh function that is used to bound gap into interval

-1, ).

Fusion Techniques
Image fusion using the discrete wavelet transform (DWT) is a
process that combines multiple images into a single image by
extracting features from each source image and then
combining them in a way that preserves important information
while reducing redundancy. The general process can be broken
down into the following steps:

1. Transform the source images into the frequency domain
using the DWT. This decomposes the images into
different frequency bands, such as low-frequency and
high-frequency bands, which represent the coarse and fine
details of the image, respectively.

2. Extract the features from each source image by selecting
the most important frequency bands. This can be done
using various selection criteria, such as energy, variance,
or entropy.

3. Combine the selected features from each source image to
form a single fused image. This can be done using various
fusion rules, such as averaging, maximum, or principal
component analysis (PCA).

4. Transform the fused image back into the spatial domain
using the inverse DWT (IDWT) to obtain the final fused
image.

The specific details of the process, such as the type of wavelet
function, the level of decomposition, and the fusion rule,

can vary depending on the application and the desired
outcome. However, the key idea behind image fusion
using DWT s to extract the most important features from
each source image and then combine them in a way that

preserves important information while reducing
redundancy.
Image |
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Fusion rules

The DWT of an image x(n) is computed by convolving the
image with a set of wavelet functions, h(k) and g(k) , which
are also called the analysis and synthesis functions,
respectively. The general equation for the DWT is as follows:
x(n) = Yh(k)y(n-k) + Yg(k)w(n-k)

where y(n) and w(n) are the approximation and detail
coefficients at different levels of decomposition. The inverse
discrete wavelet transform (IDWT) is used to reconstruct the
image from the wavelet coefficients. The IDWT is the reverse
process of the DWT, and it can be used to obtain the final fused
image from the wavelet coefficients. The general equation for
the IDWT is:

x(n) = Yh(k)y(n-k) + Yg(k)w(n-K)

DCT

The mathematical formula involved in image fusion using the
discrete cosine transform (DCT) is based on the principles of
linear algebra, signal processing, and the DCT. The DCT is a
mathematical technique used to decompose a signal into a sum
of cosine functions of different frequencies. The Discrete
Cosine Transform (DCT) of an image x(n) is computed by
applying the DCT to each block of pixels in the image. The
DCT of a block of pixels is represented by a matrix C, where
each element c(u,v) is given by the following formula:

c(u,v) = a(u) * a(v) * Ym=0"(N-1) >n=0"N-1) x(m,n) *
cos((2m+1)um/(2N)) * cos((2n+1)va/(2N))

Where x(m,n) is the value of the pixel at position (m,n) in the
block, N is the size of the block, and a(u) and a(v) are
normalization factors.

After the DCT is applied to each block of the image, it results
in a set of frequency coefficients, where each coefficient
represents a different spatial frequency component of the
image. These coefficients can be used to extract the most
important features from each source image, then they can be
combined to form a single fused image using various fusion
rules, such as averaging, maximum, or principal component
analysis (PCA). The final fused image can be obtained by
applying the inverse DCT (IDCT) to the fused coefficients.

coefficients| DWT | g(mn)
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